
HADOOP MAPREDUCE TO PARALLELIZE SOCIAL

SPIDER OPTIMIZATION

Rama Naga Kiran Kumar. K

1*
, Dr. Ramesh Babu. I

2

1*

Research Scholar,
2
Professor,

Dept. of Computer Science & Engineering,

Acharya Nagarjuna University, Guntur, Andhra Pradesh, India.

Abstract

Social Spider Optimization (SSO) has received attention in many research fields and

real-world applications for solving optimization problems. Factor that affects the

performance of SSO is its imbalance of exploration and exploitation. Its ability of the

exploration in a multi-dimensional solution pace increases the execution time quite

significantly. To reduce the execution time, parallel implementation of SSO should be

implemented. In this paper, we implement and compare the parallel implementation of

SSO using two different parallelization techniques using MapReduce programming, 1)

all nodes in the cluster work on the same population, and 2) each node in cluster has its

own population. Both parallel implementations are compared based on performance

and speedup. Parallel implementation of the SSO algorithm makes the algorithm faster

in case of both low and high dimensional datasets.

Keywords: SSO, Data Analytics, Parallelization, Map Reduce, Hadoop, Boot’s Function.

Introduction

Data analytics is attracting more and more attention. Technological advancements have

enabled us to capture very high volumes of data since space is not such a vital problem

anymore, however, now analyzing and processing the very large amount of data (big

data) is the biggest challenge. There are four main objects involved: capturing, storing,

managing, and analyzing the data. Researchers have proposed many data mining

algorithms to address the main objective of data analysis. However, the performance of

an algorithm depends on the number of dimensions [1]. Nature inspired algorithms can

explore multi-dimensional search spaces to find optimal solutions. In order to search for

the minimum or maximum in a problem domain, a swarm intelligence algorithm

processes a population of individuals [2] [3]. These algorithms are population-based

algorithms, which consists of a population of individuals. Everyone represents a

potential solution of the problem being optimized. The population of individuals is

expected to have high tendency to move in high dimensional search spaces in order to

find better solutions from iteration to iteration through cooperation or competition

among themselves. Figure 1 shows the conceptual diagram depicting the workings of a

population of individuals in a swarm. In the representation, the algorithm is initialized

with random spiders within a problem space and the spiders are iteratively moving to

find the optimum. However, the solution space of the problem often increases

exponentially with the problem dimension and more efficient search strategies are

required to explore all promising regions within a given period. The search performance

of most algorithms is based upon the previous search experience. Considering the

limitation of computational resources, the performance of the algorithm is affected by

increasing of problem dimensions. This paper concentrates on the parallelization of the

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 22, Issue 12, December - 2020 Page-1082

Social Spider Optimization algorithm to optimize and compare the performance of the

algorithm with other algorithms.

Background

There are many nature inspired algorithms available. In this article, we parallelized

social spider optimization using Hadoop map reduce. In a social spider colony, each

spider, depending on its gender, performs various tasks such as designing communal

web, mating, killing the other spiders etc. The communal web acts as both

communicational channel and common environment as shown in Figure 1. The spiders

use vibrations to pass information in the communal web [4].

Figure 1: A Communal web of social spiders (Ahmed Fouad Ali, 2015)

Cuevas E simulated the behavior social spiders and proposed SSO. The solution space

is a collection of spiders. A spider will be considered as globally best spider sgbs if its

fitness is better than all other spiders [5]. Likewise, a spider will be treated as worst

spider sws if all other spiders are having more fitness than it. The weight of a spider s

can be computed using equation (1).

(1)

Defining Search Space

Initialization of all dimensions of a spider is performed using equation (2). The types of

spiders are specified in Figure 2. The low and up functions return the lowest and the

highest value in dimension i respectively.

spid[s,i]=low(i)+rand(0,1)*(up(i)-low(i)) (2)

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 22, Issue 12, December - 2020 Page-1083

Figure 2: Types of spiders

Updating the positions of spiders

The attributes of the spiders are specified in Figure 3. The next positions of the spiders

mainly depend on the weights and distances of spiders with highest fitness values,

spiders at nearest distance with better fitness, and nearest female spiders. The amount of

vibrations that spider Sj produces to spider Si can be estimated using equation (3).

