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Abstract: In this paper, an attempt has been made to analyses advanced stochastic methods for the 

optimization use of non-convex, non-smooth finite sum problems. Interestingly, despite the widespread 

use and importance of non-convex models, our standing of the non-smooth, non-convex counterpart is 

very limited. Knowingly, in this context, the non-convex part of smooth and the non-smooth part is 

convex. Surprisingly, it is not clear about the proximal stochastic gradient that it has probable 

convergence with constant mini-batches at a stationary point. Thus, this paper is instrumental in showing 

the development of fast stochastic algorithms that probably converge to a stationary point with constant 

mini-batches. Hence, it is helpful in minimizing a fundamental gap in our understanding of non-smooth, 

non-convex problems. For stochastic methods, the optimization techniques used in non-asymptotic 

convergence rates are applicable for non-convex, on-smooth problems with mini-batches. Perhaps, this is 

an extension of our analysis to mini-batch variants, showing (Theoretical) linear speed up due to mini 

batching in parallels settings. Comparatively, by using variants of these algorithms, the faster 

convergence rate has been induced than batch proximal gradient descent. Henceforth, this paper 

experimentally highlights an amazing subclass of non-smooth, non-convex functions for an extension of 

global linear convergence rates. Finally, the exposition of this advanced approach is concentrated 

around topics related to the experimental Ideas, although in certain aspects it is also pertinent to 

analogous issues in combinational optimization.  
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              1. Introduction 

We are studying non-convex, non-smooth finite-sum optimization problems of the form𝑦 ∈

𝑅𝑑𝐹 𝑦 : =
𝑚𝑖𝑛𝑖𝑚𝑢𝑚

𝑓 𝑦 + 𝑔 𝑦 , where 𝑓(y) ≔
1

𝑛
 fj  (y)n−1

j=o ,  (1)𝑦 ∈ 𝑅𝑑  is convex space, j is a lower 

limit of finite-sum of optimization problems and n is the optimal number of the stochastic process, 

wherever fj:𝑅𝑑→ R is smooth for all j∈{0,1, . . . , n-1}≜  ŋ while g: 𝑅𝑑→ R is non-smooth but 

relatively very simple and convex. The problems of such finite sum optimization are fundamental 

to deep learning. Thus, it arises generally inside the spectrum of regularization there is the 

minimization of empirical risk. There has been large-scale research for solving non-smooth convex 

finite sum problems,[4,16,32]  (i.e. every fj   is convex for j∈  ŋ )our knowledge of non-smooth, 

non-convex opponents are incidentally restricted —despite extensive use and signification of non-

convex models. Thus, the authors the efficiency of enhancing the stochastic method for solving 

non-convex, non-smooth finite sum problems. An applicable approach to handle non-smooth 

through proximal operators(PO) [14,25]. For a function under closed convex  g, the PO is defined 

as 

 proxŋg
(y)=

𝐴𝑟𝑔𝑚𝑖𝑛𝑖𝑚𝑢𝑚

𝑦1𝜖𝑅𝑑  g(y1 +
1

2ŋ
| y1 − y |2), here,ŋ>0 is the step size                                (2) 

and g is convex where y1,is not linear in ŋ,so ŋ has the function as step size and  is finite g y1  

.The power of proximal operators is instrumented in a generalization of projection. Still, if g is the 

function indicator IC(y)  at sets C of closed convex then proxIC(y) ≡ projC(y) ≡ Argminimumy1∈C|| 

y1-y|.In this paper, we assess that computing proximal operator of g is a sample. This is evidently 

true for its applications in statistics and deep learning including regularization of sample 

constraints, box constraints amongst others [2,18]. Remarkably, we assess to a PO(Proximal oracle) 

that takes a point ∈ 𝑅𝑑  and returns the output of equation(2).More briefly, for explaining our 

complexity results, we experimentally use the IFFO(incremental first-order oracle).For function f = 
1

𝑛
 fj , 𝑎𝑛𝐼𝐹𝑂𝑂𝑗 takes and index j ∈ ŋ  at point 𝑦 ∈ 𝑅𝑑  and returns the pairs (fj(y),∇fj  (y)).The 

proximal gradient method ((ProxGD) is a standard (batch size) method for solving equation(1) [13] 

and it was first studied for non-convex problems in [5].The following iteration performs by this 

method.yt+1=proxŋg 𝑦
𝑡 − ŋ∇f 𝑦𝑡  ,if     t=0,1,2,.....,                              (3)                                                                                                                          

here,ŋ > 0 ,is a step size. In the recent past, this non-asymptotic rate of convergence results for the 

proximal gradient method has been proved.  

