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Abstract: Rotating machines are the crucial components of any industrial firm. The abrupt malfunctioning of such machines doesn’t merely affect the 

process downtime moreover it leads to production loss. Therefore to minimize the operation and maintenance costs, early detection of faults is very 

essential. As of late infrared thermography (IRT) has picked up consideration amongst the non-destructive condition monitoring techniques for early fault 

diagnosis of rotating machines. IRT is one of the contactless and non-invasive condition monitoring (CM) tool with very high accuracy and reliability. 

Real-time temperature measurement is done in a non-contact manner with this technique. IRT has discovered its applications in paper, aerospace, nuclear, 

wood, plastic, and various other industries. This paper presents a state of art review describing the fundamentals of IRT, diverse induction motor (IM) 

faults, and their diagnosis. The paper summarizes some of the machine learning methods such as artificial neural network, fuzzy logic, adaptive neuro-

fuzzy inference system, and support vector machine for the detection of bearing faults. Additionally, some deep learning methods have been discussed in 

this paper due to their superiority over machine learning methods in terms of feature extraction as well as their selection. Also, the future scope has been 

proposed for developing a complete and self-learning package for fault diagnosis, and prognosis.  
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1. Introduction

Rotating machines are very crucial machine tools in any type of 

industrial application like in heavy industries, aeronautics, automotive, 

and many more. But the interruption or failure in their smooth running 

costs a lot to the industries [1]. So it becomes very important to avoid 

these faults or failures in such machines, which in turn will be 

beneficial to the industries in aspects like economy, time, and many 

more so for that prior detection of faults is very crucial [2]. IRT is 

widely used due it its non-contact nature, quick response, and accuracy. 

In IRT the thermal image indicates the faulty or non-faulty condition of 

rotating machines. Faults such as SM, BF, RF, etc. can be easily 

diagnosed by IRT [3-5]. This paper presents the various faults and their 

diagnosis which occurs in rotating machinery. IRT has been 

successfully used for a variety of CM applications which includes civil 

structures [6], the examination of electrical supplies [7-9], assessment 

of plastic deformation [10], monitoring of fatigue failure in materials 

[11], investigation of machinery [12-14], checking of printed circuit 

boards [15-17], review of vapor deposition process [18]. IRT has found 

its applications in various industries like paper [19], aerospace [20], 

nuclear [21] and wood [22]. 

1.1. Advantage of IRT over other technologies 

IRT has overpass the other technologies due to the following 

advantages 

 The non-contact nature of IRT helps in measuring the

temperature of the hot bodies in a smooth manner.

 IRT is immune to electromagnetic interference and is 

highly accurate in tracking thermal targets from a

distance. 

 Unlike X-rays, IRT has no harmful radiation effects and

therefore it can be used for a prolonged period. 

Both machine and deep learning methods have been discussed in 

this paper. Machine learning methods include FL, SVM, ANN, ANFIS. 

For handling the data in data-driven fault detection, these machine 

learning methods are used. The drawback of machine learning methods 

is that they are incapable of generating discriminative features of raw 

data and are constantly united with the feature extraction process. To 

overcome that drawback, deep learning methods are preferred. The 

various deep learning methods which are used for the fault diagnosis 

are DBN, sparse auto-encoder, CNN, etc.  

2. Development and Foundation of Infrared 

Thermography

2.1 History of Infrared Thermography 

The original significance of the infrared spectrum was found in the 

year 1800 by Sir William Herschel through his examination for a new 

optical material. He first performed his experiment on a bulb made of a 

mercury-in-glass thermometer. Further, he continued to analyze the 

heating effect of the different colors of the spectrum by passing 

sunlight through a glass prism, there he found that the temperature 

readings indicate a consistent increment from the violet to the red end. 

In 1880 Langley designed a bolometer that improved the sensitivity of 

infrared detection to a greater extent. It made it possible to quantify the 

solar radiation intensity at various wavelengths. 

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 1, January - 2021 Page-22



 

  

  

 

   

 

 

2.2 Essentials of Infrared Thermography:  

 

The actions of IRT and thermal cameras rely upon the hypothesis of 

thermal radiation. As per Maxwell’s hypothesis, the transfer of 

energy takes place through electromangnetic waves. Like other 

waves, these waves carry the energy and travel with the speed of light.  

Electromagnetic waves are described by their frequency ν (Hz) and 

wavelength λ (µm) as communicated in Equation (1), where c 

represents the speed of light in that medium.  

