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I. INTRODUCTION

The heat equation is an important second order parabolic partial differential equation.The 

theory of heat equations was first introduced by Joseph Fourier in 1822. It arises in various 

applications of engineering and sciences in which we have to model how a quantity such as 

heat transfers through a specified region.The two dimensional heat equation is described as the 

following 

𝜕𝑢(𝑥,𝑦,𝑡)

𝜕𝑡
=  𝑐²∇2𝑢(𝑥, 𝑦, 𝑡) 

        Laplace transform is a an important analytical method for solving the  differential equation 

by interpreting the differential equations into simple equations and convolutions into 

multiplications. Laplace transform method can be applied to solve a number of  applications 

arising in engineering and sciences. Variational iterative method is also a well-known 

numerical method for solving the differential equations.The exact solution of the differential 

equations can be obtained ,if exists, by using variational iterations. 

        A number of mathematical methods have been introduced for solving two dimensional 

heat equations. Finite difference method has been used for solving two-dimensional heat 

equations in [1]. Chebyshev series solution of the two dimensional heat equations has been 

introduced in [2]. The combination of Finite Difference Method and Collocation method has 

been developed for solving two-dimensional heat equations in [3]. Radial basis function 

method has been demonstrated to solve two dimension heat equations in [4]. Variational 

iteration technique has been introduced in [5], for solving nonlinear equations.  

II. LAPLACE TRANSFORM METHOD:

Let 𝑢(𝑡) be a function of 𝑡 defined for all positive values of 𝑡. Then the Laplace transforms of 

𝑢(𝑡), represented as 𝐿{𝑢(𝑡)} and is defined as: 

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 22, Issue 10, October - 2020 Page-1139



𝐿{𝑢(𝑡)} = ∫ 𝑒−𝑝𝑡𝑢(𝑡)𝑑𝑡 = 𝑢̅(𝑝)

∞

0

, 

provided the integral exists and ′𝑝′ is a parameter  which may be a real or complex number.  

Therefore 

𝐿{𝑢(𝑡)} = 𝑢̅(𝑝), 

that is 

𝑢(𝑡) = 𝐿−1{𝑢̅(𝑝)}.

The term 𝐿−1{𝑢̅(𝑝)}, is called the inverse Laplace transform of 𝑢̅(𝑝).

III. LINEARITY PROPERTY OF LAPLACE TRANSFORM METHOD:

Let 𝑣(𝑡), 𝑤(𝑡) be two functions of 𝑡 defined for all positive values of 𝑡. Then

𝐿{𝑎. 𝑣(𝑡) + 𝑏. 𝑤(𝑡)} = 𝑎. 𝐿{𝑣(𝑡)} + 𝑏. 𝐿{𝑤(𝑡)} 

where 𝑎 and 𝑏 are arbitrary constants. 

IV. LAPLACE TRANSFORM FOR DIFFERENTIATION:

Let 𝑢(𝑡) be a function of 𝑡 defined for all positive values of 𝑡. Then, the Laplace transform of  

𝑛th derivative of function 𝑢(𝑡) is 

𝐿 [
𝑑𝑛(𝑢(𝑡))

𝑑𝑡𝑛
] = 𝑝𝑛𝑢̅(𝑝) − 𝑝𝑛−1𝑢(0) − 𝑝𝑛−2𝑢′(0) − 𝑝𝑛−3𝑢′′(0) − ⋯ − 𝑝𝑢(𝑛−2)(0)

− 𝑢(𝑛−1)(0)

where 𝑢̅(𝑝) = 𝐿{𝑢(𝑡)}. 

V. LINEARITY PROPERTY OF INVERSE LAPLACE TRANSFORM:

Let 𝑣(𝑡), 𝑤(𝑡) be two functions of 𝑡 defined for all positive values of 𝑡. Let 𝑣̅(𝑝) and 𝑤̅(𝑝) 

be the functions of 𝑠 such that 𝑣̅(𝑝) = 𝐿{𝑣(𝑡)} and 𝑤̅(𝑝) = 𝐿{𝑤(𝑡)}.  

Then 

𝐿−1{𝑐. 𝑣̅(𝑝) + 𝑑. 𝑤̅(𝑝)} = 𝑐. 𝐿−1{𝑣̅(𝑝)} + 𝑑. 𝐿{𝑤̅(𝑝)} = 𝑐. 𝑣(𝑡) + 𝑑. 𝑤(𝑡)

where 𝑐 and 𝑑 are arbitrary constants. 

