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Abstract: Process Capability Indices (PCIs) have been proposed to assess process capability in real 
world application over the past four decades. Today, purchasing personnel also uses PCIs to select 
best supplier. To select best supplier using supplier’s values of PCIs may not be reliable due to fear of 
data manipulation. To assess supplier’s process capability, purchasing personnel needs process 
distribution with parameters referring received samples from supplier. Most of the time, received 
samples conform hundred percent to the specification, because products are categorized as 
conforming and nonconforming by supplier before being sent to customer and only conforming 
products are sent to customer. If the process distribution is normal then process distribution identified 
by referring to received sample products is truncated normal. From a customer’s point of view 
intention of this paper is estimation of process distribution parameter referring to truncated normal 
data by identifying best method of parameter estimation with respect to accuracy and precision of 
estimates.  It is found that method of moments provides best estimators of process parameters without 
loss of efficiency as compared to other competing methods. Through simulation, performance of 
method of moments is compared with other competing recently developed methods which include 
maximum likelihood estimation starting from re-parameterization and quantile-filling algorithm (QA) 
based on EM (Expectation-Maximization) algorithm. Estimated parameters are used to estimate 
supplier’s  process capability using probability based PCIs through illustrative example.  
 
Keywords: Process capability indices, supplier’s process capability, process distribution, 
normal distribution, truncated normal distribution.  
 

1. Introduction 
Univariate basic Process Capability Indices (PCIs) ,pC pkC and pmC are developed to measure process 
capability in manufacturing industries assuming process distribution is normal with process mean µ
and process standard deviation .σ While developing the basic PCIs it is also assumed that process is 
stable and a specification region of a quality characteristic is specified by lower and upper 
specification limits (LSL and USL) with target value T as (LSL+USL)/2. These PCIs are related with 
each other but each one measures process capability in a different aspect. The PCIs pC and pkC
measure potential capability and actual capability respectively while pmC   assesses process 
performance taking into account closeness to the target and variability of the process.  

In today’s marketplace purchasing personnel also uses PCIs to select best supplier amongst several 
suppliers. To select best supplier using supplier’s published values of PCIs may not be reliable due to 
fear of data manipulation. To assess supplier’s process capability, purchasing personnel needs process 
distribution with parameters referring received sample of products from supplier. Most of the time 
received sample of products from supplier is hundred percent conforming to the specification, since 
products are categorized as conforming and nonconforming by supplier before being sent to customer 
and only conforming products are sent to customer. If we assume process distribution is normal with 
process mean µ and process standard deviation σ  then the process distribution identified on the basis 
of received sample of products must be either doubly truncated normal or left truncated normal or 
right truncated normal. In case specification limits of a quality characteristic are specified by lower & 
upper specification limits (LSL and USL), then identified distribution is doubly truncated normal. In 
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other cases, if quality characteristic is specified by just LSL then identified distribution is left 
truncated normal and if quality characteristic is specified by just USL then identified distribution is 
right truncated normal. From a customer’s point of view, the problem is how process parameter of the 
process distribution while referring to truncated data will be estimated. Under normal distribution, 
estimation of parameters using method of moments and maximum likelihood estimation is not 
difficult task. This task is difficult when we refer to truncated normal distribution to estimate process 
parameter.    

The intention of this paper is estimation of process distribution parameter to measure supplier’s 
process capability by referring to truncated normal data by identifying best method of parameter 
estimation with respect to accuracy and precision of estimates. Section 2 devoted to literature review 
and in section 3, we discuss theoretical background of doubly truncated normal distribution, left 
truncated normal distribution and right truncated normal distribution. Section 4 deals with parameter 
estimation using method of moments, method of maximum likelihood estimations, method of 
maximum likelihood starting from re-parameterization and Quantile-filling Algorithm (QA) based on 
EM (Expectation-Maximization) algorithm. Section 5 is devoted to simulation study in view to 
measure performance of method of moments with other competing methods. Section 6, deals with 
basic PCIs with their alternatives based on probability with illustrative example. The last section 
presents concluding remarks. 

2. Literature Review 
PCIs have been studied extensively in the literature with their estimators, distributional and inferential 
properties (Kotz and Johnson [1], Kotz and Lovelace [2] and references there in). Pearn et al. [3] 
proposed the PCI pmkC  referred to as the ‘third generation capability index’ which combined the 
merits of ,pC pkC and .pmC  The pmkC  is more sensitive to the departure of process mean from target 
than ,pC pkC and .pmC  Polansky et al. [4] estimated process capability for a truncated distribution by 
applying Johnson transformation. Univariate as well as multivariate process capability indices were 
recently reviewed by de-Felipe, D. and Benedito, E. [5] with strengths and weaknesses of each index.  

