
Analysis of Work Stealing Approaches for Load Balancing

in Distributed Environment

TanuShree
1*

, and Neelendra Badal
2

1
Department of Computer Science, IFTM University Moradabad, India

2
Computer Science Department,KNIT, Sultanpur, India

Abstract:Spontaneously allocated duties and their execution are one of the biggest duties of

the processor. But it can be observed some time that the overall load is not divided equally,

therefore the potentiality of the overall execution system can be lower. Therefore, the work-

stealing process is present where the load becomes balanced in each of the cores effectively.

The basic topology of the whole work-stealing process is very simple. Cores from different

regions of the process have access to steal work whenever it becomes necessary. In case of

any necessity when the load becomes heterogenic, the cores steal the load and make it

balanced effectively. Different procedures are present for example the organizational SSL,

SLL, LLL, and LLS. Through these, the work-stealing procedure can be done according to the

work level or the priority.

Keywords: Load balancing, work stealing, distributed system.

1. Introduction

Work stealing is a very popular load balancing technique in the world of dynamic

parallelism. It is used to maintain a pool of workers, each of which maintains a double-ended

queue or the deque of tasks. Generally, the theory of work-stealing methodology comes from

the fact of the whole process where the local deque becomes empty. However, it may happen

that the victim is also running out of work. Thereby, this becomes a more dramatic case,

where the thief also runs out of the work or jobs. Therefore this situation is known as the

failed steal attempt, as the thief is unable to receive any job by applying the process of work

Stealing.

In this generation, supercomputers are coming with a lot more power delivery systems,

including multicore processors, a wide mixture of the shared memory and distributed memory

parallelism. There, a lot of work-stealing processes are present. The whole research is aimed

to identify the proper aspects of the work scheduling model and comparing the possible work-

stealing methods. Discussing the advantages and disadvantages and the application of the

theories are having the highest priority in this whole research during the comparison.

The research is going to be done in the following way where the systematic design will

follow the basic structure of details about the specific algorithms and comparison between

those with the help of several aspects.

* Corresponding Author

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 22, Issue 10, October - 2020 Page-1256

2. Work stealing

Work Stealing is a process which was proposed in the market regarding the execution of

the functional programs on the virtual tree of multithreaded processors. Almost in every case

parallel computing provides better output and performance measurements. The pre-

installation environment or the PE of the computing environment plays the main role in the

work-stealing process. Different procedures are present to do the overall process [1]. The

main algorithm works based on the following structure. Generally, PE searches for the

existing work or task for execution. If the PE finds any task then it will acquire that and take

that for the next level processing. At the same time if the PE does not find any type of tasks in

the computing environment it throws a stealing signal to another appropriate PE. If the PE

does have any type of remaining task then the blank PE will steal and execute that whereas, if

the other PE also remains blank then the stealing signal reverts to a blank signal or 0. In this

scenario, the PE fails to steal the task from another PE in the computing environment. The

whole process is known as work stealing [2]. The case where the stealing process reverts the

signal 0 or null is known as the failure of the stealing process. On the other hand, when the

stealing process has more than one choice, the PE will select all the choices and send those to

the thief directly from where the stealing attempt was initiated. The simplest version of the

stealing process is the Random stealing process, where the targets for steal attempts are

chosen in a randomized way. In this process, the stealing target faces a lot of attempts but the

victim sends a single task as a response to the thief [3].

3. Different types of work stealing

Generally, in the world of work-stealing, there are mainly four types of processes present.

SSL, SLL, LLL, LLS are the four parts of work-stealing. All the parts are described below.

3.1. SSL

The SSL stands for the small-small-large distributed system. When it is important to

respond to a still attending from the same type of PE for the same type of cluster level, it is

important to select the smallest task. In this SL system, the victim always wants to keep the

thieves busy remotely for a longer period, than the pre-installation environment from the

same cluster. It happens because it pushes the themes to request for work by having a longer

duration with the previous one. The overall process is done through a very high latency

network. Therefore the thief becomes forceful to send the Steel attempts signal in terms of

continuing the overall process of parallel computing in the distributed system [4].