VI. VARIATIONAL ITERATIVE METHOD (VIM)

Variational iteration method is an important method used to solve many problems arising in 

various applications of engineering and Sciences. The nonlinear terms can be handled with the 

help of variational iteration method. Consider the differential equations, 

 𝒍𝑢(𝑥, 𝑦, 𝑡) + 𝒏𝑢(𝑥, 𝑦, 𝑡) = 𝒈(𝑥, 𝑦, 𝑡)  (1)

with the initial conditions   

𝑢(𝑥, 𝑦, 0) = 𝒉(𝑥, 𝑦) (2)
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where l is a linear operator of the first order, n is nonlinear operator and g is a nonhomogeneous 

term. From variational iteration method, construct a correction functional as 

𝑢𝑚+1 = 𝑢𝑚 + ∫ 𝜆[𝒍𝑢𝑚(𝑥, 𝑦, 𝑝) + 𝒏𝑢̃𝑚(𝑥, 𝑦, 𝑝) − 𝒈(𝑥, 𝑦, 𝑝)]𝑑𝑝
𝑡

0
 (3) 

where 𝜆 is a known as Lagrange’s multiplier and 𝒎 denotes the mth approximations, 𝑢̃𝑚 is

restricted function, i.e. 𝛿𝑢̃𝑚 = 0. The successive approximation 𝑢𝑚+1 of the solution 𝑢 will be 

obtained by using 𝜆 and 𝑢0. The solution is 

𝑢 = lim
𝑚→∞

𝑢𝑚 

VII. NEW SEMI ANALYTICAL METHOD FOR SOLVING TWO DIMENSIONAL HEAT

EQUATIONS

The new semi analytical method is based on the combination of Laplace transform and 

variational iterative method used to solve the various problems of partial differential equations. 

The process for solving the partial differential equations by using this semi analytical  is 

presented in this section as given below.  

Assume that l is an operator of the first order 
𝜕

𝜕𝑡
 . Equation (1) becomes 

𝜕

𝜕𝑡
𝑢(𝑥, 𝑦, 𝑡) + 𝒏𝑢(𝑥, 𝑦, 𝑡) = 𝒈(𝑥, 𝑦, 𝑡)  (4)

Taking Laplace transform on both sides of (4), we obtain 

𝐿 {
𝜕

𝜕𝑡
𝑢(𝑥, 𝑦, 𝑡)} + 𝐿{𝒏𝑢(𝑥, 𝑦, 𝑡)} = 𝐿{𝒈(𝑥, 𝑦, 𝑡)}  (5) 

  𝑝𝐿{𝑢(𝑥, 𝑦, 𝑡)} − 𝒉(𝑥, 𝑦) = 𝐿{𝒈(𝑥, 𝑦, 𝑡)} − 𝐿{𝒏𝑢(𝑥, 𝑦, 𝑡)}  (6)

Applying inverse Laplace transform on both sides of (6), we obtain 

𝑢(𝑥, 𝑦, 𝑡) = 𝑮(𝑥, 𝑦, 𝑡) − 𝐿−1 [
1

𝑝
𝐿{𝒏𝑢(𝑥, 𝑦, 𝑡)}]  (7) 

where G is the term arising from source term and given initial condition. From the correctional 

functional of the variational iteration method 

𝑢𝑚+1(𝑥, 𝑦, 𝑡) = 𝑮(𝑥, 𝑦, 𝑡) − 𝐿−1 [
1

𝑝
𝐿{𝒏𝑢𝑚(𝑥, 𝑦, 𝑡)}]  (8) 

Equation (8) represents the new modified correction functional of Laplace transform of 

variational iteration method, the solution is given by 

𝑢(𝑥, 𝑦, 𝑡) = lim
𝑚→∞

𝑢𝑚(𝑥, 𝑦, 𝑡) 

VIII. NUMERICAL EXAMPLES
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In order to illustrate the efficiency of the proposed semi analytical technique,examples are 

given in this section. 