A. C. Cohen [6] has estimated parameters of doubly and singly truncated normal distribution using 
maximum likelihood estimation. A. C. Cohen [7] has also estimated parameters of singly truncated 
normal distribution using first three sample moments. S. M. Shah and M. C. Jaiswal [8] have used 
method of moments to estimate the parameters of doubly truncated normal distribution considering 
first four sample moments. They have also compared method of moments estimator with maximum 
likelihood estimators proposed by A. C. Cohen [6] and concluded that method of moments provides 
simple estimators of the parameters without much loss of efficiency, while the maximum likelihood 
estimators are complicated and laborious. Pueyo S. [9] has given a simple procedure to estimate the 
parameters of the truncated normal distribution by maximum likelihood starting from re-
parameterization. Truncated distribution dataset can be treated as special case of interval-censored 
data. Many data imputation methods have been developed for interval-censored data to convert it into 
pseudo-complete data set. Recently, Jun Yang et al. [10] used quantile-filling algorithm (QA) based 
on EM (Expectation-Maximization) algorithm (QA-EM) to convert the truncated data into pseudo-
complete data for parameters estimation. They have also compared their proposed method with other 
two competing methods.  

3. Truncated Distributions 
Consider random variable X with distribution function F(x) and p.d.f. f(x). Suppose for some reason 
we discard the values of X less than ‘a’ and greater than ‘b’ provided a < b. Thus we are considering 
those values of X which are in [a, b]. In such a situation the resulting distribution of X may  be 
viewed as a conditional distribution subject to the hypothesis .bxa ≤≤  This distribution is called as 
truncated distribution. Let us denote FT(x) as the distribution function and fT(x) as the p.d.f. of 
truncated distribution. 

3.1 Doubly Truncated Normal Distribution 
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      Mean = E(X) = µ  and Variance = V(X) = 2σ  
Suppose for some reason, we discard the values of X less than ‘a’ and greater than ‘b’ provided a < b. 
In such a situation resulting distribution is doubly truncated normal having probability density 
function with mean and variance is given below: 
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3.2 Left Truncated Normal Distribution 
Let ( )2,~ σµNX , if we discard the values of X less than ‘a’ then resulting distribution is left 
truncated normal having probability density function with mean and variance is given below:
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3.3 Right Truncated Normal Distribution 
If ( )2,~ σµNX  and if we discard the values of X greater than ‘b’ then the resulting distribution is 
right truncated normal having probability density function with mean and variance is given below:
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Note: Mean and variance of normal distribution is µ and 2σ but all truncated normal distributions 

mean is not µ and variance is not 2σ . 

4. Parameter Estimation Referring Truncated Data 
A. C. Cohen [6] has estimated parameters of doubly and singly truncated normal distribution using 
maximum likelihood estimation. S. M. Shah and M. C. Jaiswal [8] have used method of moments to 
estimate the parameters of doubly truncated normal distribution considering first four sample 
moments. They have concluded that method of moments provides simple estimators of the parameters 
without much loss of efficiency, while the maximum likelihood estimators are complicated and 
laborious. Pueyo S. [9] has estimated the parameters of the truncated normal distribution by maximum 
likelihood starting from re-parameterization. Jun Yang et al. [10] used algorithm QA-EM to convert 
the truncated data into pseudo-complete data for parameters estimation.  

4.1 Method of Moments Estimator Proposed by Shah and M. C. Jaiswal [8] 
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Considering equation (2), p.d.f. of doubly truncated normal distribution let us define 
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Considering equation (5) when r=2, r=3, and r=4 in three unknowns 0
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Remark 2: When −∞=a , that is right truncated normal distribution having p.d.f. is given in equation 
(4) the estimators are same as equation (9) but in this case y=x-b. Here the odd moments negative due 
to the choice of origin.   
4.2 Method of Maximum Likelihood Estimator Proposed by A. C. Cohen [6] 
The maximum likelihood estimators ĥ  and σ̂ of h and σ of doubly truncated normal distribution 
obtained by A. C. Cohen [6] in the notation used above are as follows: 
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 Estimators ĥ  and σ̂ are to be found by numerical methods because 0z and 1z depends on  ĥ   andσ̂ .    
4.3 Method of Maximum Likelihood Estimator Proposed by Salvador Pueyo [9] 
Equation (2), p.d.f. of double truncated normal distribution can be written as 
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Equation (12) does not have closed form, so the estimators have to be obtained iteratively. 
Considering following notations for the update of the parameters at step ,...)2,1(1 =+ jj
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After mathematical derivation the updating rule suggested by Salvador Pueyo [9] is given below
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The expectations in equation (14) are calculated from equation (10), using numerical integration. The 
value η is relatively arbitrary. The larger the chosen η , the quicker the convergence if it converges, 
but also the larger the risk that it does not. The author uses 33.0=η , in case of overflow η  should be 
reduced. The procedure should proceed until ψα jj and ∆∆ becomes smaller than some given 

thresholds. From estimated values of ψα and , we can obtain m.l.e. of 2σµ and using equation 
(11). 
 