3.2. SLL

The SLL stands for a small large large system. Choosing the smallest task only for the

same pre-installation environment level and selecting the biggest task for all other levels are

considered in this type of distributed system. Therefore the overall system of choosing the

performance level of the parallel computing is very much affected by this system in the

distributed system. Generally, when the overall system is having a theft attempt to the main

victim from the side of the thief regarding the work-stealing, the PE or the pre-installation

environment does not care about the sources of the attempt. That means the overall

functionalities of the SLL does not have a focus on the clusters. It can be the same cluster or a

different one [5]. On the other hand, it specifies the largest tasks for the other PEs as well.

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 22, Issue 10, October - 2020 Page-1257

Therefore it can be understood that the effectiveness of the SLL is very much associated with

the overloads recovery of every possible corner that a distributed system used to have. For

example, let's assume that one corner of the system is heavily loaded, whereas the other

corner of the system is lightly loaded. Therefore it becomes an unequal situation. The work-

stealing is the process which is used to push a theft attempt and steal some of the work from

the heavily loaded corner and distribute that into the remaining corners for establishing

equality in the system [6]. The system itself is recognized as the PE where more than one PE

can be presented in one system. When the work-stealing process used to have a big role play

in the whole system design, then it is known as the distributed system as all the tasks are

distributed in equal formats. Besides this, SLL is a type of this system which is focused on

overheads of offloading minimal tasks. Here the large tasks are not considered for the remote

PEs effectively. The policy of this system is quite similar to the FCFS policy [7].

3.3. LLL

The LLL is considered as the Large LargeLarge system. The model itself defines that it is

associated with large tasks only. Therefore the system faces a lot of greedy approaches, such

as executing the larger task in a short amount of time and some of the others. Besides this, the

system is also having a lot of similar tasks from different PEs [8]. There, an idle PE is present

which is only responsible to handle this type of large task. It takes up almost ⅕ th of the

overall CPU cores while performing the functions effectively. During the execution of the

large tasks, the performance of the CPU becomes lower in other areas, therefore it pauses the

execution of smaller tasks to provide the best efficiency to the larger task execution cores [9].

3.4. LLS

The LLS stands for Large Large Small. This LLS system is mainly focused on large tasks

whereas it is also focused on small tasks as well. The LLS mainly helps to take the large tasks

for the same clusters and same pre-installation environment whereas the other clusters are

also used but in a remote way for having a better execution process of the small tasks.

Generally, the larger task execution starts first due with the help of the nearby victim. During

the process of the larger task execution, another remote PE helps to execute the small tasks

effectively. This system works only in particular sequences when the number of tasks is equal

to the number PEs in the whole distributed system [10].

4. Comparison in the work-stealing processes

Table 1 compares the different work-stealing process that used for load balancing in a

distributed system.

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 22, Issue 10, October - 2020 Page-1258

Table 1: Comparison of different work-stealing processes

Facts SSL SLL LLL LLS

Work Load In the SSL the

workload is

having three

segmentations.

Where the small

tasks get the

highest priority to

be executed.

Large tasks are

having the lowest

priority.

In the SLL

system, the

workload is

also divided

into three

segments. But

here the small

tasks have the

highest priority

of execution

and after that,

the logistics

will get

permission for

execution [8].

In the LLL

system, the

workload is

divided into

three sections

where each of

the sections is

responsible to

execute the

larger tasks

only.

In the LLS system,

the workload is also

divided into triple

segments where the

larger tasks are

having the highest

priority for execution

and the smaller tasks

are also having the

medium priority.

During the execution

of the larger task and

extra PE helps to

execute the smaller

task at the same

amount of time [8].

Priority The smaller task

has the highest

priority in the

overall

processing.

The smaller

task has the

highest priority

in the overall

processing

where the

largest tasks

also have

permission to

execute at the

same time.

Largest tasks

have the

highest

priority in the

overall

processing.

Although larger tasks

have the highest

priority of execution

the smaller test is also

executed separately

with the help of other

pre-installation

environments.

Policy The small small

large system

follows the basic

format of FCFS

policy.

The small large

large system

also follows the

FCFS policy

Large

LargeLarge

does not

follow the

FCFS policy.

Large large and small

systems are also

associated with the

FCFS policy.

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 22, Issue 10, October - 2020 Page-1259

Algorithms In this scenario,

the remote cluster

level selects the

largest tasks.