  

        2. Related Work 

The exclusive research works have been done on finite sum problems. Therefore, we high light 

only a few closely related works. A vast study has been done on convex instance 

equation(1)[19,15,3] and these instances are fairly well known, the landmark newly progress for 

smooth convex instances of equation(1) in the creation of VR stochastic methods[26,28,4,8].In 

[32,4] a detail study on non-smooth proximal variance reduced stochastic method has been done, 

hence for strongly convex and non-strongly convex cases, the faster convergence rate has been 

proved. Lower bounds are studied in[1,10] whereas asynchronous variance reduced frameworks are 

developed in [12,21].Surprisingly, the non-convex instances of equation(1) are much lesser 

understood. The analysis of stochastic gradient for smooth non-convex problems have been 

computed in [6] and nearly in recent time, the results of convergence for variance reduced 

stochastic method have been obtained[22,23,33] for smooth non-convex problems. In the author's 

opinion, the variance reduced non-convex settings are different from ours, for instance, when at a 
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point where hard thresholding is used the loss is convex. We created upon[20,22,23] and emphasis 

on handling the non-smooth convex regularization method(h 6≢ 0 in (1)). The incremental 

proximal gradient was also considered in [31] for this class, but asymptotic convergence was only 

highlighted. For our first analysis of version of a projection of non-convex proxSVRG is because of 

[24,27,29],which considers the peculiar problems PCA. The following works refer to 

[30].Probably, our work is closed to [7] in which convergence of mini-batch non-convex proxSGD 

method has been discussed. Hence, the convergence is slow for a stochastic gradient method. 

Furthermore, for constant mini-batch, no convergence is proved.  

 

2.1  The main contributions 

The relevant and important contributions are listed and therefore the outcomes are tabulated below. 

(a)The non-convex proximal version of proposed stochastic algorithms SVRG and SAGA has been 

analyzed[4,8]. The confluence of the above algorithms is shown in mini-batches. In our 

understanding, this is the first work presenting non- asymptotic convergence rates for the SGD 

method applying non-convex problems in static mini-batches. 

(b)By using the size of the mini-batch (1 𝜖 ). Probably for faster convergence can be achieved in 

both proximal gradient and proximal stochastic gradient. 

(c)In this context, we go through a non-convex subclass depending on Polyak-Łojasiewicz 

inequality[8,9]. The optimal result of this subclass is shown by PROXSVRG and ProxSAGA. This 

work is the first stochastic method for a subclass of problems with proven global linear 

convergence. 

3. Preliminaries 

Function g(x) is LSC and convex. Moreover domain(g) = {y 𝜖Rd |g(y) < +∞} is treated as closed. 

We say f is L-smooth if there is a constant L such that ||∇f(y) − ∇f(z)||≤ K||y −z||, ∀ y, z 𝜖R
d
 .In 

Table 1,the comparison of IFOO and PO complexity for different algorithms were analyzed in this 

study. The measurement of complexity can be achieved in terms of oracle calls and its count is 

required to get 𝞊- an exact solution. The PO(PL)  and  IFOO(PL) complexity are shown by PL. 

This table shows the indication of a stochastic algorithm using a defined mini-batch size. 

According to our knowledge, a convergence of PROXSGD is not known on using mini-batch size 

for non-convex, non-smooth optimization. In the view of PL functions, there is not aware of 

specific convergence results for PROXSGD. In overall assumption, We find out particular 

functions fj  in (1) ||∇f(y) − ∇f(z)||≤ L2||y −z|| for all j𝜖 ŋ  ,where Lipschitz Continuous with 

Lipschitz factor. This kind of assumption' is typical the analysis of first-order approaches. 
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Algorithm IFOO  PO IFOO(PL) PO(PL) CM 

ProxSGD 𝝷(1 𝜖 2) 

 

ɵ(1 𝜖 ) 𝝷(1 𝜖 2) 

 

ɵ(1 𝜖 ) 

 

? 

ProxGD ɵ(𝑛 𝜖 ) ɵ(1 𝜖 ) 𝝷(nklog( 1
𝜖  ) 

 

 

𝝷(nklog( 1
𝜖  ) 

- 

ProxSVRG 
𝝷(kn+(𝑘𝑛

2
3 

𝜖 )) ɵ(1 𝜖 ) 𝝷(kn+𝑘𝑛
2

3 )log( 1
𝜖  

) 

 

𝝷(nklog( 1
𝜖  )  

ProxSVGA 
𝝷(kn+(𝑘𝑛

2
3 

𝜖 )) ɵ(1 𝜖 ) 𝝷(kn+𝑘𝑛
2

3 )log( 1
𝜖  

) 

 

𝝷(nklog( 1
𝜖  )  

 

Table1:Comparision between IFOO and PO or PO(PL) 

About convex problems, the particular optimality gap F(Y)-F(Y*) is used as a criterion. It is 

logically not valid to apply such a criterion for general non-convex(g≡0) problems because of their 

inapplicability. For instance, this is a suitable alternative to gradient mapping [17] but cannot be 

used for non-smooth problems. 