4.4 Quantile Filling Algorithm based on the Expectation Maximization Method (QA-EM)  by 

Jun Yang et al. [10] 
This method transforms truncated normal data considering as incomplete data into pseudo-complete 
data, which consists of mainly two steps. 

EM estimation:  

Suppose discarded values of X which are less than ‘a’ are denoted by 1,2,1, ,...,, naaa xxx ; undiscarded 
values of X which lie between [a, b] are denoted by  2,2,1, ,...,, nTTT xxx and discarded values of X which 
are greater than ‘b’ are denoted by 3,2,1, ,...,, nbbb xxx . Let ),...,,( 1,2,1, naaaa xxxx = , 

),...,,( 2,2,1, nTTTT xxxx = and ),...,,( 3,2,1, nbbbb xxxx = denote the three subsets where 3,2,1 nnn
respectively represent the sample sizes of the three subsets. The complete sample data set can be 
written as );;(),...,,( 21 bTan xxxxxxx == where 321 nnnn ++= .  
Based on the complete sample data set log-likelihood function becomes  
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Since in practice the customers get only observed subset ),...,,( 2,2,1, nTTTT xxxx = to estimate ( )σµθ ,= , 

Jun Yang et al. [10] proposed EM algorithm for the estimation. Let ( ) )()()()()( 31,, iiiii nandnσµθ =
respectively represent the estimators of 31, nandnθ after the ith iteration of EM algorithm, i=1,2,….    
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parameter values of the EM algorithm. For i=1,  
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                  where (.)φ is the p.d.f. of N(0,1). 

The proof of equation (20) and (21) are given by Jun Yang et al. [10]. The iteration will stop if 
εθθ <−+ )()1( ii ; where ε is a precision parameter. ( ) ( ))1()1( ,ˆ,ˆˆ ++== ii σµσµθ  is the final estimator of 

the EM algorithm. 

Quantile filling Algorithm: 

The quantile-filling algorithm generate the pseudo-complete data through multiple iterations 
(k=1,2,…). First iteration require initial values of ( )σµθ ,= . Estimated values of ( )σµθ ,= obtained 
by EM algorithm are taken as the initial values, that is .ˆ~ˆ~ )0()0( σσµµ == and  Starting from k=1 each 
iteration requires following steps.  
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The iteration will stop if εθθ <− − )1()( ~~ kk ; where ε is a precision parameter. 

5. Simulation Study 
Through simulation, performance of method of moments proposed by S. M. Shah and M. C. Jaiswal 

[8] is compared with other competing methods. Other competing methods includes method of 
maximum likelihood estimator (MLE) proposed by Salvador Pueyo [9] and Quantile filling Algorithm 
based on the Expectation Maximization Method (QA-EM) by Jun Yang et al. [10]. Performance of 
each method is measured using bias and mean square error. In the simulation study symmetrical 
truncated normal and skewed truncated normal distributions are considered to estimate parameters of 
supplier process distribution.  

Bias (B) and Mean Square Error (MSE) is defined as 
( ) θθ −= ˆEB                                                                                                                                         (27) 

( ) ( ) ( )[ ]22 ˆˆˆ θθθθθ −+=−= EVarEMSE                                                                                                 (28) 

Where θ represents the true value of the parameter and θ̂ is its estimate. 
One of the factor which affects estimation procedure is proportion of observations truncated or 
discarded from original process distribution. Here we use α  to denote proportion of discarded data 
which is actually proportion of nonconforming product. For simulation study discarded data 
proportion is varied from 5% to 15%. While simulating data possible sample sizes are considered as 
70, 100, 300, 1000, 5000 and 10,000. From each simulated sample further observations below LSL 
and above USL is discarded. So while estimating parameters of supplier distribution from truncated 
simulated sample, effective sample sizes are always less than whatever the considered sample sizes. In 
case simulated sample size is say 70 and if we discard 5% observations from these then effective 
sample size of truncated data would be )05.01(70 −× . In the simulation in each scenario 5000 
samples is generated using R software. 

5.1 Symmetrical Truncated Normal Distribution 

Without loss of generality we assume that supplier’s process distribution is standard normal. From a 
simulation point of view, we have considered three symmetric truncated normal distributions with 
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same mean but different variances.  First case is explained in detail and on the similar lines other 
cases are designed.  

Case 1: Suppliers process distribution is standard normal and suppose specification limits are LSL=-
1.95 and USL=1.95. So in this case using normal distribution properties, proportion of nonconforming 
product is 5.11%. Suppose supplier has decided to send only conforming product to customer then on 
the basis of received sample, distribution of process would be truncated normal with  
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Simulating this truncated normal distribution having mean=0 and variance= 0.7550448 supplier 
process distribution parameters are estimated using three different methods. Simulation results are 
displayed in Table 1. 

