Sonam Singh
D. J .Sanghvi College of Engineering, Mumbai, India.
Kriti Srivastva
Department of Computer Engineering, D.J.Sanghvi College of Engineering, Mumbai, India.
Comparative Study of Machine Learning Algorithms for Recommendation System
Authors
Abstract
The role of recommender system is very vital in recent times for a lot of individuals. It helps in taking decisions without exploring physically. Broadly there are two types of recommender system: Content based and Collaborative Filtering. The first one focus on user’s history and takes decisions. But there could be times when decisions based on only user history is not sufficient. For this, there is a need to analyze many parameters influencing the decision such as previous history, Age, gender, location etc. In the second approach it finds similar group of users based on several parameters and then takes decisions. Over the last few decades machine learning algorithms have proved their worth in this area because of their ability to learn from the given data and identify various hidden patterns. With this learning, these algorithms are able to generalize very well for unknown data. In this research work, a survey on three different machine learning based collaborative filtering methods are presented using Movie Lens dataset. The comparison of all three methods based on RMSE and MAE error is also discussed.