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Abstract 

 

Social Spider Optimization (SSO) has received attention in many research fields and 

real-world applications for solving optimization problems. Factor that affects the 

performance of SSO is its imbalance of exploration and exploitation. Its ability of the 

exploration in a multi-dimensional solution pace increases the execution time quite 

significantly. To reduce the execution time, parallel implementation of SSO should be 

implemented. In this paper, we implement and compare the parallel implementation of 

SSO using two different parallelization techniques using MapReduce programming, 1) 

all nodes in the cluster work on the same population, and 2) each node in cluster has its 

own population. Both parallel implementations are compared based on performance 

and speedup. Parallel implementation of the SSO algorithm makes the algorithm faster 

in case of both low and high dimensional datasets. 
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Introduction 

 

Data analytics is attracting more and more attention. Technological advancements have 

enabled us to capture very high volumes of data since space is not such a vital problem 

anymore, however, now analyzing and processing the very large amount of data (big 

data) is the biggest challenge. There are four main objects involved: capturing, storing, 

managing, and analyzing the data. Researchers have proposed many data mining 

algorithms to address the main objective of data analysis. However, the performance of 

an algorithm depends on the number of dimensions [1]. Nature inspired algorithms can 

explore multi-dimensional search spaces to find optimal solutions. In order to search for 

the minimum or maximum in a problem domain, a swarm intelligence algorithm 

processes a population of individuals [2] [3]. These algorithms are population-based 

algorithms, which consists of a population of individuals. Everyone represents a 

potential solution of the problem being optimized. The population of individuals is 

expected to have high tendency to move in high dimensional search spaces in order to 

find better solutions from iteration to iteration through cooperation or competition 

among themselves. Figure 1 shows the conceptual diagram depicting the workings of a 

population of individuals in a swarm. In the representation, the algorithm is initialized 

with random spiders within a problem space and the spiders are iteratively moving to 

find the optimum. However, the solution space of the problem often increases 

exponentially with the problem dimension and more efficient search strategies are 

required to explore all promising regions within a given period. The search performance 

of most algorithms is based upon the previous search experience. Considering the 

limitation of computational resources, the performance of the algorithm is affected by 

increasing of problem dimensions. This paper concentrates on the parallelization of the 
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Social Spider Optimization algorithm to optimize and compare the performance of the 

algorithm with other algorithms. 

 
Background 

 

There are many nature inspired algorithms available. In this article, we parallelized 

social spider optimization using Hadoop map reduce. In a social spider colony, each 

spider, depending on its gender, performs various tasks such as designing communal 

web, mating, killing the other spiders etc. The communal web acts as both 

communicational channel and common environment as shown in Figure 1. The spiders 

use vibrations to pass information in the communal web [4]. 

 

 

 

Figure 1: A Communal web of social spiders (Ahmed Fouad Ali, 2015) 

Cuevas E  simulated the behavior social spiders and proposed SSO. The solution space 

is a collection of spiders. A spider will be considered as globally best spider sgbs if its 

fitness is better than all other spiders [5]. Likewise, a spider will be treated as  worst 

spider sws if all other spiders are having more fitness than it. The weight of a spider s 

can be computed using equation (1). 

(1) 

Defining Search Space 

Initialization of all dimensions of a spider is performed using equation (2). The types of 

spiders are specified in Figure 2. The low and up functions return the lowest and the 

highest value  in dimension i respectively. 

spid[s,i]=low(i)+rand(0,1)*(up(i)-low(i))                   (2) 
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Figure 2: Types of spiders 

 

Updating the positions of spiders 

The attributes of  the spiders are specified in Figure 3. The next positions of the spiders 

mainly depend on the weights and distances of spiders with highest fitness values, 

spiders at nearest distance with better fitness, and nearest female spiders. The amount of 

vibrations that spider Sj produces to spider Si can be estimated using equation (3). 

                                   (3) 

 

Figure 3:  Characteristics of a spider 

Evaluating subsequent locations of female spiders 

A female spider always searches for better and best spiders .as shown in Figure 4. The 

updation of the position of a female spider sf  is calculated using equation (4). If female 
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spider does not like other spiders, the updation of its position happens using equation 

(5). 

 

Figure 4: Updation of the position of a female spider 

 

(4) 

(5) 

Evaluating subsequent locations of male spiders 

 

The subsequent location of a dominant male spider Sdm can be computed as per equation 

(6). The vibrations from a female spider Snfs at minimum distance plays an important 

role in estimating the subsequent position of male spiders that have better fitness values 

as shown in Figure 5. The weighted mean of spiders whose gender is male, W is used to 

compute subsequent positions of male spiders having low fitness values. It is obtained 

as per equation (7).   
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Figure 5: Updation of the position of a dominant male spider 

Then the female spiders can be represented as and the male 

spiders can be represented as . 

                              (7)        

The position of a non-dominant male spider sndm is done using equation (8). 
                                                                (8)                             

 

Creation of new spiders 

 

New spiders are generated using the Roulette wheel method [6]. Each dominant spider 

finds its female spiders and generates new spider after the mating operation is over [7]. 