Table 1. Symmetrical Truncated Normal, %11.5=α  true 10 == σµ and  
[Method*: Moments: Method of moments; MLE: MLE Method by Pueyo S.; QA-EM Algorithm by 
Jun Yang et al.] 
Sample 
size 

Method* Expected 
process 
mean 
( )µ̂E  

Bias
( ) µµ −ˆE

 

Mean 
Square 
Error of µ̂  

Expected 
process 
standard 
deviation 

 Bias  
( ) σσ −ˆE  

Mean 
Square 
Error ofσ̂  

70 Moments 0.000344 0.000344 0.023002 1.008160 0.008160 0.025970 
MLE -0.000093 -0.000093 0.022130 1.008153 0.008153 0.024933 
QA-EM 0.000543 0.000543 0.015845 0.952277 -0.047723 0.008461 

100 Moments 0.000150 0.000150 0.015698 1.007789 0.007789 0.018392 
MLE -0.000073 -0.000073 0.014899 1.007277 0.007277 0.017510 
QA-EM -0.000090 -0.000090 0.012210 0.949790 -0.050210 0.008565 

300 Moments 0.000460 0.000460 0.005203 1.002537 0.002537 0.005158 
MLE 0.000558 0.000558 0.004891 1.002468 0.002468 0.004865 
QA-EM 0.000475 0.000475 0.004569 0.971520 -0.028480 0.003808 

1000 Moments -0.000146 -0.000146 0.001494 1.000792 0.000792 0.001429 
MLE 0.000078 0.000078 0.001431 1.000743 0.000743 0.001344 
QA-EM -0.000105 -0.000105 0.001389 0.987117 -0.012883 0.001209 

5000 Moments 0.000190 0.000190 0.000294 1.000003 0.000003 0.000292 
MLE 0.000171 0.000171 0.000276 1.000212 0.000212 0.000276 
QA-EM 0.000090 0.000090 0.000274 0.996047 -0.003953 0.000267 

10000 Moments 0.000008 0.000008 0.000146 1.000217 0.000217 0.000146 
MLE -0.000037 -0.000037 0.000137 1.000488 0.000488 0.000139 
QA-EM -0.000075 -0.000075 0.000136 0.998015 -0.001985 0.000136 

 
Case 2: Suppose specification limits are LSL=-1.64 and USL=1.64. So in this case proportion of 
nonconforming product is 10.10%. On the basis of received sample, distribution of process would be 
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truncated normal with mean=0 and variance= 0.6206959. Simulating this distribution parameters are 
estimated. Simulation results are displayed in Table 2. 
 
Table 2: Symmetrical Truncated Normal, %10.10=α  true 10 == σµ and  
 

Sample 
size 

Method* Expected 
process 
mean 
( )µ̂E  

Bias
( ) µµ −ˆE

 

Mean 
Square Error 
of µ̂  

Expected 
process 
standard 
deviation 

 Bias  
( ) σσ −ˆE  

Mean 
Square 
Error ofσ̂  

70 Moments 0.001834 0.001834 0.046252 1.033445 0.033445 0.071694 
MLE 0.000577 0.000577 0.040594 1.033850 0.033850 0.070934 
QA-EM 0.000605 0.000605 0.019809 0.898952 -0.101048 0.013556 

100 Moments 0.001583 0.001583 0.036709 1.028552 0.028552 0.045015 
MLE 0.005087 0.005087 0.190568 1.028798 0.028798 0.048975 
QA-EM 0.000193 0.000193 0.015102 0.914676 -0.085324 0.012637 

300 Moments -0.000053 -0.000053 0.006652 1.006779 0.006779 0.009300 
MLE -0.000115 -0.000115 0.006344 1.006937 0.006937 0.008936 
QA-EM -0.00053 4 -0.000534 0.005346 0.951711 -0.048289 0.005218 

1000 Moments -0.000443 -0.000443 0.001892 1.003209 0.003209 0.002592 
MLE -0.000446 -0.000446 0.001812 1.003159 0.003159 0.002496 
QA-EM -0.000892 -0.000892 0.001687 0.977964 -0.022036 0.001968 

5000 Moments 0.000191 0.000191 0.000372 1.000102 0.000102 0.000505 
MLE 0.000209 0.000209 0.000357 1.000359 0.000359 0.000489 
QA-EM 0.000013 0.000013 0.000351 0.992638 -0.007362 0.000454 

10000 Moments -0.000003 -0.000003 0.000187 1.000234 0.000234 0.000252 
MLE -0.000046 -0.000046 0.000177 1.000502 0.000502 0.000245 
QA-EM -0.000290 -0.000290 0.000175 0.995725 -0.004275 0.000230 

 
Case 3: Assuming specification limits as LSL=-1.43 and USL=1.43, proportion of nonconforming 
product is 15.27%. On the basis of received conforming product distribution of process would be 
truncated normal with mean=0 and variance=0.515601. Simulating this distribution suppliers process 
distribution parameters are estimated. Simulation results are displayed in Table 3. 