In this

particular

scenario, the

source does not

have any

importance at

all. It can be

any cluster

having the same

identity or

different from

each other.

LLL system

does not use

any type of

remote

clusters for

the ultimate

execution [8].

LLS uses the remote

cluster for selecting

the smallest task to

execute at the same

time when the largest

tasks are getting

executed. To support

this execution it uses

an extra pre-

installation

environment present

nearby the victim.

The

latency of

the

network

SSL system does

use the latency

network to have a

significant gap

between two theft

attempts and have

a single victim

based task [11].

SLL does not

use the latency

network.

The LLL

system does

not use the

latency

network.

LLS system the over-

saturated network or

bisect network where

two to three PEs work

in a single time.

5. Conclusion

Heavy-duty performances are very much observed in the current date in every

circumstance, especially in the IT industries. Therefore parallel computing and some other

topologies come into the scene. The distributed system is considered when the multiple

functions are needed to be executed at the same time. It generally helps to divide the overall

tasks into two segments one is the largest tasks and the other one is the smaller task. The

systems defined above are the four combinations of the overall workflow system that are used

in terms of managing all the tasks. Each of those has separate duties in separate

circumstances. To have a greater idea about the work-stealing process in short but very

deeply, it is recommended to follow the whole research effectively.

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 22, Issue 10, October - 2020 Page-1260

References

[1] A. Lasserre, R. Namyst, and P. W. Easypap, “EASYPAP : a Framework for Learning Parallel

Programming,” 2020.

[2] G. E. Blelloch, J. T. Fineman, Y. Gu, and Y. Sun, “Optimal Parallel Algorithms in the Binary-Forking

Model,” in Proceedings of the 32nd ACM Symposium on Parallelism in Algorithms and Architectures,

2020, pp. 89–102.

[3] S. Kehrer and W. Blochinger, Equilibrium : an elasticity controller for parallel tree search in the cloud,

no. 0123456789. Springer US, 2020.

[4] R. Carratalá-sáez, M. Faverge, G. Pichon, G. Sylvand, and E. Quintana-ortí, “Tiled Algorithms for

Efficient Task-Parallel H-Matrix Solvers,” in PDSEC 2020 - 21st IEEE International Workshop on

Parallel and Distributed Scientific and Engineering Computing, 2020, pp. 1–10.

[5] K. Singer, K. Agrawal, and I. A. Lee, “Scheduling I / O Latency-Hiding Futures in Task-Parallel

Platforms ∗,” in Symposium on Algorithmic Principles of Computer Systems, 2020, pp. 1–15.

[6] J. Zhang, C. Yang, Y. Li, L. Chen, and X. Yuan, “LBVis : Interactive Dynamic Load Balancing

Visualization for Parallel Particle Tracing,” in 2020 IEEE Pacific Visualization Symposium, 2020, pp.

91–95.

[7] V. Freitas et al., “PackStealLB : A Scalable Distributed Load Balancer based on Work Stealing and

Workload Discretization,” 2020.

[8] M. Wang, T. Ta, L. Cheng, and C. Batten, “Efficiently Supporting Dynamic Task Parallelism on

Heterogeneous Cache-Coherent Systems,” in 2020 ACM/IEEE 47th Annual International Symposium on

Computer Architecture (ISCA) Efficiently, 2020, pp. 173–186.

[9] F. Fritz, M. Schmid, and J. Mottok, “Accelerating Real-Time Applications with Predictable Work-

Stealing,” in Architecture of Computing Systems – ARCS 2020, 2020, pp. 241–255.

[10] T. Wenjie, Y. Yiping, L. Tianlin, S. Xiao, and Z. Feng, “An Adaptive Persistence and Work-stealing

Combined Algorithm for Load Balancing on Parallel Discrete Event Simulation,” ACMTrans. Model.

Comput. Simul, vol. 30, no. 2, pp. 1–26, 2020.

[11] P. Leca, W. Suijlen, L. Henrio, and F. Baude, “Distributed futures for efficient data transfer between

parallel processes,” in Proceedings of the 35th Annual ACM Symposium on Applied Computing, 2020,

pp. 1344–1347.

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 22, Issue 10, October - 2020 Page-1261