Ǥŋ:=
1

ŋ
[y-proxŋg 𝑦 − ŋ∇f y  ].                                                                                             (5)                                                                                          

When ( g ≡ 0) this mapping is certainly reduced Ǥŋ= ∇f y =∇F y   , the gradient of function F at y.  

The analysis of the algorithm is done using gradient descent of equation (5) as described In 

definition 1. 

 

Definition 1. A point y output by SGD iteration algorithm intended for solving equation (1) is called a 𝞊-

actual solution, if E[||Ǥŋ||
2]≤𝞊 for there some ŋ>0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 22, Issue 10, October - 2020 Page-1309



4. Terminology 
 

Table 2 Terminologies: 

 

Notation Description 

  

GDS             Gradient Descent Stochastic 

n                   Optimal number of stochastic process 

m                  Mini-Batch size 

MBGD         Mini-Batch Gradient Descent 

IF                  Indicators Function 

IFOO            incremental first-order oracle 

ProxGD       proximal-gradient descent 

SC                Smooth-Convex 

L1                L1 norm of a vector w(weight) respectively 

y                  Random variable 

y𝞊Rd            A convex space  

g(y)             Smooth function 

fj                  Non-Smooth  

SAGA         Stochastic Average Gradient Approach 

SVRG         Stochastic Variance Reduce Gradient 

L2               Lipschitz Continuous with Lipschitz factor 

m1              epoch length   

LSC          Lower Semi-Continuous(LSC) 
CM             Constant  Minibatch 

PL              Polyak-Lojasiewicz (pl) inequality 
IC                             Referred to as minibatch 

g = 0            Proximal minimization algorithm. 
 h = IC          Projected gradient descent 
 t,s               Convergent  point  

ŋ              Step size       
 

5. Lemmatta 

Few intermediate outcomes can be useful for each of our analyses. We proved throughout the 

change of perfect. 

Lemma 1. y1= proxŋh 𝑦 − ŋd . For some d𝞊𝑅𝑑 .Then y1, this inequality holds. 

F1 (y1)]≤F1 (z)+ 𝑦1 − 𝑧, ∇f(y) − 𝑑 +  
𝐿2

2
−

1

2ŋ
 ||y1 − 𝑦||2 + [

𝐿2

2
+

1

2ŋ
]||𝑧 − 𝑦||2-

1

2ŋ
||y1-z||2. 

for all d𝞊𝑅𝑑 . 

Lemma 2.For iterates  𝑦𝑡+1
𝑠+1,𝑣1𝑡

𝑠+1,Ӯs where t∈{0,1, . . . , n-1} and s𝞊{0,1,2,........,s1-1} in 

Algorithms 1,that inequality holds: 

E[||∇f(𝑦𝑡
𝑠+1)-𝑣1𝑡

𝑠+1 ||2≤
𝐿22

𝑚
||𝑦𝑡

𝑠+1-Ӯs||2. 

Lemma 3.For iterates 𝑦𝑡 ,𝑣1,and  α1𝑗
𝑡 

𝑗=1

𝑛
 where t𝞊{0,1,2.........T1-1} in Algorithms 2, that 

inequality holds: 
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E[||∇f(𝑦𝑡)-𝑣1𝑡 ||2≤
𝐿22

𝑛𝑚
 𝐸||𝑛

𝑗=1 𝑦𝑡 -α1𝑗
𝑡 ||2. 

Lemma 4.Let function g:𝑅𝑑→ R is lower semi continuous and y1= proxŋg
(y).Then following 

inequality holds: 

g(y1)+
1

2ŋ
||y1-y||

2
≤g(z)+

1

2ŋ
||z-y||

2
-

1

2ŋ
||y1-z||

2
, for all z𝞊𝑅𝑑 . 

Lemma 5.Let function g:𝑅𝑑→ R is L2-smooth,then following inequality holds: 

f(y1)+ ∇f 𝑦1 , 𝑦1 − 𝑦 -
𝐿2

2
||y1-y||2≤f(y) ≤f(y1)+ ∇f 𝑦1 , 𝑦1 − 𝑦 +

𝐿2

2
||y-y1||2, for all y,y1𝞊𝑅𝑑 . 

Lemma 6. Any random variables z1,z2,...........,zr are independent variable and mean is zero 

,then we have the following : 

E[||z1+z2+z3+.........+ zr||
2] =E[||z1||2+..........+|| zr||

2] . 

Lemma 7. Any random variables z1,z2,...........,zr, we have   

E[||z1+z2+z3+.........+ zr||
2] ≤r E[||z1||2+..........+|| zr||

2] . 

 

6. Algorithms 

there are two algorithms (a) ProxSVRG (b) ProxSVGA. 