               λ = c /ν                                                               (1)   

As per Einstein, propagation of electromagnetic radiation takes place in 

the form of discrete packets known as photons and each photon carries 

energy e and frequency ν as expressed in Equation (2), h here represents 

the Planck’s constant whose value is 6.625 x 10-34 J.s 

                e = hν = hc / λ                                                      (2)  

In Equation (2) h and c are constants, and the photon’s energy is 

inversely proportional to their wavelength which indicates that 

radiation with shorter wavelength like X-rays, ϒ-rays possesses more 

powerful photon energy and are highly destructive as shown in Fig.1  

 

 

 

 

 

Fig 1.-  Electromagnetic Spectrum. 

Fig.1 shows the electromagnetic spectrum in which the wavelength 

varies, from 10-5µm for gamma rays to 104µm for micro waves. The 

range of thermal radiation on the electromagnetic spectrum is very 

narrow. Thermal radiation emission is the manifestation of rotational 

and vibrational motions of atoms, molecules of a substance and these 

radiations are measured in the form of temperature. Therefore 

thermal radiation emission increases with an increase in temperature.  

Stefan-Boltzmann law states that the thermal radiation emitted by a 

blackbody per unit time and per unit surface area is proportional to 

the fourth power of absolute temperature in kelvin as expressed in 

Equation (3), where  is stefan’s boltzmann constant and its value is 

5.67  10-8 (W/m2 K4) , T refers to the absolute temperature in kelvin 

and Eb  is the emissive power of the black body in W/m2 

                    Eb T 4                                                                                          (3) 

Electromagnetic radiation (Ebλ) emitted by a black body can be 

determined using Plank’s law as stated in Equation (4), C1 and C2 are  

constants with values, C1=2hc0

2
=3.74210

8
W.m

4
/m2) and 

C2hc0/k=1.439104(m.K), K= 1.3805x 10
-23

(J/K) is the 

Boltzmann’s constant, λ (µm) represents the wavelength and T is 

temperature measured in kelvin.  

           Ebλ (T)= 
C1

λ
5 exp ⁡(C 2/λ T)−1 

                                              (4) 

The interpretation of Plank’s law is shown through Fig.2 which is 

applicable for a surface either in vacuum or gas. The emissivity of 

any body at a particular wavelength λ can be defined as the ratio of 

the energy emitted by the body to the energy emitted by the 

blackbody at the same temperature as stated in Equation (5). 

 

                  ελ=
Eλ

Ebλ
                                                                 (5) 

 

 

Fig 2.- Planck’s law: radiant energy emitted at a different 

wavelength at different temperature 

The following observations are drawn from Planck’s law 

 At a particular wavelength, the radiant energy emitted 

increases with an increase in temperature. 

 When the radiant energy reaches the maximum value, 

the peak shift towards left. 

 At a particular temperature, as the wavelength increases 

the radiant energy increases and reaches the maximum 

value at the peak. 

When radiation is incident on a surface, some of the energy gets 

absorbed as well as some gets reflected whereas the remaining part gets 

transmitted which further defines the absorptivity(α), reflectivity(ρ), 

and transmissivity(τ) of that surface which are expressed in Equation 

(6), (7) and (8). 

α=
absorbed  radiation

incident  radiation
=

Gabs

G
              0    1                    (6)                                                                 
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ρ=
radiation  reflected

incident  radiation
=

Gref

G
                0  ρ 1              (7)                                                            

τ=
transmitted  radiation

incident  radiation
=

Gtr

G
                0  τ 1              (8) 

As per the first law of thermodynamics, the summation of the energy 

absorbed, reflected, and transmitted must be equal to the energy 

incident on the body as expressed in Equation (9) 

Gabs + Gref + Gtr = G                                                      (9) 

If we divide all terms in Equation (9) by G we get another simplified 

Equation (10) which shows that sum of absorptivity, reflectivity, and 

transmissivity for a particular surface is equal to 1 

 α + ρ + τ = 1                                                                    (10) 

3. Foregoing Research 

CM of rotating machines has pulled the considerations of authors for 

more than thirty years. The primary arrival of CM of electrical 

rotating machines, composed by Tanver and Penman was published 

in 1987 [23]. CM of mechanical faults in rotating machines is of 

extraordinary hugeness to give superior quality and ensure excellent 

production and flexibility [24]. CM is an approach towards observing 

a parameter (temperature, vibration, torque, etc.) of a condition in 

rotating machines to distinguish a considerable change which 

indicates a rising fault. It is a significant part of predictive 

maintenance. The utilization of CM permits maintenance to be 

planned, or other measures to be taken to avoid substantial damages 

and prevent its consequences. CM techniques are generally utilized 

on rotating machines, auxiliary systems, and machines like pumps, 

compressors, gearboxes.  