Table 3: Symmetrical Truncated Normal, %27.15=α  true 10 == σµ and  
 

Sample 
size 

Method* Expected 
process 
mean 
( )µ̂E  

Bias
( ) µµ −ˆE

 

Mean 
Square Error 
of µ̂  

Expected 
process 
standard 
deviation 

 Bias  
( ) σσ −ˆE  

Mean 
Square 
Error ofσ̂  

70 Moments -0.010218 -0.010218 0.432295 1.083579 0.083579 0.266273 
MLE 0.004243 0.004243 0.248861 1.080781 0.080781 0.242071 
QA-EM -0.001246 -0.001246 0.021403 0.852655 -0.147345 0.020946 

100 Moments 0.006143 0.006143 0.716840 1.058630 0.058630 0.245459 
MLE -0.010611 -0.010611 1.548009 1.066414 0.066414 0.439479 
QA-EM 0.001791 0.001791 0.015694 0.868889 -0.131111 0.016156 

300 Moments -0.000976 -0.000976 0.008765 1.014022 0.014022 0.018585 
MLE -0.000635 -0.000635 0.008579 1.014625 0.014625 0.018342 
QA-EM -0.001436 -0.001436 0.006183 0.922670 -0.077330 0.006882 

1000 Moments -0.000744 -0.000744 0.002419 1.003088 0.003088 0.004470 
MLE -0.000879 -0.000879 0.002333 1.003430 0.003430 0.004355 
QA-EM -0.002222 -0.002222 0.002017 0.960090 -0.039910 0.002738 

5000 Moments -0.000029 -0.000029 0.000463 1.000534 0.000534 0.000842 
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MLE -0.000043 -0.000043 0.000449 1.000765 0.000765 0.000825 
QA-EM -0.005636 -0.005636 0.000566 0.977256 -0.022744 0.000726 

10000 Moments 0.000117 0.000117 0.000240 1.000090 0.000090 0.000423 
MLE 0.000102 0.000102 0.000232 1.000373 0.000373 0.000413 
QA-EM 0.000373 0.000373 0.000297 0.997040 -0.002960 0.000391 

 
5.2 Skewed Truncated Normal Distribution 

Without loss of generality we assume that specification limits are LSL=-1.96 and USL=1.96. Keeping 
in mind model sampling from skewed truncated normal distributions with specification limits and 
various values of α (5.00%, 10.11%, and 15.11%) we considered three different supplier’s process 
distributions. In the first case we consider suppliers process distribution is normal with mean=-0.03 
and standard deviation=1. In other two cases process distributions are )1,92.0(),1,66.0( 22 −− NandN
respectively. If nonconforming product is discarded before being sent to customer then for each case 
we get different truncated normal distribution having means as well as variances are different.  

Simulating these truncated normal distributions suppliers process distribution parameters are 
estimated using three different methods. Simulation results are displayed case wise in Table 4, Table 5 
and Table 6 respectively. 

Table 4. Skewed Truncated Normal, %5=α  true 103.0 =−= σµ and  
 

Sample 
size 

Method* Expected 
process 
mean 
( )µ̂E  

Bias
( ) µµ −ˆE

 

Mean 
Square Error 
of µ̂  

Expected 
process 
standard 
deviation 

 Bias  
( ) σσ −ˆE  

Mean 
Square 
Error ofσ̂  

70 Moments -0.035089 -0.005089 0.023620 1.007961 0.007961 0.026440 
MLE -0.034387 -0.004387 0.022474 1.007388 0.007388 0.025403 
QA-EM -0.028747 0.001253 0.015976 0.954102 -0.045898 0.008530 

100 Moments -0.029805 0.000195 0.015908 1.009251 0.009251 0.016494 
MLE -0.030183 -0.000183 0.015205 1.008631 0.008631 0.015692 
QA-EM -0.027455 0.002545 0.012411 0.952332 -0.047668 0.007802 

300 Moments -0.027950 0.002050 0.005125 1.001717 0.001717 0.005089 
MLE -0.028280 0.001720 0.004884 1.001722 0.001722 0.004748 
QA-EM -0.027420 0.002580 0.004567 0.970975 -0.029025 0.003730 

1000 Moments -0.029829 0.000171 0.001515 1.000173 0.000173 0.001434 
MLE -0.030067 -0.000067 0.001432 1.000541 0.000541 0.001340 
QA-EM -0.029737 0.000263 0.001387 0.986823 -0.013177 0.001199 

5000 Moments -0.029908 0.000092 0.000303 1.000180 0.000180 0.000287 
MLE -0.029936 0.000064 0.000283 1.000283 0.000283 0.000275 
QA-EM -0.029876 0.000124 0.000281 0.995945 -0.004055 0.000264 