 

7.1. Non-convex Prox SVRG (Nonconvex Proximal SVRG) 
 

At first, we consider a variety of ProxSVRG [32]; the pseudo-code of this variant is written in Algorithm 

1.Whenever F is strongly convex,SVRG getsthe linear convergent rate as opposite to the sub linear 

convergent of SGD[11,8].Recalling this, when ProxSVRG is very difficult to start with m=1, all of us use 

its mini-batch alternative with batch size m. ProxSVRG is particular and most attractive because of its 

low memory requirement. For the requirement of proxSVRG low memory, it just needed 𝝷(d) for 

additional memory in comparison to SGD for the conservation of mean gradient. and with the help of 

non-strongly convex composite Objectives(SAGA) by using fast incremental gradient method 𝝷(nd) cost 

can be obtained. Furthermore, it is too strong assumptive results,SVRG is identified to better SGD 

experiment when a more powerful selection of phase size intended for problems of convex, ProxSVRG is 

recognized to inherently these upper arms of SVRG[32]. We introduce our analysis of non-convex 

proxSVRG, initials results with batch size m=1. 

 

                                                   7.2 . Theorem 

A theorem of Convergence Analysis: 

We start the convergent rate associated with ProxSVRG and ProxSAGA to get a set of specific 

parameters. Whenever most of the analysis may be derived regarding those algorithms. The reason at the 

back choice associated with parameters of equation(3).We got the following convergent results for 

ProxSVRG andProxSAGA. 
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Theorem 1. 

Assume m≤ n+1 in algorithms 1.let T1 is multiple of m1 and ŋ=ρ/L2 were ρ<1/2 and fulfills the 

condition :  
4ρ2m12

𝑚
+ ρ≤1 where m is the mini-batch size. 

In that case for output xb of Algorithm 2,We get : 

E [||Ǥŋ(yb)||
2]≤

2L2(F10)−F1(y∗))

ρ(1−2 ρ)T1
, 

 Optimal solution y∗in equation  (1) 

Proof of Convergence Analysis: We are defining the particular gradient iterate   

Ӯ𝑡+1
𝑠+1

= proxŋg(𝑦𝑡
𝑠+1 − ŋ∇f(𝑦𝑡

𝑠+1)),                                                                                     (8) 

That is simply to our analysis and is no means computed. Consider. Using Lemma 2 to  equation 

(8)(With y1=Ӯ𝑡
𝑠+1

,z=𝑦𝑡
𝑠+1,and d=∇f(𝑦𝑡

𝑠+1)), and Using expectations we obtained the particular 

bounded. E[F1(Ӯ𝑡+1
𝑠+1

)]≤E[F1(𝑦𝑡
𝑠+1)+[

𝐿2

2
−

1

2ŋ
]||Ӯ𝑡+1

𝑠+1
− 𝑦𝑡

𝑠+1 ||2-
1

2ŋ
||Ӯ𝑡+1

𝑠+1
− 𝑦𝑡

𝑠+1 ||2].                    (9) 

Remember the iteration of  Algorithm 1to find out  using followingan update :  

𝑦𝑡+1
𝑠+1= proxŋg(𝑦𝑡

𝑠+1 − ŋ(𝑣1𝑡
𝑠+1)), where 𝑣1 is a random vector(10) 

𝑣1𝑡
𝑠+1=

1

𝑚
 ∑jtϵIt  (∇fjt(𝑦𝑡

𝑠+1
 ) -∇fjt (Ӯ

s 
))+ g1s+1          (see Algorithms1). using Lemma 2 to update (10)  

(with y1=𝑦𝑡+1
𝑠+1,z=Ӯ𝑡+1

𝑠+1,and d=𝑣1𝑡
𝑠+1) and getting expectations we obtain. 

E[F1(𝑦𝑡+1
𝑠+1)]≤E[F1(Ӯ𝑡

𝑠+1)+ 𝑦𝑡+1
𝑠+1 − Ӯ𝑡+1

𝑠+1 , ∇f 𝑦𝑡
𝑠+1 − 𝑣1𝑡

𝑠+1 +  
𝐿2

2
+

1

2ŋ
 ||Ӯ𝑡+1

𝑠+1 − 𝑦𝑡
𝑠+1||2  

+[
𝐿2

2
−

1

2ŋ
]||𝑦𝑡+1

𝑠+1 − 𝑦𝑡
𝑠+1 ||2-

1

2ŋ
||𝑦𝑡+1

𝑠+1 − Ӯ𝑡+1
𝑠+1 ||2],where𝑣1is the random vector.                          (11) 

Adding equation (9) and (11), we will get 

E[F1(𝑦𝑡+1
𝑠+1)]≤E[F1(𝑦𝑡

𝑠+1)+[g-
1

2ŋ
]||Ӯ𝑡+1

𝑠+1 − 𝑦𝑡
𝑠+1||2+[

𝑔

2
−

1

2ŋ
]||𝑦𝑡+1

𝑠+1 − 𝑦𝑡
𝑠+1||2-||𝑦𝑡+1

𝑠+1 −||2+ 𝑦𝑡+1
𝑠+1 −

Ӯ𝑡+1
𝑠+1 , ∇f 𝑦𝑡

𝑠+1 − 𝑣1𝑡
𝑠+1 ]                                                                                                 (12) 

where T2= 𝑦𝑡+1
𝑠+1 − Ӯ𝑡+1

𝑠+1 , ∇f 𝑦𝑡
𝑠+1 − 𝑣1𝑡

𝑠+1  

We could bound the T2term in the following : 

