Systematic Review Based on the Study of Elastic-Plastic Transition Stresses


Gurinder Kaur, Assistant Professor, Nishi Gupta, Associate Professor
Department of Mathematics (UIS), Chandigarh University, Gharuan, Mohali, Punjab, 140413, India.


A systematic review based upon the study of elastic-plastic transition stresses. A worthwhile work about the analysis of elastic-plastic transition stresses in different rotating materials by varying different parameters is discussed. In the case of compressible material, the strain rates have a maximum value at the internal surface. It has been observed that radial stress has a higher value at the internal surface of the rotating disc made of incompressible material as compared to circumferential stress with thermal effect and this value of radial stress further increases. With the increase of angular speed, the value of radial stress further increases as compared to the case with no thermal effect. The magnitude of the stresses and pressure reduce with the variation of thickness needed for a fully plastic state. At the inner surface, the effect of heat increases stress for compressible material. The thickness and density parameters decrease the value of angular speed at the internal surface of the rotating disc of compressible material as well as incompressible materials. The radial and the hoop stress, both decrease with the increased value of temperature at the Elastic-Plastic stage, but with the reverse result obtained for a fully Plastic state.