 (3)

Figure 3: Characteristics of a spider

Evaluating subsequent locations of female spiders

A female spider always searches for better and best spiders .as shown in Figure 4. The

updation of the position of a female spider sf is calculated using equation (4). If female

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 22, Issue 12, December - 2020 Page-1084

spider does not like other spiders, the updation of its position happens using equation

(5).

Figure 4: Updation of the position of a female spider

(4)

(5)

Evaluating subsequent locations of male spiders

The subsequent location of a dominant male spider Sdm can be computed as per equation

(6). The vibrations from a female spider Snfs at minimum distance plays an important

role in estimating the subsequent position of male spiders that have better fitness values

as shown in Figure 5. The weighted mean of spiders whose gender is male, W is used to

compute subsequent positions of male spiders having low fitness values. It is obtained

as per equation (7).

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 22, Issue 12, December - 2020 Page-1085

Figure 5: Updation of the position of a dominant male spider

Then the female spiders can be represented as and the male

spiders can be represented as .

 (7)

The position of a non-dominant male spider sndm is done using equation (8).
 (8)

Creation of new spiders

New spiders are generated using the Roulette wheel method [6]. Each dominant spider

finds its female spiders and generates new spider after the mating operation is over [7].

The arrival of new spider makes the spider with lowest fitness dead.

Parallelization of Social Spider Optimization Algorithm

In SSO, we must evaluate fitness values of large number of spiders sequentially. This

problem can be avoided using a parallel implementation of SSO. For the parallelization,

Hadoop is one of the most widely known and used runtime environment using the

MapReduce paradigm. The SSO algorithm can be expressed with MapReduce and

developed as a simple and robust parallel implementation. SSO has been parallelized

using the following two different implementations. They are parallelization on the

algorithm level and parallelization on the population level [8]. In parallelization on the

algorithm level, the entire population is considered as a single node. In parallelization

on the population level, each node will have some portion of the population. In this

paper, we implement the SSO algorithm with MapReduce using both methods, 1) all the

nodes in the cluster work on an entire population, and 2) each node in cluster has a

portion of the entire population. In reducer step, the parallelism is achieved by

performing reducers on several keys simultaneously [9][10]. We analyzed the

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 22, Issue 12, December - 2020 Page-1086

performance of both implementations on a Hadoop cluster measuring the execution time

and speedup.

The SSO Algorithm

Algorithm1: SSO()

Input: Spiders and their Positions

Output: Globally best spider Gbest

1.Initialize the population (swarm) with random individuals (spiders)

2.For each spider, calculate the fitness value

3.Calculate vibrations received by each and every spider

4.Update position of each spider

5.Choose the spider with the best fitness value of all the spiders as the Gbest

6.Repeat Steps 3-5 until stopping criterion (maximum number of iterations) is met.

7.Return Gbest as best spider.

Implementation I: Parallelization on Algorithm Level

In this implementation, we generate the swarm of spiders and provide it as input. In

addition, all the nodes of the Hadoop cluster work on an entire population of spiders

independently. The mappers will take the complete population and evaluate the fitness

of the spiders.

Map Function

The Map evaluates the fitness of the given spiders and update their positions. It also

keeps track of the best fitness achieved and then passes it to reducer.

Algorithm 2: MAP()

Input: Spiders and their Positions

Output: Globally best spider Gbest

1. While (number of iterations<=max. iterations)

 {

 Evaluate fitness of each of the spider

 For n = 1 to the number of spiders

 Update the position of the spidern

}

2. Return the spider with best fitness Gbest to reducer

Reducer Function

The Reducer function collects the Gbest values from all algorithm runs that are

performed on different nodes in the cluster. After comparing all Gbest values, the

reducer returns the best Gbest value and writes it to HDFS.

Algorithm 3: Reduce()

Input: Gbest values

Output: Gbest value

1.Gbest=Gbest1

 2. For (i=2; i<=number of runs; i++)

 {

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 22, Issue 12, December - 2020 Page-1087

 If (fitness of Gbesti > fitness of Gbest)

 Gbest=Gbesti

 }

 3. Write (Gbest) to HDFS

Implementation II: Parallelization on Population Level

In the second implementation, we split an entire population to several nodes available

on the cluster. In the first iteration, we randomly generate spiders and write the data into

HDFS; the input file contains the spiders with their positions.