E[T2]≤
1

4ŋ
E||𝑦𝑡+1

𝑠+1 − Ӯ𝑡+1
𝑠+1||2+

ŋ

4
E||∇f 𝑦𝑡

𝑠+1 − 𝑣1𝑡
𝑠+1||2≤

1

4ŋ
E||𝑦𝑡+1

𝑠+1 − Ӯ𝑡+1
𝑠+1||2+

ŋg2

2𝑚
E||𝑦𝑡

𝑠+1 − Ӯ𝑠||2] 

The initial inequality from young's inequality and Cauchy-Schwarz, even though the second 

inequality is a consequence of Lemma 3.Substitutig the equation (12) in T2,we can see. 

E[(𝑦𝑡+1
𝑠+1)]≤E[(F1(𝑦𝑡

𝑠+1)]+[g-
1

4ŋ
]||Ӯ𝑡+1

𝑠+1 − 𝑦𝑡
𝑠+1||2+[

𝑔

4
−

1

4ŋ
]||𝑦𝑡+1

𝑠+1 − 𝑦𝑡
𝑠+1||2+

ŋg2

2𝑚
E||𝑦𝑡

𝑠+1 −

Ӯ𝑠||2].                                                                                                                                      (13) 

To analyze equation (13) further, we discovered which we use the following Lyapunov function: 

𝑅𝑡
𝑠+1:=E[F1 (𝑦𝑡

𝑠+1)]+c1t||𝑦𝑡
𝑠+1 − Ӯ𝑠||2]. 
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for certain entity c1b=0 and c1t=c1t+1 (1+λ)+
ŋg2

2𝑚
.Further, for the remainder of analysis bounded 

set 

λ=1/b. We will then certain bounded set  𝑅𝑡+1
𝑠+1as follow  

𝑅𝑡+1
𝑠+1 =E[F1 (𝑦𝑡+1

𝑠+1)+c1t+1|| 𝑦𝑡+1
𝑠+1 − 𝑦𝑡

𝑠+1 + 𝑦𝑡
𝑠+1 − Ӯ𝑠|| 2 ] 

         =E[F1 (𝑦𝑡+1
𝑠+1)+c1t+1(||𝑦𝑡+1

𝑠+1 − 𝑦𝑡
𝑠+1||2+||𝑦𝑡

𝑠+1 − Ӯ𝑠||2+2(𝑦𝑡+1
𝑠+1 − 𝑦𝑡

𝑠+1 + 𝑦𝑡
𝑠+1 − Ӯ𝑠))]  

≤E[(F1(𝑦𝑡+1
𝑠+1)+c1t+1 (1+λ)||𝑦𝑡+1

𝑠+1 − 𝑦𝑡
𝑠+1||2+c1t+1 (1+λ)||𝑦𝑡

𝑠+1 − Ӯ𝑠||2] 

≤E[(F1(𝑦𝑡
𝑠+1)+[g-

1

4ŋ
]||Ӯ𝑡+1

𝑠+1 − 𝑦𝑡
𝑠+1||2 +[c1t+1 (1+

1

λ
) +

𝑔

4
−

1

4ŋ
] ||𝑦𝑡+1

𝑠+1 − 𝑦𝑡
𝑠+1||2 +[c1t+1 (1+λ) 

+
ŋg2

2𝑚
 ]||𝑦𝑡

𝑠+1 − Ӯ𝑠||2]                                                                                                                     (14)  

≤E[(F1(𝑦𝑡
𝑠+1)+[g-

1

4ŋ
]||Ӯ𝑡+1

𝑠+1 − 𝑦𝑡
𝑠+1||2+[c1t+1 (1+λ)+

ŋg2

2𝑚
]||𝑦𝑡

𝑠+1 − Ӯ𝑠||2] 

          =𝑅𝑡
𝑠+1+[g-

1

4ŋ
]E||Ӯ𝑡+1

𝑠+1 − 𝑦𝑡
𝑠+1||2 .                                                                                                                             (15) 