Example 1: Consider the following two dimensional heat equation 

𝜕𝑢(𝑥,𝑦,𝑡)

𝜕𝑢
=  ∇2𝑢(𝑥, 𝑦, 𝑡) (9) 

with initial conditions 

𝑢(x, y, 0) = sinx cosy   

Applying Laplace transform on both sides of (9), we obtain 

𝐿 {
𝜕𝑢(𝑥,𝑦,𝑡)

𝜕𝑢
} =  𝐿{∇2𝑢(𝑥, 𝑦, 𝑡)}  (10) 

This implies 

𝑝𝐿{𝑢(𝑥, 𝑦, 𝑡)} − 𝑢(𝑥, 𝑦, 0) = 𝐿{∇2𝑢(𝑥, 𝑦, 𝑡)}

Applying initial conditions, we obtain 

𝑝𝐿{𝑢(𝑥, 𝑦, 𝑡)} = 𝑠𝑖𝑛𝑥 𝑐𝑜𝑠𝑦 + 𝐿{∇2𝑢(𝑥, 𝑦, 𝑡)}

Divide both sides by p, we obtain 

𝐿{𝑢(𝑥, 𝑦, 𝑡)} =
𝑠𝑖𝑛𝑥 𝑐𝑜𝑠𝑦

𝑝
+

1

𝑝
𝐿{∇2𝑢(𝑥, 𝑦, 𝑡)}  (11) 

Applying inverse Laplace transform on both sides of (11), we obtain 

𝑢 = 𝑠𝑖𝑛𝑥 𝑐𝑜𝑠𝑦 + 𝐿−1 [
1

𝑝
𝐿{∇2𝑢(𝑥, 𝑦, 𝑡)}]  (12) 

Using iteration method, from (12), we obtain   

𝑢𝑚+1 = 𝑠𝑖𝑛𝑥 𝑐𝑜𝑠𝑦 + 𝐿−1 [
1

𝑝
𝐿{∇2𝑢𝑚}]  (13) 

From (13), we obtain 

𝑢0 = 𝑠𝑖𝑛𝑥 𝑐𝑜𝑠𝑦 

𝑢1 = 𝑠𝑖𝑛𝑥 𝑐𝑜𝑠𝑦(1 − 2𝑡)

𝑢2 = 𝑠𝑖𝑛𝑥 𝑐𝑜𝑠𝑦 (1 − 2𝑡 +
(2𝑡)2

2!
) 

𝑢3 = 𝑠𝑖𝑛𝑥 𝑐𝑜𝑠𝑦 (1 − 2𝑡 +
(2𝑡)2

2!
−

(2𝑡)3

3!
) 

. 
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. 

. 

𝑢𝑚 = 𝑠𝑖𝑛𝑥 𝑐𝑜𝑠𝑦 (1 − 2𝑡 +
(2𝑡)2

2!
−

(2𝑡)3

3!
+ ⋯ +

(−1)𝑚(2𝑡)𝑚

𝑚!
) 

The solution is 

𝑢 = lim
𝑛→∞

𝑢𝑚 

After simplification, we obtain 

𝑢 = 𝑠𝑖𝑛𝑥 𝑐𝑜𝑠𝑦 (1 − 2𝑡 +
(2𝑡)2

2!
−

(2𝑡)3

3!
… ) 

𝑢 = 𝑠inx cosy 𝑒−2𝑡  (14)  

Figure 2: Physical behavior of solutions of 

heat equation for t=0.1 

Figure 3: Physical behavior of solutions of 

wave equation for t=0.5 

Figure 1 & Figure 2 represent the Physical behaviour of the solution of Example 1 at t = 0.1 

and t = 0.5 respectively. 

Example 2: Consider the two-dimensional Heat equation 

𝜕𝑢(𝑥, 𝑦, 𝑡)

𝜕𝑡
=  ∇2𝑢(𝑥, 𝑦, 𝑡)  (15) 

where 

𝑢(𝑥, 𝑦, 0) =  𝑒𝑥+𝑦

Applying Laplace transform on both sides of (15), we obtain 

 Figure 1  Figure 2 
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𝐿 {
𝜕𝑢(𝑥, 𝑦, 𝑡)

𝜕𝑡
} =  L{∇2𝑢(𝑥, 𝑦, 𝑡)}

This implies 

𝑝𝐿{𝑢(𝑥, 𝑦, 𝑡)} − 𝑢(𝑥, 𝑦, 0) = 𝐿{∇2𝑢(𝑥, 𝑦, 𝑡)}

Applying initial conditions, we obtain 

𝑝𝐿{𝑢(𝑥, 𝑦, 𝑡)} = 𝑒𝑥+𝑦 + 𝐿{∇2𝑢(𝑥, 𝑦, 𝑡)}

Divide by 𝑝, we obtain 

𝐿{𝑢(𝑥, 𝑦, 𝑡)} =
𝑒𝑥+𝑦

𝑝
+

1

𝑝
𝐿{∇2𝑢(𝑥, 𝑦, 𝑡)}  (16)       