Failure of machinery is the lack of ability of a machine to execute its 

necessary function and failure is always machine explicit. The 

deficiencies could be in design, processing, assembly or it may be 

due to unsuitable maintenance or extreme working loads. These 

might lead to catastrophic failures that may happen suddenly.Image 

histogram features have been utilized for fault detection of rotating 

machines. The author presented the SVM based classification 

technique for fault detection in rotating machines [25]. The 

researcher presented 2D-DWT for the decomposition of thermal 

image [26].  

4. Infrared Thermography as a Fault Diagnostic tool 

IRT is a technique that is very helpful in identifying any abnormal 

heat pattern or inefficiencies within a machine by utilizing the 

thermal images for capturing IR radiations which further indicates a 

fault in the machine. The principle of IRT is based on the physical 

phenomenon that, an object having a temperature above absolute 

zero will emits energy having a wavelength equivalent to its 

temperature, and this energy is then converted to the thermal image 

of that object through highly sensitive IR cameras. IRT is a non-

invasive and contactless technique which is competent to display real 

time-temperature distribution.  

 

 

 

 

 

 

 

 

 

Fig. 3- Various components of thermal energy among motor and 

thermal camera 

Fig.3 shows the heat transfer between an IM and a thermal camera. The 

energy received by the thermal camera comprises of energy emitted by 

the motor along with the energy which is reflected by surrounding as 

well as intercepted by the motor. 

Emeasured =Eemitted  + Ereflected  + Eatmosphhere   

       

These three parameters can be calculated through Stefan’s Boltzmann 

law. To calculate the thermal radiation emitted by the motor we need to 

first calculate the reflected energy. For the calculation of reflected 

energy, reflected temperature needs to be calculated which further is 

assumed to be the same for all reflecting surfaces. Keeping in mind the 

Kirchhoff”s law it is assumed that the emissivity of the surrounding is 

equal to one. The total energy which is received by the motor can be 

communicated in the form of  motor thermal energy as: 

 

Emotor =
1

ετ
 Etotal - 

1−ε

ε
 Ereflected - 

1−τ

ετ
 Eatmosphere  

5. Induction Motor Faults 

The major components of IM are stator, rotor, and bearings. Any 

damage in these components or their subcomponents will lead to the 

failure of IM. Usually, the IM faults are categorized as the stator, 

bearing, rotor, and other mechanical faults but the broad classification 

of IM faults is summarized in Fig.4. 

 

 

 

 

 

 

 

 

 

Fig. 4- Classification of faults in induction motor. 
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Although IM is quite consistent in operation, failure in it prevents the 

smoothing running of IM which costs a lot to the industries. Fig.5 

represents the statistical studies of  IM faults by the Electric Power 

Research Institute (EPRI) and Institution of  Electrical and Electronics 

Engineers (IEEE). The comparison of various faults that usually occur 

in rotating machines is shown in the form of a bar chart in Fig.5. These 

faults are categorized as bearing, stator, rotor, and other faults. The bar 

chart clearly depicts the frequency of their occurrence in terms of 

percentage. Most of the faults in rotating machines are because of the 

bearing failure only and covers the maximum percentage of the bar 

chart as shown in Fig.5.  

 

 

 

 

 

 

 

 

Fig.5- Study of induction motor faults by IEEE and EPRI. 

 

5.1 Bearing Faults 

Bearings are considered as one of the most significant parts of rotating 

machinery with a broad variety of engineering applications such as 

turbines, heavy machines, rolling mills, ships, etc. Bearing as the main 

component of the rotating machine also has certain functions as it helps 

in reducing the friction among the relative moving parts and in addition 

to that it also provides support to the rotating shaft [27]. According to 

IEEE and EPRI, the percentage of occurrence of bearing fault during 

operation is 41% and 42% as shown in Fig.5. Acoustic emission and 

vibration signal analysis were compared for the CM of bearings in IM 

[28]. The bearings defects are classified as inner race, outer race as 

shown in Fig. 6  

 

 

               