The initial inequality follows Young's inequality and Cauchy-Schwarz. The other inequality is to 

the bounded set of equation (13),although the final equality is to a description of Lyapunov 

function 𝑅𝑡
𝑠+1.The next inequality holds the pattern of that values c1t fulfills the bounded set: 

c1t+1 (1+
1

λ
)+

𝑔

4
≤

1

4ŋ
.                                                                                                                     (16) 

to verify equation (16), the initial notice that 𝑐1m1=0 and c1t+1 (1+λ)+
ŋg2

2𝑚
 . Recursion of  

parameter  t, we will obtain 

c1t=

ŋg2

2𝑚

(1+λ)𝑏−𝑡−1

λ
=

ρgm 1

2𝑚
((1 +

1

m1
)m1−𝑡  -1)≤

ρgm 1

2𝑚
(e1-1)≤

ρgm 1

𝑚
 

in which the initial equality is to credit to the meaning associated withŋ and λ. Follow the initial 

inequality follow thatlim𝑕→∞  1 +
1

𝑕
 
𝑕

=e1 and  1 +
1

𝑕
 
𝑕

 is an increasing function where h>0(e1 

denoted the Euler's number). 

c1t+1 (1+
1

λ
)+

𝑔

4
≤

ρgm 1

𝑚
(1+ m1)+

𝑔

4
≤

 ρgm12

𝑚
+

𝑔

4
≤

𝑔

2ρ
=

1

2ŋ
, 

where use the 2nd inequalitym1≥1.Use of 3rd inequality that is following condition follow. 

4ρ2m12

𝑚
+ ρ≤1. 

where equation (16) of an inequality follows. Right now, equation (15) adding all of the 

iterations in epoch and in that case microscopic sums, we have 

𝑅𝑏
𝑠+1≤𝑅1

𝑠+1+ [g −
1

4ŋ
]E||Ӯ𝑡+1

𝑠+1 − 𝑦𝑡
𝑠+1||2𝑏−1

𝑡=0 .                                                                          (17) 

The definition of  Ӯ𝑡
𝑠+1  and since𝑐1m1=0, it follows that 𝑅m1

𝑠+1 

=E[F(Ӯm1
𝑠+1)]=E[F(Ӯ𝑠+1)].Moreover,𝑅1

𝑠+1=E[F1(Ӯ1
𝑠+1)]=E[F1(Ӯ𝑠)].In fact that 𝑦1

𝑠+1=Ӯ𝑠 . 

Accordingly, the above equation (17) of  inequality used to, we get  

E[F(Ӯ𝑠+1)]≤E[F1(Ӯ𝑠)]+ [g −
1

4ŋ
]E||Ӯ𝑡+1

𝑠+1 − 𝑦𝑡
𝑠+1||2m1−1

𝑡=0 .                                                       (18)  

Adding of equation(18) all of the iterations in epochs and rearranging all terms, we get bounded 

set 
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  [
1

4ŋ
− 𝑔]m1

𝑡=1
s1
𝑠=1 E||Ӯ𝑡+1

𝑠+1 − 𝑦𝑡
𝑠+1||2≤ F1(y0)-E[F(Ӯ𝑠)]≤F1(y0)-E[F1(y*)],                             

(19)  

The optimality of y* in 2nd inequality as follow 

Ǥŋ(𝑦𝑡
𝑠+1)=

1

ŋ
[𝑦𝑡

𝑠+1 −proxŋh(𝑦𝑡
𝑠+1 − ŋ∇f(𝑦𝑡

𝑠+1))]=
1

ŋ
[𝑦𝑡

𝑠+1 − Ӯ𝑡+1
𝑠+1]. 

Using the relation of an equation in (19) we get 

  [
1

4ŋ
− 𝑔]m1

𝑡=1
s1
𝑠=1 ŋ2E|| Ǥŋ(𝑦𝑡

𝑠+1)||
2
≤F1(y

0
)-E[F1(y*)                                                         (20) 

Right now associated with yb from Algorithm 1 and simplifying we get the desired results 

 

7.3 .  Convergence Analysis of theorem1 

Theorem1: theorem1 show proxSVRG for constant MBGD of size m=1.this result is strongly 

more opposing to proxSGD where convergence with MBGD certainly not know. Hence, the results 

obtained by theorem1 is weaker than that of proxSGD. This point is highlighted by theorem1 to the 

given corollary. 

Corollary 1.To obtaining 𝜖-accurate solution to obtain with m=1 and parameters from Theorem 

1,the IFOO and PO(PL) Complexity  of Algorithm 1  happen to be ɵ(𝑛 𝜖 ) and 
1

𝜖 )correspondingly. 

Corollary1.Our study of corollary1 follows Algorithm1 of each inner iteration has IFOO 

complexity of ɵ(1⁄ϵ) since m1=n, we assume that n is an integer .This IFOO complexity includes 

the IFOO call for calculating average  SGD at the end of every epoch. Also, each internal iteration 

invokes the PO, where the PO complexity is ɵ(𝑛 𝜖 ). it is similar to those with MBGD proxSVRG 

and proxSGD ,this is because n IFOO calls in proxSGD is correspond to the PO call whereas one 

PO call corresponds to one IFOO call in proxSVRG.  