Applying inverse Laplace transform on both sides of (16), we obtain 

𝑢 = 𝑒𝑥+𝑦 + 𝐿−1 [
1

𝑝
𝐿{∇2𝑢(𝑥, 𝑦, 𝑡)}]  (17) 

Using iteration method, from (17), we obtain 

𝑢𝑚+1 = 𝑒𝑥+𝑦 + 𝐿−1 [
1

𝑝
𝐿{∇2𝑢𝑚}]  (18) 

From (18), we obtain 

𝑢0 = 𝑒𝑥+𝑦

𝑢1 = 𝑒𝑥+𝑦(1 + 2𝑡)

𝑢2 = 𝑒𝑥+𝑦 (1 + 2𝑡 +
(2𝑡)²

2!
) 

𝑢3 = 𝑒𝑥+𝑦 (1 + 2𝑡 +
(2𝑡)²

2!
+

(2𝑡)³

3!
) 

. 

. 

. 

𝑢𝑚 = 𝑒𝑥+𝑦 (1 + 2𝑡 +
(2𝑡)²

2!
+

(2𝑡)³

3!
+ ⋯ +

(2𝑡)𝑚

𝑚!
) 

The solution is obtained as 
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𝑢 = lim
𝑛→∞

𝑢𝑚 

𝑢 = 𝑒𝑥+𝑦 (1 + 2𝑡 +
(2𝑡)²

2!
+

(2𝑡)³

3!
+ ⋯ )

𝑢 = 𝑒𝑥+𝑦(𝑒2𝑡) 

𝑢 = 𝑒𝑥+𝑦+2𝑡 

Figure 4: Physical behavior of solutions of Example 2 

 for t=0.1 

Figure 5: Physical behavior of solutions of Example 2 

 for t=0.5 

Figure 3 & Figure 4, represent the Physical behaviour of the solution of Example 2 at t = 0.1 

and t = 0.5 respectively. 

Example 3: Consider the two-dimensional Heat equation 

𝜕𝑢(𝑥, 𝑦, 𝑡)

𝜕𝑡
=  ∇2𝑢(𝑥, 𝑦, 𝑡)  (19) 

where 

𝑢(𝑥, 𝑦, 0) = (1 − 𝑦)𝑒𝑥

Applying Laplace transform on both sides of (19), we obtain 

𝐿 {
𝜕𝑢(𝑥, 𝑦, 𝑡)

𝜕𝑡
} =  L{∇2𝑢(𝑥, 𝑦, 𝑡)}

This implies 

𝑝𝐿{𝑢(𝑥, 𝑦, 𝑡)} − 𝑢(𝑥, 𝑦, 0) = 𝐿{∇2𝑢(𝑥, 𝑦, 𝑡)}

Applying initial conditions, we obtain 

 Figure 3  Figure 4 
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𝑝𝐿{𝑢(𝑥, 𝑦, 𝑡)} = (1 − 𝑦)𝑒𝑥 + 𝐿{∇2𝑢(𝑥, 𝑦, 𝑡)}

Divide by 𝑝, we obtain 

𝐿{𝑢(𝑥, 𝑦, 𝑡)} =
(1−𝑦)𝑒𝑥

𝑝
+

1

𝑝
𝐿{∇2𝑢(𝑥, 𝑦, 𝑡)}  (20)       

Applying inverse Laplace transform on both sides of (20), we obtain 

𝑢 = (1 − 𝑦)𝑒𝑥 + 𝐿−1 [
1

𝑝
𝐿{∇2𝑢(𝑥, 𝑦, 𝑡)}]  (21) 

Using iteration method, from (21), we obtain 

𝑢𝑚+1 = (1 − 𝑦)𝑒𝑥 + 𝐿−1 [
1

𝑝
𝐿{∇2𝑢𝑚}]  (22) 

From (22), we obtain 

𝑢0 = (1 − 𝑦)𝑒𝑥

𝑢1 = (1 − 𝑦)𝑒𝑥(1 + 𝑡)

𝑢2 = (1 − 𝑦)𝑒𝑥 (1 + 𝑡 +
(𝑡)²

2!
) 

𝑢3 = (1 − 𝑦)𝑒𝑥 (1 + 𝑡 +
(𝑡)²

2!
+

(𝑡)³

3!
) 

. 