10000 Moments -0.030087 -0.000087 0.000148 1.000116 0.000116 0.000145 
MLE -0.030105 -0.000105 0.000142 1.000322 0.000322 0.000137 
QA-EM -0.030111 -0.000111 0.000142 0.997622 -0.002378 0.000133 

 

Table 5. Skewed truncated normal, %11.10=α  true 166.0 =−= σµ and  
 

Sample 
size 

Method* Expected 
process 
mean 
( )µ̂E  

Bias
( ) µµ −ˆE

 

Mean 
Square Error 
of µ̂  

Expected 
process 
standard 
deviation 

 Bias  
( ) σσ −ˆE  

Mean 
Square 
Error ofσ̂  

70 Moments -0.691429 -0.031429 0.246431 1.017714 0.017714 0.042744 
MLE -0.688082 -0.028082 0.307188 0.996179 -0.003821 0.048294 
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QA-EM -0.607813 0.052187 0.034877 1.010917 0.010917 0.010677 
100 Moments -0.678366 -0.018366 0.032711 1.009662 0.009662 0.022082 

MLE -0.676324 -0.016324 0.030158 0.997996 -0.002004 0.023098 
QA-EM -0.617584 0.042416 0.022815 0.992847 -0.007153 0.007913 

300 Moments -0.665831 -0.005831 0.008830 1.001990 0.001990 0.006304 
MLE -0.665484 -0.005484 0.008380 1.000850 0.000850 0.006011 
QA-EM -0.638846 0.021154 0.007347 0.970501 -0.029499 0.003373 

1000 Moments -0.662598 -0.002598 0.002493 1.000843 0.000843 0.001770 
MLE -0.662629 -0.002629 0.002399 1.000928 0.000928 0.001662 
QA-EM -0.651063 0.008937 0.002268 0.982295 -0.017705 0.001417 

5000 Moments -0.660141 -0.000141 0.000494 0.999936 -0.000064 0.000352 
MLE -0.660171 -0.000171 0.000477 1.000149 0.000149 0.000333 
QA-EM -0.656728 0.003272 0.000475 0.994393 -0.005607 0.000317 

10000 Moments -0.660472 -0.000472 0.000256 1.000311 0.000311 0.000178 
MLE -0.660445 -0.000445 0.000244 1.000495 0.000495 0.000169 
QA-EM -0.658363 0.001637 0.000243 0.997022 -0.002978 0.000164 

 
Table 6. Skewed Truncated Normal, %11.15=α  true 192.0 =−= σµ and  
 

Sample 
size 

Method* Expected 
process 
mean 
( )µ̂E  

Bias
( ) µµ −ˆE

 

Mean 
Square Error 
of µ̂  

Expected 
process 
standard 
deviation 

 Bias  
( ) σσ −ˆE  

Mean 
Square 
Error ofσ̂  

70 Moments -0.969967 -0.049967 0.109920 1.017448 0.017448 0.045910 
MLE -0.905091 0.014909 0.087311 0.933788 -0.066212 0.068177 
QA-EM -0.878130 0.041870 0.045672 1.050886 0.050886 0.011934 

100 Moments -0.957927 -0.037927 0.062802 1.013221 0.013221 0.028992 
MLE -0.905520 0.014480 0.053570 0.949977 -0.050023 0.045015 
QA-EM -0.889118 0.030882 0.033170 1.025767 0.025767 0.009618 

300 Moments -0.928714 -0.008714 0.014331 1.001384 0.001384 0.007704 
MLE -0.903748 0.016252 0.015218 0.978111 -0.021889 0.012278 
QA-EM -0.894757 0.025243 0.011354 0.984694 -0.015306 0.004104 

1000 Moments -0.922018 -0.002018 0.003861 1.000472 0.000472 0.002172 
MLE -0.916056 0.003944 0.004368 0.996354 -0.003646 0.002778 
QA-EM -0.903478 0.016522 0.003537 0.980299 -0.019701 0.001642 

5000 Moments -0.920434 -0.000434 0.000766 1.000174 0.000174 0.000440 
MLE -0.920086 -0.000086 0.000741 1.000022 0.000022 0.000411 
QA-EM -0.914645 0.005355 0.000737 0.993750 -0.006250 0.000389 

10000 Moments -0.920307 -0.000307 0.000371 1.000308 0.000308 0.000214 
MLE -0.920089 -0.000089 0.000357 1.000304 0.000304 0.000202 
QA-EM -0.916813 0.003187 0.000359 0.996516 -0.003484 0.000195 

 
5.3 Results  

1. Symmetrical Truncated Normal Distribution (refer Table 1-3) 
In case of symmetrical truncated normal distribution we have set true value of 10 == σµ and . It is 
observed that as the sample size increases, the estimates of µ  as well as σ of the three methods 
regardless of magnitude of α converge to the corresponding true values.  