The arrival of new spider makes the spider with lowest fitness dead. 

 

Parallelization of Social Spider Optimization Algorithm 

 

In SSO, we must evaluate fitness values of large number of spiders sequentially. This 

problem can be avoided using a parallel implementation of SSO. For the parallelization, 

Hadoop is one of the most widely known and used runtime environment using the 

MapReduce paradigm. The SSO algorithm can be expressed with MapReduce and 

developed as a simple and robust parallel implementation. SSO has been parallelized 

using the following two different implementations. They are parallelization on the 

algorithm level and parallelization on the population level [8].  In parallelization on the 

algorithm level, the entire population is considered as a single node. In parallelization 

on the population level, each node will have some portion of the population. In this 

paper, we implement the SSO algorithm with MapReduce using both methods, 1) all the 

nodes in the cluster work on an entire population, and 2) each node in cluster has a 

portion of the entire population. In reducer step, the parallelism is achieved by 

performing reducers on several keys simultaneously [9][10]. We analyzed the 
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performance of both implementations on a Hadoop cluster measuring the execution time 

and speedup. 

 

The SSO Algorithm 

 

Algorithm1: SSO() 

Input: Spiders and their Positions 

Output: Globally best spider Gbest 

1.Initialize the population (swarm) with random individuals (spiders) 

2.For each spider, calculate the fitness value 

3.Calculate vibrations received by each and every spider 

4.Update position of each spider 

5.Choose the spider with the best fitness value of all the spiders as the Gbest  

6.Repeat Steps 3-5 until stopping criterion (maximum number of iterations) is met. 

7.Return Gbest as best spider. 

 

Implementation I: Parallelization on Algorithm Level 

 

In this implementation, we generate the swarm of spiders and provide it as input. In 

addition, all the nodes of the Hadoop cluster work on an entire population of spiders 

independently. The mappers will take the complete population and evaluate the fitness 

of the spiders. 

 

Map Function 

The Map evaluates the fitness of the given spiders and update their positions. It also 

keeps track of the best fitness achieved and then passes it to reducer. 

 

Algorithm 2: MAP() 

Input: Spiders and their Positions 

Output: Globally best spider Gbest 

 

1. While (number of iterations<=max. iterations)  

 { 

    Evaluate fitness of each of the spider 

    For n = 1 to the number of spiders 

    Update the position of the spidern 

} 

2. Return the spider with best fitness Gbest to reducer 

 

Reducer Function 

The Reducer function collects the Gbest values from all algorithm runs that are 

performed on different nodes in the cluster. After comparing all Gbest values, the 

reducer returns the best Gbest value and writes it to HDFS. 

 

Algorithm 3: Reduce() 

Input: Gbest values 

Output: Gbest value 

    

1.Gbest=Gbest1 

   2. For (i=2; i<=number of runs; i++) 

 { 
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   If (fitness of Gbesti    > fitness of  Gbest) 

   Gbest=Gbesti 

 } 

   3. Write (Gbest) to HDFS 

 

Implementation II: Parallelization on Population Level 

 

In the second implementation, we split an entire population to several nodes available 

on the cluster. In the first iteration, we randomly generate spiders and write the data into 

HDFS; the input file contains the spiders with their positions. 

 

Initialization  

Algorithm 4: Initialization 

Input: swarm size, no. of dimensions 

Output: Spiders and their positions  

 

1.PopulationSize = SpecifyPopulationSize()   

2.NumberofMaps=SpecifyNo.ofMaps()  

3.GeneratePopulation(PopulationSize) 

4. Write Population to HDFS 

5. While (number of iterations<=max. iterations)   

  { 

       Map and Reduce functions are called 

      } 

6. Write the data to HDFS 

 

Map Function 

We split the input file and each mapper takes a fragment of file (i.e., portion of the 

population) and evaluates several spiders in a mapper by evaluating the fitness of each 

spider. Each spider position is updated and written back to the input file in HDFS, and 

each spider’s current position is sent to the Reducer. 

 

Algorithm 5: Map() 

Input: File containing spiders 

Output: Pbest 

1.Evaluate fitness of each of spider 

2.Update position of each spider 

3.Write spider to HDFS      

4.Send position of the spider to Reducer 

 

Reducer Function 

The Reducer function collects the currrent positions of all spiders after each iteration 

and compares those values to identify Gbest, which is written to HDFS. This value 

represents the best value achieve so far. When a better Gbest value comes in, the 

reducer replaces the old Gbest value that was saved in the output file with the new 

Gbest value achieved. 

Algorithm 6: Reduce() 

Input: Current positions of spiders 

Output: best spider: Gbest 

1.For n = 1 to the number of spiders 

   {  
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        Update Gbest  

    } 

2.Update Gbest to HDFS  

3. Write (Gbest) to HDFS 

 

Results & Discussion 

 

In this section, we present the implementation details, the experiments that were 

performed with outcomes of both MapReduce implementations of the SSO algorithm. 