Initialization

Algorithm 4: Initialization

Input: swarm size, no. of dimensions

Output: Spiders and their positions

1.PopulationSize = SpecifyPopulationSize()

2.NumberofMaps=SpecifyNo.ofMaps()

3.GeneratePopulation(PopulationSize)

4. Write Population to HDFS

5. While (number of iterations<=max. iterations)

 {

 Map and Reduce functions are called

 }

6. Write the data to HDFS

Map Function

We split the input file and each mapper takes a fragment of file (i.e., portion of the

population) and evaluates several spiders in a mapper by evaluating the fitness of each

spider. Each spider position is updated and written back to the input file in HDFS, and

each spider’s current position is sent to the Reducer.

Algorithm 5: Map()

Input: File containing spiders

Output: Pbest

1.Evaluate fitness of each of spider

2.Update position of each spider

3.Write spider to HDFS

4.Send position of the spider to Reducer

Reducer Function

The Reducer function collects the currrent positions of all spiders after each iteration

and compares those values to identify Gbest, which is written to HDFS. This value

represents the best value achieve so far. When a better Gbest value comes in, the

reducer replaces the old Gbest value that was saved in the output file with the new

Gbest value achieved.

Algorithm 6: Reduce()

Input: Current positions of spiders

Output: best spider: Gbest

1.For n = 1 to the number of spiders

 {

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 22, Issue 12, December - 2020 Page-1088

 Update Gbest

 }

2.Update Gbest to HDFS

3. Write (Gbest) to HDFS

Results & Discussion

In this section, we present the implementation details, the experiments that were

performed with outcomes of both MapReduce implementations of the SSO algorithm.

The parallel algorithms were executed on the departmental Hadoop cluster 2.7.1. In

order to evaluate the algorithm, the Booth’s benchmark function has been used.

.

Figure 6. Booth's function

Experiments

Our experiments involve both implementations of the SSO algorithm. We have tested

the performance of both the MapReduce implementations on the Hadoop cluster 2.7.1,

Java version

1.6 with the focus on speedup and performance.

Firstly, we ran both implementations of SSO algorithm for the following settings.

Iterations: 5000

Spiders: 50000

Dimensions: 50

Evaluation function: Booth’s function.

Secondly, we ran both implementations of the SSO algorithm by increasing number of

iterations, spiders and dimensions. The settings are as follows.

Iterations: 10,000

Spiders: 100,000

Dimensions: 70

Evaluation function: Booth’s function.

In Table 1 and Table 2, the execution time and speedup taken by both implementations

when the number of cluster nodes is increased are specified. As we increase number of

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 22, Issue 12, December - 2020 Page-1089

cluster nodes, execution time gets decreased in both implementations. And it is found

that second implementation takes more time for the execution and more speedup value

than first implementation.

Table 1. Comparison of both implementations of SSO with respect to execution

time and Speedup (5000 iterations, 50000 spiders, 50 dimensions)

Num

ber

of

Node

s

Execution time (in seconds) Speedup

 First

impleme

ntation

of SSO

Second

implementa

tion of SSO

First

implemen

tation of

SSO

Second

impleme

ntation

of SSO

2 14500 18000 1 1

4 12145 13590 1 1

6 10590 11166 1 1

8 8020 9504 1.5 1.7

10 6401 8550 2.1 2.5

12 4015 6250 3.0 3.2

14 3587 5256 3.5 4.1

16 3245 4215 4.4 5.2

18 1890 3555 5.5 6.8

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 22, Issue 12, December - 2020 Page-1090

Table 2. Comparison of both implementations of SSO with respect to execution

time and Speedup (10000 iterations, 100000 spiders, 70 dimensions)

Numb

er of

Nodes

Execution time (in seconds) Speedup

 First

implementati

on of SSO

Second

implement

ation of

SSO

First

implem

entatio

n of

SSO

Second

implem

entation

of SSO

2 27002 32678 3.4 4.3

4 19456 25790 4.7 6.6

6 14678 18445 5.1 7.5

8 12003 15266 6.4 8.5

10 10345 13267 7.2 10.4

12 9000 12690 8.1 13.5

14 7345 9555 10.4 15.2

16 5288 7250 12.5 16.7

18 4210 6245 15.6 18.9

Figure 7 shows how execution times of both implementations vary for the change of

number of spiders when iterations, nodes, and dimensions are fixed.