Fig. 6- Bearing defects 

5.2 Stator Fault 

Stator winding failure is one of the most well-known faults occurring in 

IM [29]. Malfunctioning of IM may decrease the rate of production or 

it might lead to shutting down the plant, which may increase the 

number of accidents in the plant. Early fault diagnosis reduces the 

production time loss, improves the safety of the operator, and 

minimizes the maintenance cost [30].  Stator winding, stator frame, 

winding laminations, are some of the faults that usually occurs in the 

stator but stator windings are the most common among them. The 

stator winding faults are classified as coil to coil, turn to turn, phase to 

phase, phase to earth, and open circuit fault as discussed in Fig.7 

 

 

 

 

Fig.7-  Stator Winding Faults 

The stresses responsible for the stator winding failure are thermal, 

mechanical, electrical, and environmental [31]. Out of these, thermal 

stress plays a crucial role in the deterioration of the insulation. 

According to IEEE and EPRI, the percentage of occurrence of stator 

winding fault is 28% and 36 % as shown in Fig.5. 

 

5.3 Rotor Fault 

The moving component of an electromagnetic system in the IM is 

termed as a rotor. The squirrel cage rotor comprises of laminated 

steel in the core with aluminium or copper bars which are evenly 

distributed and are joined with a ring at either end [32]. BRB is the 

most common mode of failure in the rotor. In comparison to the 

stator winding the rotor of IM is subjected to very low voltage and 

much higher temperature which becomes the root cause of rotor 

failure. The researchers have utilized a novel methodology that is 

based on SVD as well as information entropy for the diagnosis of 

BRB and BF in IM [33]. According to IEEE and EPRI, the 

percentage of occurrence of rotor fault in IM is 9% and 8% 
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respectively. The BRB occurs due to thermal unbalance, frequent 

start at rated voltage, electromagnetic force, and fabricated faults 

[34].  
 

5.4 Eccentricity fault 

If the distance among the rotor as well as the stator in the air-gap is not 

uniform, the condition is termed as air-gap eccentricity. The static and 

dynamic eccentricity are the two categories of eccentricity faults as 

shown in Fig.8. If the offset between the center of the shaft and center 

of the stator is constant it becomes the condition of static eccentricity 

whereas on the contrary if the offset among the center of the shaft and 

center of the stator is variable it can be referred as the condition of 

dynamic eccentricity. Rr is the radius of the rotor and Rs is the radius 

of the stator as shown in Fig.8. For the identification of eccentricity 

faults in IM the methods like FFT, wavelet, and Hilbert transform has 

been used for the extraction of signals [35]. 

 

 

 

 

    (a)                                    (b)                                     (c) 

Fig.8- Cross-section of induction motor (a) normal (b) static 

eccentricity (c) dynamic eccentricity 

6. Machine learning (ML) techniques 

The addition of human intelligence along with machine learning is a 

smart approach for predictive maintenance in the electrical machine 

and their equipment. The common techniques which enhance the 

performance of  CM are ANN, FL, ANFIS, SVM. 

 

6.1 Artificial neural network 

In the CM of IM, ANN emerges to be a current development. For the 

prediction of the remaining life of rotating machines in an accurate 

way, ANN has become a very powerful tool [36]. For the gathering of 

big data, the machine learning techniques become more suitable as it 

draws the outcomes about the health or current state of rotating 

machines. For the fault detection of BF in the rotating machines, the 

machine learning techniques such as ANN [37] and SVM [38] proves 

to be very effective techniques. For the CM of rotating machines, the 

various researchers have presented techniques like qualitative 

simulation, qualitative reasoning, etc.  

 

 

6.2 Fuzzy logic: 

For the optimization of preventive or time-based maintenance 

prioritization under the major constraints, FL has been introduced. 

For the traditional evaluations like yes or no and true or false, FL is a 

multivalued logic computational technique. Researchers have also 

focussed on the application of computational intelligence methods 

for the CM of rotating machines [39]. The truth values of variables in 

FL can be any real number between 0 and 1 including both. The 

concept of partial truth is handled by FL and the range of true value 

lies among totally true and totally false. To represent the vagueness 

and imprecise information fuzzy models or fuzzy sets are used and 

hence termed as fuzzy. The data or any information which is 

indistinct and have uncertainty is easily recognized, manipulated, and 

interpreted by these fuzzy models.  