The parallel algorithms were executed on the departmental Hadoop cluster 2.7.1. In 

order to evaluate the algorithm, the Booth’s benchmark function has been used. 

 

. 

Figure 6. Booth's function 

 

Experiments 

 

Our experiments involve both implementations of the SSO algorithm. We have tested 

the performance of both the MapReduce implementations on the Hadoop cluster 2.7.1, 

Java version 

1.6 with the focus on speedup and performance. 

 

Firstly, we ran both implementations of SSO algorithm for the following settings. 

Iterations: 5000 

Spiders: 50000 

Dimensions: 50  

Evaluation function: Booth’s function. 

 

Secondly, we ran both implementations of the SSO algorithm by increasing number of 

iterations, spiders and dimensions. The settings are as follows. 

Iterations: 10,000  

Spiders: 100,000  

Dimensions: 70  

Evaluation function: Booth’s function. 

 

In Table 1 and Table 2, the execution time and speedup taken by both implementations 

when the number of cluster nodes is increased are specified. As we increase number of 
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cluster nodes, execution time gets decreased in both implementations. And it is found 

that second implementation takes more time for the execution and more speedup value 

than first implementation.  

 

Table 1. Comparison of both implementations of SSO with respect to execution 

time and Speedup (5000 iterations, 50000 spiders, 50 dimensions) 

Num

ber 

of 

Node

s 

Execution time (in seconds) Speedup 

 First 

impleme

ntation 

of SSO 

Second 

implementa

tion of SSO 

First 

implemen

tation of 

SSO 

Second 

impleme

ntation 

of SSO 

2 14500 18000 1 1 

4 12145 13590 1 1 

6 10590 11166 1 1 

8 8020 9504 1.5 1.7 

10 6401 8550 2.1 2.5 

12 4015 6250 3.0 3.2 

14 3587 5256 3.5 4.1 

16 3245 4215 4.4 5.2 

18 1890 3555 5.5 6.8 
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Table 2. Comparison of both implementations of SSO with respect to execution 

time and Speedup (10000 iterations, 100000 spiders, 70 dimensions) 

Numb

er of 

Nodes 

Execution time (in seconds) Speedup 

 First 

implementati

on of SSO 

Second 

implement

ation of 

SSO 

First 

implem

entatio

n of 

SSO 

Second 

implem

entation 

of SSO 

2 27002 32678 3.4 4.3 

4 19456 25790 4.7 6.6 

6 14678 18445 5.1 7.5 

8 12003 15266 6.4 8.5 

10 10345 13267 7.2 10.4 

12 9000 12690 8.1 13.5 

14 7345 9555 10.4 15.2 

16 5288 7250 12.5 16.7 

18 4210 6245 15.6 18.9 

 

Figure 7 shows how execution times of both implementations vary for the change of 

number of spiders when iterations, nodes, and dimensions are fixed. 

Fixed parameters: 6,000 iterations, 10 nodes, 50 dimensions. 

It is obvious that in both implementations, as we increase number of spiders, execution 

time also gets increased. 

Hadoop implementations the performance has improved when we increased the number 

of nodes. Thus, adding more resources while keeping the problem size fixed and with 

increasing the population size decreases the execution time. However, with increasing 

population size and keeping number of nodes, iterations and dimensions constant 

gradually increases the execution time. We also observed that the performance of the 

first implementation is faster than the second implementation. For larger problem 

dimensions, if we would increase the hardware and resources, both implementations can 

scale well. 
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Figure 7: Comparison of execution time of both implementations for fixed parameters 

Conclusion & Future Work 

The performance of algorithms degrades significantly as the dimension of the search 

space increases. In this paper, we parallelized the SSO algorithm using MapReduce and 

executed the code on Hadoop, which is the most widely used implementation of the 

MapReduce programming paradigm. We used two different techniques for the 

parallelization, 1) entire population is evaluated on one node, 2) each node in cluster 

evaluates a portion of the population. In the first implementation, all the nodes available 

in the cluster receive an entire population as the input and work on this data. In the 

second implementation, each node in the cluster has a portion of the population. In this 

implementation, the input file (population) gets divided among nodes and each node 

available on the cluster gets its own part of the population to perform the evaluations. 

We analyzed both models using different combinations of iterations, population size, 

dimensions, and nodes. Based on our experiments, we realized that both parallel 

implementations can easily be scaled and used for large swarm populations to address 

more complex optimization problems. If we want to scale the problem size, we can 

easily add the hardware and scale both implementations. We also observed that the 

performance of the first implementation, parallelization at the algorithm level, performs 

faster than the second implementation where we implemented parallelization on the 

population level. Regardless, both implementations showed promising results and 

scalable nature to provide feasible solution for complex optimization problems in a 

reasonable time. 

As for future work, we would like to implement the SSO algorithm using the Apache 

spark framework, which is a promising framework for iterative programming to observe 

the difference. 
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