Design and Simulation of Metamaterial based Circularly Polarized Antenna Array

Authors

Rohini G.Bhatkoorse, PG student
Department of Electronics and Communication.
Dr. Mahesh A, Associate Professor
Department of Electronics and Communication RV College of Engineering, Bengaluru, India.

Abstract

The microstrip patch array antenna is usually designed as a broadside radiator. The radiating area of the patch can be of any planar shape from elliptical to square, but rectangular is preferred over other shapes. When elements of antenna are repeated, it is called as an array of antennas. When the distance between antennas is reduced, mutual coupling effect occurs. This effect occurs when the distance between the antennas is less than 0.5and this affects the gain and efficiency of the antennas. This effect can be reduced by using metamaterials. To reduce the mutual coupling between the antenna elements the metamaterial structure is artificially designed to obtain negative permittivity and permeability using HFSS and the results are verified using MATLAB. These metamaterials are placed between the patch elements of 1×2 circularly polarized array antenna when the distance between the patches is 0.2 for both RT duroid and FR4 epoxy substrate for 5GHz resonant frequency.