Theorem 2. Suppose m=𝑛
2

3  in Algorithm Let ŋ=1/(3L2),m1=[ n1/3] and T1  is a multiple of 

m1.Then for the output yb associated with Algorithm 1,we have got : 

E [||Ǥŋ(yb)||
2]≤

18L2(F1
0)−F1(y∗))

T1
, 

 where  y∗ isan optimal solution of this equation  (1). 

Proof: 

Corollary 2.Let m=𝑛
2

3  and set of parameters in Theorem2.Certainly ,to obtain 𝞊-proper 

solution, the IFOO and PO(PL) complexity associated with Algorithm  are 𝝷(kn+(𝑘𝑛
2

3 

𝜖 )) and 

ɵ(1 𝜖 ) respectively. From the Theorem2, it can be seen that the total number of  inner iterations in 

all epochs of Algorithm 1 to obtain 𝞊-proper solution is ɵ(1 𝜖 ) inner iteration of all epochs of 

Algorithm 2 involves the call to PO(PL),we have a PO proper complexity ɵ(1 𝜖 ).Hence, Since 

m=𝑛
2

3  IFOO call is  produced at each inner iteration, we obtain total complexity  of (𝑛
2

3 

𝜖 ). 
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Algorithm 1: NC ProxSvrg(y1, T1, m1, m, ŋ)Input : Ӯ
1
=Ӯ𝑚1

1
=y1𝜖𝑅𝑑 ,epoch length m1,step size  

ŋ > 1,s1=𝑇1
𝑚1  

for s=0 to s1-1 do 

𝑦1
𝑠+1 =𝑦𝑚1

𝑠  

g
s+1=1

𝑛
 ∇fj Ӯ

𝑠
 𝑛+1

𝑗=2  

for t=0 to m1-1 do 

consistently randomly chosen It⊂1,2,3,.,.,.,.,.n+1} such that |It|=m 

𝑣1𝑡
𝑠+1=

1

𝑚
 ∑jtϵIt  (∇fjt (𝑦𝑡

𝑠+1
 ) -∇fjt (Ӯ

s
))+ g1s+1    

𝑦𝑡+1
𝑠+1= proxŋh(𝑦𝑡

𝑠+1 − ŋ𝑣1𝑡
𝑠+1) 

end for  

Ӯ
𝑠+1

=𝑦𝑚1
𝑠+1 

end for 

Output: Iterate  yb pick random from{{ 𝑦𝑡+1
𝑠+1}}𝑡=0

𝑚1−1}𝑠=0
𝑠1−1

.  

 

7.4 .  Non-Convex Proximal SAGA 

In the previous section, we studied ProxSVRG for finding a solution for (1).  and we found that 

ProxSVRG requires full SGD calculation per each epoch and it's not a fully incremental algorithm. 

There is an alternative algorithm to ProxSVRG developed in [4] and based on the work of [4] we 

develop ProxSAGA, a non-convex variant of SAGA. In algorithm 2 we showed pseudo-code for 

ProxSAGA. ProxSAGA is the main difference between algorithm 1 and algorithm 2, which avoids 

calculation of full SGD per each epoch. It maintains an average SGD vector g1t+1 for each iteration. 

We need to store the SGD {𝛻fj(𝛼𝑗
𝑡)}𝑗=1

𝑛 , ( which in general can cost O(nd) in storage but in some 

cases, we can reduce it to O(n) ). ProxSAGA will give results better than ProxSVRG and its 

implementation is also easy. ProxSAGA in algorithm 2 is minutely different from an alternative 

algorithm which is mentioned in [4].Especially, where two seats It ,Jt are sampled at each iteration 

when uses in mini-batches as gradient one in [4].This is chiefly applicable to the case of theoretical 

analysis. it has been proved that non-convex proxSVRG and proxSAGA shape similar guarantees 

convex case. Particular, our first result for proxSAGA for proxSVRG in theorem1 is similar. 

Algorithm 2:NC ProxSAGA(y1, T1, m, ŋ) 

Input:y1𝜖𝑅𝑑 ,𝛼1𝑖
1=y1 for i∈⌠n⌡,step size ŋ > 0 

g1=1

𝑛
 ∇fj 𝛼1𝑗

1 𝑛+1
𝑗=2  

for t=0 to T1-1 do 

consistently randomly chosen sets It,J1t from ⌠n⌡so that |It |=|J1t |=m 

𝑣1𝑡=
1

𝑚
 ∑jtϵIt  (∇fjt (𝑦𝑡

𝑠+1
 ) -∇fjt (Ӯ

s
))+ g1s 

𝑦𝑡+1= proxŋh(𝑦
𝑡 − ŋ𝑣1𝑡) 

α1𝑗
𝑡+1=𝑦𝑡  for k∈J1t and 𝛼1𝑘

𝑡+1 =𝛼1𝑘
𝑡  for k∈J1t 
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gt+1=𝑔𝑡 −
1

𝑛
 ∑ktϵJ1t  (∇fkt(𝛼1𝑘𝑡

𝑡
 ) -∇fkt(𝛼1𝑘𝑡

𝑡+1
)) 

end for 

output: Iterate  yb pick random from{𝑦𝑡}𝑡=1
𝑇1  

 

 

 8. Experiments 

In this section, we are presenting our results. We have studied the problem of non-negative 

PCA( Principle Component Analysis). More importantly, for a set of samples, we solve the 

following optimization problems. {zj}
n

j=1, 

1

4
 y

┬(  𝑧𝑗 𝑧𝑗
┬𝑛

𝑗=1 )y.                         (7) 

Generally, the optimization problem is NP-hard i.e (non-deterministic polynomial-time hard).  