Fixed parameters: 6,000 iterations, 10 nodes, 50 dimensions.

It is obvious that in both implementations, as we increase number of spiders, execution

time also gets increased.

Hadoop implementations the performance has improved when we increased the number

of nodes. Thus, adding more resources while keeping the problem size fixed and with

increasing the population size decreases the execution time. However, with increasing

population size and keeping number of nodes, iterations and dimensions constant

gradually increases the execution time. We also observed that the performance of the

first implementation is faster than the second implementation. For larger problem

dimensions, if we would increase the hardware and resources, both implementations can

scale well.

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 22, Issue 12, December - 2020 Page-1091

0

2000

4000

6000

8000

10000

100000 150000 200000 250000 300000

Ex
ec

u
ti

o
n

 t
im

e
in

 s
ec

o
n

d
s

Number of spiders

First Implementation Second Implementation

Figure 7: Comparison of execution time of both implementations for fixed parameters

Conclusion & Future Work

The performance of algorithms degrades significantly as the dimension of the search

space increases. In this paper, we parallelized the SSO algorithm using MapReduce and

executed the code on Hadoop, which is the most widely used implementation of the

MapReduce programming paradigm. We used two different techniques for the

parallelization, 1) entire population is evaluated on one node, 2) each node in cluster

evaluates a portion of the population. In the first implementation, all the nodes available

in the cluster receive an entire population as the input and work on this data. In the

second implementation, each node in the cluster has a portion of the population. In this

implementation, the input file (population) gets divided among nodes and each node

available on the cluster gets its own part of the population to perform the evaluations.

We analyzed both models using different combinations of iterations, population size,

dimensions, and nodes. Based on our experiments, we realized that both parallel

implementations can easily be scaled and used for large swarm populations to address

more complex optimization problems. If we want to scale the problem size, we can

easily add the hardware and scale both implementations. We also observed that the

performance of the first implementation, parallelization at the algorithm level, performs

faster than the second implementation where we implemented parallelization on the

population level. Regardless, both implementations showed promising results and

scalable nature to provide feasible solution for complex optimization problems in a

reasonable time.

As for future work, we would like to implement the SSO algorithm using the Apache

spark framework, which is a promising framework for iterative programming to observe

the difference.

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 22, Issue 12, December - 2020 Page-1092

References

[1] S. Cheng, Y. Shi, Q. Qin and R. Bai, "Swarm Intelligence in Big Data

Analytics",Intelligent Data Engineering and Automated Learning”, p. 417-426, 2013.

[2] J. Brownlee, "Clever Algorithms: Nature-Inspired Programming Recipes", Lulu.com

publication, p. 414, 2011.

[3] A.P.Engelbrecht, Computational Intelligence An Introduction, 2nd ed. John Wiley &

Sons Ltd, p. 630, 2007.

[4] Cuevas E, Cienfuegos M, Zaldvar D, Perez Cisneros M, A swarm optimization

algorithm inspired in the behavior of the social-spider, Expert Systems with

Applications, Volume 40, Pages 6374-6384,Year 2013

[5] Cuevas E, Valentin Osuna, Diego Oliva, Evolutionary Computation techniques: A

comparative perspective, Springer, Year 2016

[6] T. Ravi Chandran, A. V. Reddy and B. Janet, Text clustering quality improvement using

a hybrid social spider optimization, Int. J. Appl. Eng. Res.12 (2017), 995–1008.

[7] T. Ravichandran, A. V. Reddy, and B. Janet, A Novel Bio-inspired algorithm based on

Social spiders for improving performance and efficiency of data clustering, Journal of

Intelligent Systems, https://doi.org/10.1515/jisys-2017-0178, year 2018

[8] R. Shonkwiler, "Parallel Genetic Algorithms", Georgia Institute of Technology Atlanta,

p.1-7, 2016.

[9] M. Usuelli, "An example of MapReduce with rmr2 - MilanoR", MilanoR, 2013.

[Online]. Available: http://www.milanor.net/blog/an-example-of-mapreduce-with-

rmr2/.

[10] A.McNabb, C. Monson, and K. Seppi. "Parallel PSO Using Mapreduce". IEEE

Congress on Evolutionary Computation, p1-9, 2007.

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 22, Issue 12, December - 2020 Page-1093