. 

. 

𝑢𝑚 = (1 − 𝑦)𝑒𝑥 (1 + 𝑡 +
(𝑡)²

2!
+

(𝑡)³

3!
+ ⋯ +

(𝑡)𝑚

𝑚!
) 

The solution is obtained as 

𝑢 = lim
𝑛→∞

𝑢𝑚 

𝑢 = (1 − 𝑦)𝑒𝑥 (1 + 𝑡 +
(𝑡)²

2!
+

(𝑡)³

3!
+ ⋯ )

𝑢 = (1 − 𝑦)𝑒𝑥(𝑒𝑡) 

𝑢 = (1 − 𝑦)𝑒𝑥+𝑡 
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Figure 5 & Figure 6, represent the Physical behaviour of the solution of Example 3 at t = 0.1 

 and t = 0.5 respectively. 

Example 4: Consider the two-dimensional Heat equation 

𝜕𝑢(𝑥, 𝑦, 𝑡)

𝜕𝑡
=  ∇2𝑢(𝑥, 𝑦, 𝑡)  (23) 

where 

 𝑢(𝑥, 𝑦, 0) = 𝑠𝑖𝑛ℎ𝑥 𝑠𝑖𝑛ℎ𝑦 

Applying Laplace transform on both sides of (23), we obtain 

𝐿 {
𝜕𝑢(𝑥, 𝑦, 𝑡)

𝜕𝑡
} =  L{∇2𝑢(𝑥, 𝑦, 𝑡)}

This implies 

𝑝𝐿{𝑢(𝑥, 𝑦, 𝑡)} − 𝑢(𝑥, 𝑦, 0) = 𝐿{∇2𝑢(𝑥, 𝑦, 𝑡)}

Applying initial conditions, we obtain 

𝑝𝐿{𝑢(𝑥, 𝑦, 𝑡)} = 𝑠𝑖𝑛ℎ𝑥 𝑠𝑖𝑛ℎ𝑦 + 𝐿{∇2𝑢(𝑥, 𝑦, 𝑡)}

Divide by 𝑝, we obtain 

𝐿{𝑢(𝑥, 𝑦, 𝑡)} =
𝑠𝑖𝑛ℎ𝑥 𝑠𝑖𝑛ℎ𝑦

𝑝
+

1

𝑝
𝐿{∇2𝑢(𝑥, 𝑦, 𝑡)}  (24)       

Applying inverse Laplace transform on both sides of (24), we obtain 

 Figure 5  Figure 6 
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𝑢 = 𝑠𝑖𝑛ℎ𝑥 𝑠𝑖𝑛ℎ𝑦 + 𝐿−1 [
1

𝑝
𝐿{∇2𝑢(𝑥, 𝑦, 𝑡)}]  (25) 

Using iteration method, from (25), we obtain 

𝑢𝑚+1 = 𝑠𝑖𝑛ℎ𝑥 𝑠𝑖𝑛ℎ𝑦 + 𝐿−1 [
1

𝑝
𝐿{∇2𝑢𝑚}]  (26) 

From (26), we obtain 

𝑢0 = 𝑠𝑖𝑛ℎ𝑥 𝑠𝑖𝑛ℎ𝑦 

𝑢1 = 𝑠𝑖𝑛ℎ𝑥 𝑠𝑖𝑛ℎ𝑦(1 + 2𝑡) 

𝑢2 = 𝑠𝑖𝑛ℎ𝑥 𝑠𝑖𝑛ℎ𝑦 (1 + 2𝑡 +
(2𝑡)²

2!
) 

𝑢3 = 𝑠𝑖𝑛ℎ𝑥 𝑠𝑖𝑛ℎ𝑦 (1 + 2𝑡 +
(2𝑡)²

2!
+

(2𝑡)³

3!
) 

. 

. 

. 