Considering all sample sizes on an average when %,11.5=α µ  estimated by MLE method is more 
close to the true value as compared to other two methods, however µ  estimated by other two methods 
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is also accurate. On an average when %,10.10=α µ  estimated by QA-EM is more close to the true 
value as compared to other two methods, but other two methods also accurately estimated .µ  When 

%,27.15=α on an average µ  estimated by method of moments is more close to the true value as 
compared to other two methods, though other two methods also accurately estimated µ . Regarding 
precision of estimate of µ   on the basis of Mean Square Error it is found that QA-EM method is 
superior as compared to other two methods. But when we compare MLE and method of moments 
regarding precision of estimate of ,µ  then method moments is best as compare to MLE.  

Considering all sample sizes on an average for all values of ,α σ estimated by method of moments as 
well as MLE is accurate but σ estimated by QA-EM is not accurate and it under estimates σ . 
Regarding precision of estimate of σ  on the basis of Mean Square Error it is found that QA-EM 
method is superior as compared to other two methods. But when we compare MLE and method of 
moments regarding precision of estimate of σ , then method moments is best as compared to MLE.  

2. Skewed Truncated Normal Distribution (refer Table 4-6) 

In case of skewed truncated normal distribution we have set true value of 03.0−=µ in case one, 
66.0−=µ  in case two and 92.0−=µ in case three. In all cases true value of σ is 1. It is observed 

that as the sample size increases, the estimates of µ  as well as σ of the three methods regardless of 
magnitude of α converge to the corresponding true values.  

Considering all sample sizes on an average when %,11.5=α µ  estimated by method of moments and 
MLE method is more close to the true value as compared to  QA-EM method. This observation is 
same for other values of .α  Regarding precision of estimate of ,µ QA-EM method is superior as 
compare to other methods. 

Considering all sample sizes on an average for all ,α σ  estimated by method of moments is more 
close to the true value as compared to  other methods. When %,11.10%5 and=α σ  estimated by 
QA-EM is not accurate. For %,11.15=α  σ  estimated by MLE methods is not accurate. Regarding 
precision of estimate of  ,σ  QA-EM is better. 

In summary simulation indicates that method of moments is an effective in general to estimate 
parameters of normal distribution in all cases as compared to other two methods.  

6. Basic PCIs and Probability based PCIs 
6.1 Basic Univariate PCIs 

Basic PCIs andCC pkp , pmC are defined under the assumptions that  

a) the process is in statistical control 

b) a tolerance region of a quality characteristic is specified by lower and upper specification 
limits (LSL and USL) and a target value T which is the midpoint of the specification limits 
and 

c) the process measurement (X) are normally distributed with mean µ  and variance .2σ  

The pC index is defined as 

      σ6
LSLUSLCp

−
=                                                                                                         (29)

pC  measures only the potential capability of the process. Due to the inability of pC to consider 
process target, several indices have been proposed that attempt to take the target value T into account 
which include pkC  and pmC . The index pkC  is defined as     

),min( plpupk CCC = ,                                                                                                           (30) 
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where puC  and plC  are unilateral measures of process capability also known as upper and lower 
capability indices and they are defined as follows 

σ
µ

3
−

=
USLCpu

                                                                                                                                                 
(31)

σ
µ

3
LSLCpl

−
=

                                                                                                                                                  
(32) 

Third basic univariate PCI is given by  

( )2,
6

TXEwhereLSLUSLC T
T

pm −=
−

= σ
σ

                                                                                        (33) 

In practice parameters µ  and σ  are replaced by their estimators µ̂  and σ̂  computed from sample

nXXX ,....,, 21 . That is  

∑
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Estimator for Tσ is ( ) .ˆˆ 22 TXT −+= σσ  

pmC  (also called Taguchi index) is more aligned with Taguchi loss function because it gives more 
importance to target. Magnitude of the difference between pC  and the other two indices reflects 
improvement that can be realized by moving the process mean to the target, which is often easier than 
reducing variation. Desirable value of each PCI is greater than or equal to 1.  

6.2 Univariate Probability based PCIs 

Khadse and Shinde [11] introduced probabilities ,1p 32 pandp to construct alternative forms of ,pC

pmpk CandC  under the assumptions, as mentioned in the beginning of 6.1. Defined probabilities are  

),( 2
1 σµ TUSLXLSLPp =≤≤=                                                                     (34) 

),( 2
2 σµUSLXLSLPp ≤≤=

                                                                                                         
(35)  

),( 22
3 TTUSLXLSLPp σσµ ==≤≤=

                                                                                            
(36) 

Alternative definitions for pmpkp CandCC , using ,1p 32 pandp are given below.  