 

6.3 Adaptive neuro fuzzy inference system: 

ANFIS was first introduced in the year 1990 [40]. It integrates both 

the fuzzy logic and neural network principles and possesses the 

advantages of both in the same structure. The ANFIS signifies a set 

of fuzzy if-then rules which contain the learning capacity to estimate 

non-linear functions [41]. The structural design of ANFIS comprises 

of five different layers. The input values are taken by the first layer 

which determines the membership functions belonging to them. This 

layer is commonly termed as the fuzzification layer. The premise 

parameter namely {a,b,c} is used for the computation of the 

membership degree of each function. The responsibility of the 

second layer is to generate the firing strength for the rules and is 

termed as a rule layer. For the normalization of computed firing 

strengths the third layer is used. These normalized values are taken 

as an input by the fourth layer. The defuzzification values are 

returned by this layer and these values are used by the last layer for 

the final output.  

6.4  Support vector machine: 
 For the two-group classification problems, a machine learning 

model known as SVM is used. SVM uses classification algorithms 

for solving classification problems. For regression challenges as well 

as for classification, SVM can be used as a supervised learning 

algorithm [42]. In comparison to other machine learning techniques 

SVM is more effective as compared to other ML techniques for the 

fault detection of BF [43]. The accuracy of SVM is higher in 

comparison to other ML techniques, because of risk depreciation 

SVM becomes more effective than ANN. The researchers presented 

the PCA and LS-SVM models for the prediction of the bearing 

degradation process [44]. 

7. Deep learning (DL) techniques  

DL is a subpart of ML methods that depends on neural networks with 

feature learning which can be unsupervised or supervised. The various 

deep learning techniques are CNN, auto-encoders, DBN. 
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7.1 Convolutional neural network (CNN) 

The first paper which employed CNN for the identification for BF was 

published in 2014 [45]. Various researchers [46] in the past three years 

have used CNN for BF detection. The structure and design of CNN for 

fault diagnosis is shown in Fig.9. The accelerometers provide 1-D 

temporal raw data which further is converted to 2-D vector form. For 

the feature extraction, the data needs to be passed through the 

convolutional and pooling layer. To deepen the network the 

combination of the convolutional-pooling pattern needs a few 

repetitions. The result thus obtained is then transferred to the softmax 

classifier to determine the BF.  

 

 

 

 

 

 

Fig.9-Structure of CNN 

7.2 Auto-encoders 

A pre-training technique for ANN named as auto-encoder was 

proposed in the year 1980 [47]. Further, it was adopted as a layer by 

layer neural network and feature learning method. Fig.10 shows the 

structure and process of auto-encoder which consists of two parts, one 

of them is known as the  encoder and the other one is named as the 

decoder. The encoder output is fed into the decoder as input. Further 

training of ANN is done in which only the encoder part is set aside 

whose output will be used in subsequent stage classifier. 

 

 

 

 

 

 

 

 

 

Fig 10.-Auto Encoder 

In [48] a five-layer auto-encoder-based DNN was used for feature 

extraction which has a very high classification accuracy of 99.6% in 

comparison to BPNN whose accuracy is nearly 70%. Since the 

traditional auto-encoder doesn’t possess good denoising potential in 

comparison to CNN, therefore researchers have implemented SDA 

which has a well-known and better denoising potential [49]. 

 

7.3 Deep belief network (DBN) 

DBN is a neural network technique which comprises of numerous 

layers of hidden units as shown in Fig.11. These numerous layers 

have a connection among them but the hidden units in each layer 

don’t have any connection between them. RBM is a unidirected 

graphical model and is the main building block of DBN having 

connections only between input and hidden layers. DBN has a good 

capability of learning features which are attained by layer by layer 

learning strategies.  

 

 

 

 

 

 

 

 

Fig.11- Architecture of DBN 

7.4 Research gaps and future research 

Artificial intelligence has an immense future which requires more 

consideration particularly in the area of DL. A hybrid DL approach 

can be developed which can enhance the performance of fault 

diagnosis and prognosis of rotating machines. The present system 

depends more on the collection of data, extraction of features, as well 

as their selection but DL techniques have the capability to build an 

entire package that is smart enough for real-time applications. 

8. Conclusion 

This paper presents the examination of various faults in IM. By 

comprehensive study, it turns out to be extremely clear that IRT can be 

used as a complimentary CM method for fault diagnosis and prognosis 

of rotating machines. IRT has overcome the drawback of mounting the 

sensors on the machines as IRT is a non-contact, non-invasive CM 

technique. In comparison to other non-invasive techniques, IRT is an 

efficiaous tool for online monitoring of IM with no human interference. 

The use of ML and DL techniques has improved the performance of 

fault diagnosis but more work needs to be done in the field of DL 
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