Standard PCA with this particular form can be formulated as (1) with fj(y)= -( y
┬𝑧𝑗 )2 for all j 𝜖[n] 

and h(y)=Ic(y) where C is the convex set {y 𝜖Rd| ||y|| <= 1,y>=0}. In our experiments, there is 

comparison between proxSGD with non-convex figure2.For proxSGD the choice of step is 

important have been taken as  

 

 
 

Figure1:Analysis of Non-negative Principal Component . 

The analytical performance of components ProxSGD, ProxSVRG, and ProxSAGA on 'rec'(left) 

,'mnist'(left-right-center) and (right) datasets have been Graphically Presented. Hence the Y-axis is 

the function of sub-optimality i.e , f(Y)-f(Y*) ,in this analysis, represents the best solution which is 

obtained by running gradients descent for analyzing the longest time duration with multiple 

restarts.  

ŋ
𝑡

= ŋ
0
 1 + ŋ′  

𝑡

𝑛
  

−1
 where ŋ

0
, ŋ′ >  0, using the popular t-inverse step size. ProxSVRG and 

proxSAGA are motivated and based on theoretical analysis.  The step sizes for each method are 

chosen based on the best performance on the objective value. We fixed step size ŋ′=0 to ProxSGD 

and use epoch length as m1=n. All experiments are done in LIBSVM with normalized samples 

(||𝑧𝑗 ||=1 for all j 𝜖[n]) which are taken from the standard machine learning datasets. initialized by 

each of the methods all running ProxSGDfor n iterations to serve two purposes. One is typically 

beneficial for variance and covariance reduction techniques by providing the best initial point. The 

other one is for calculating the initial mean gradient g1.  Having a mini-batch size m=1 is 

demonstrated the performance of algorithms with fixed mini-batches in our experiments. We 

reported the sub-optimality in the objective function for standard machine learning datasets i.e f 

(𝑦𝑡
𝑠+1) − f (ŷ) (for ProxSVRG) and f (𝑦𝑡) − f (ŷ) (for ProxSAGA) where ŷ is the solution calculated 

by running proximal gradient descent for multiple random initializations and a huge number of 

iterations. We compared IFOO complexity divided by n for all algorithms and this includes the cost 
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for the full gradient at the end of each epoch for ProxSVRG.The performances of ProxSGD, 

ProxSVRG, and ProxSAGA on the NN-Principle Component Analysis problem are shown in 

Figure 2 the objective value for ProxSVRG and ProxSAGA is much greater compared to ProxSGD. 

We found significant gain for all datasets and the selection of step size was faster for ProxSVRG 

and ProxSAGA than that for ProxSGD. For this particular task, we didn’t find any significant 

difference in performances of ProxSAGA and ProxSVRG. 

 

       9. Concluding Remarks: 

In this paper, the authors have proposed an advanced use of Non-convex, Non-smooth finite sum 

problems. Experimentally, the variance reduction techniques have been used from better and fast 

results. By employing this technique we can correctly prove that we can design the methods that 

one can comparatively perform better then ProxSGD and Proximal gradient descent. The 

algorithms of stochastic gradient descent (SGD) and its variance are used for solving non-convex 

problems, particularly deep leering. Thus, the theoretical convergence results of the proposed 

algorithms of Non-convex, Non-smooth optimization problems have been provided in the paper. 

The practical outcome approach ofthis paper shows that the proximal stochastic gradient to a 

stationary point with constant mini-batches has probably convergence. This provable fact adds a 

milestone in our knowledge of Non-smooth, Non-convex problems. In addition, this paper aims to 

address many questions and bridge the gap between theory and practical. The authors proposed an 

advanced and fast stochastic method for a broad family of Non-smooth, Non-convex problems. The 

key features of these problems include:- 

(i) any suitable stochastic convex optimization algorithms example SGD, when employed for 

minimizing  regularized convex problems, can return an averaged solution at each 

stage.(ii)likewise, an averaged solution is returned as the final solution. 

1 Taking future works into account, it may be suggested that researchers may consider 
developing more variants of the meta algorithms. These proposed meta algorithms conclude 
stage-wise RMS Prop, stage-wise AMS grad, etc .Furthermore, this model may also be largely 
considered for the empirical studies of the image net data set.     
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