 −
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(39) 

where 1−Φ  denotes the inverse distribution function of the standard normal distribution. They 
have estimated )3()2()1( , ppmppkpp CandCC using 321 ˆˆ,ˆ pandpp respectively. Khadse and Shinde [11] 
mathematically proved that under the assumptions of normality and symmetric tolerance the 
following equivalences hold. 
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(i) ,)1( ppp CC =  

(ii) .)3( ppmpm CC =  

They have noted that pkC and )2( ppkC are not mathematically equivalent though they suggested 

)2( ppkC as an alternative to pkC as it is directly based on fraction conforming probability. The 
importance of probability based indices is that they are easy to extend in multivariate setup.  

Illustrative Example: This study involved a manufacturer and supplier of a brake system. In brake 
system of vehicle, Master Cylinder is one of the important components. Master Cylinder converts 
force input given by the driver into hydraulic pressure. Whole brake system is affected if there is any 
problem with Master Cylinder. There are two types of Master Cylinders first one is Single Master 
Cylinder (it has only one chamber) and second one is Tandem Master Cylinder (it has two separate 
chambers). Port hole diameter is one of the critical characteristic of the Tandem Master Cylinder. The 
USL, LSL and target value for port hole diameter were 14.3mm, 14.1mm and 14.2mm respectively.  

Suppose Vehicle Manufacturer Company received batch of 1000 Tandem Master Cylinder (TMC) 
from brake system supplier as a sample. In order to check supplier’s process capability regarding port 
hole diameter of TMC, port hole diameter is measured of each TMC using snap gauge.  Here we give 
generated observations in the form of histogram in Figure 1.  

 

Figure 1. Histogram of Supplier’s Process Distribution Based on Received Sample 

Using histogram it is found that supplier’s process distribution is normal and received products 
process distribution is doubly truncated normal with a=14.1, b=14.3 and unknown σµ and which to 
be estimated to measure supplier’s process capability.  

Applying method of moments proposed by Shah and M. C. Jaiswal [8] to truncated data estimated 
values of σµ and parameters of normal distribution are 14.1984 and 0.0502. 
Using alternative definitions of pmpkp CandCC , based on ,1p 32 pandp  

),( 2
1 σµ TUSLXLSLPp =≤≤= ; )0502.0,2.14(~ 22 == σµNX

 
)3.141.14( ≤≤= XP =0.953632 

),( 2
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)3.141.14( ≤≤= XP =0.953521 
),( 22

3 TTUSLXLSLPp σσµ ==≤≤= ; )050225.0,2.14(~ 22 == TNX σµ
 

)3.141.14( ≤≤= XP  =0.953523
 

Estimated values of )3()2()1( , ppmppkpp CandCC using ,1p 32 pandp  (refer equation (37-39)) are 
0.6640, 0.6636 and 0.6636. Supplier’s process is neither potentially capable nor actually capable. To 
improve process capability, variation in the process must be reduced. As the estimated value of 

)3( ppmC is just less than estimated value of )1( ppC , the process is just shifted from target. 

7. Conclusions 
Most of the time received sample of products from supplier is hundred percent conforming to the 
specification due to products categorized as conforming and nonconforming by supplier before being 
sent to customer. If we assume supplier’s process distribution is normal then the process distribution 
identified on the basis of received sample of products is truncated normal. From a customer’s point of 
view, to measure supplier’s process capability there is a need of estimating parameters of process 
distribution using truncated normal data. Initially we discussed theoretical background of all cases of 
truncated normal distribution. To deal with estimation of parameters of truncated normal distribution 
we have discussed method of moments, method of maximum likelihood estimations, method of 
maximum likelihood starting from re-parameterization proposed by Salvador Pueyo  [9] and Quantile-
filling Algorithm (QA) based on EM algorithm proposed by Jun Yang et al. [10]. While comparing 
these methods using simulation, we have not considered maximum likelihood estimation method 
because it is already compared by Shah and Jaiswal [8] with method of moments and they have 
preferred method of moments due to MLE being complicated and laborious. Using simulation we 
conclude that though method of moments is traditional but its performance is better with respect to 
accuracy of estimates as well as more or less with respect to precision as compared to other two 
methods. Method of maximum likelihood starting from re-parameterization and Quantile-filling 
Algorithm (QA) based on EM algorithm, these two methods are iterative in nature so they carry 
drawbacks of iterative methods and within these two methods method of maximum likelihood starting 
from re-parameterization is better. Quantile-filling Algorithm (QA) based on EM is complicated and 
laborious and did not estimate standard deviation accurately though precision of estimated parameters 
is the best. At the end, we have discussed basic PCIs and their alternatives based on conforming type 
probabilities, through an illustrative example. Another interesting topic for the future is measurement 
of supplier’s multivariate process capability. This can be studied with suitable parameter estimation 
method by extending truncated normal into multivariate truncated normal and by extending basic 
probability based PCIs into multivariate PCIs.   
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