𝑢𝑚 = 𝑠𝑖𝑛ℎ𝑥 𝑠𝑖𝑛ℎ𝑦 (1 + 2𝑡 +
(2𝑡)²

2!
+

(2𝑡)³

3!
+ ⋯ +

(2𝑡)𝑚

𝑚!
) 

The solution is obtained as 

𝑢 = lim
𝑛→∞

𝑢𝑚 

𝑢 = 𝑠𝑖𝑛ℎ𝑥 𝑠𝑖𝑛ℎ𝑦 (1 + 2𝑡 +
(2𝑡)²

2!
+

(2𝑡)³

3!
+ ⋯ )

𝑢 = 𝑠𝑖𝑛ℎ𝑥 𝑠𝑖𝑛ℎ𝑦(𝑒2𝑡) 
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Figure 7 & Figure 8, represent the Physical behaviour of the solution of Example 4 at t = 0.1 

and t = 0.5 respectively. 

Example 5: Consider the two-dimensional Heat equation 

𝜕𝑢(𝑥, 𝑦, 𝑡)

𝜕𝑡
=  ∇2𝑢(𝑥, 𝑦, 𝑡)  (27) 

where 

𝑢(𝑥, 𝑦, 0) = 𝑒𝑦 − 𝑥𝑒𝑦

Applying Laplace transform on both sides of (27), we obtain 

𝐿 {
𝜕𝑢(𝑥, 𝑦, 𝑡)

𝜕𝑡
} =  L{∇2𝑢(𝑥, 𝑦, 𝑡)}

This implies 

𝑝𝐿{𝑢(𝑥, 𝑦, 𝑡)} − 𝑢(𝑥, 𝑦, 0) = 𝐿{∇2𝑢(𝑥, 𝑦, 𝑡)}

Applying initial conditions, we obtain 

𝑝𝐿{𝑢(𝑥, 𝑦, 𝑡)} = 𝑒𝑦 − 𝑥𝑒𝑦 + 𝐿{∇2𝑢(𝑥, 𝑦, 𝑡)}

Divide by 𝑝, we obtain 

𝐿{𝑢(𝑥, 𝑦, 𝑡)} =
𝑒𝑦−𝑥𝑒𝑦

𝑝
+

1

𝑝
𝐿{∇2𝑢(𝑥, 𝑦, 𝑡)}  (28)       

Applying inverse Laplace transform on both sides of (28), we obtain 

 Figure 7  Figure 8 

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 22, Issue 10, October - 2020 Page-1149



 

𝑢 = 𝑒𝑦 − 𝑥𝑒𝑦 + 𝐿−1 [
1

𝑝
𝐿{∇2𝑢(𝑥, 𝑦, 𝑡)}]  (29) 

Using iteration method, from (29), we obtain 

𝑢𝑚+1 = 𝑒𝑦 − 𝑥𝑒𝑦 + 𝐿−1 [
1

𝑝
𝐿{∇2𝑢𝑚}]  (30) 

From (30), we obtain 

𝑢0 = 𝑒𝑦 − 𝑥𝑒𝑦

𝑢1 = 𝑒𝑦 − 𝑥𝑒𝑦(1 + 𝑡)

𝑢2 = 𝑒𝑦 − 𝑥𝑒𝑦 (1 + 𝑡 +
(𝑡)²

2!
) 

𝑢3 = 𝑒𝑦 − 𝑥𝑒𝑦 (1 + 𝑡 +
(𝑡)²

2!
+

(𝑡)³

3!
) 

. 

. 

. 

𝑢𝑚 = 𝑒𝑦 − 𝑥𝑒𝑦 (1 + 𝑡 +
(𝑡)²

2!
+

(𝑡)³

3!
+ ⋯ +

(𝑡)𝑚

𝑚!
) 

The solution is obtained as 

𝑢 = lim
𝑛→∞

𝑢𝑚 

𝑢 = 𝑒𝑦 − 𝑥𝑒𝑦 (1 + 𝑡 +
(𝑡)²

2!
+

(𝑡)³

3!
+ ⋯ )= (𝑒𝑦 − 𝑥𝑒𝑦)(𝑒𝑡)

 Figure 9  Figure 10 
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Figure 9 & Figure 10 , represent the Physical behaviour of the solution of Example 5 at t = 0.1 

and t = 0.5 respectively. 

CONCLUSION 

From the solved numerical examples, It is observed that the new semi analytical technique 

which is combination of Laplace transform and modified variational iterative method is an 

efficient mathematical method to solve two-dimensional heat equations in simple steps. The 

proposed Mathematical method may be used for solving two dimensional and three-

dimensional linear and non-linear heat equations in future. 
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