THERMAL INSTABILITY OF A COUPLE-STRESS FERROMAGNETIC FLUID IN THE PRESENCE OF VARIABLE GRAVITY FIELD AND HORIZONTAL MAGNETIC FIELD WITH HALL CURRENTS SATURATING IN A POROUS MEDIUM

D.O.I - 10.51201/Jusst12558
http://doi.org/10.51201/Jusst12558
Sudhir Kumar Pundir, Pulkit Kumar Nadian*, Rimple Pundir
Department of Mathematics
S.D. (P.G.) College, Muzaffarnagar, U.P.-251001, India

Abstract
The thermal instability of a couple-stress ferromagnetic fluid in the presence of variable gravity field and horizontal magnetic field with hall currents is considered, which saturates in a porous medium. We have used a linear stability theory and normal mode technique to discover the precise solution for a layer of couple-stress ferromagnetic fluid contained between two free boundaries. A dispersion relation governing the effect of medium permeability, couple-stress, magnetic field and hall current is derived. For the case of stationary convection, we have found that these parameters have both stabilizing and destabilizing effect under certain conditions. From the present study, we have got additionally determined that magnetization has a stabilizing effect on the system. Graphs in each case have been plotted by giving numerical values to these parameters. In the absence of magnetic field (hence hall current), the principle of exchange of stabilities is found to hold true under certain conditions.

Keywords: Thermal instability, couple-stress fluid, ferromagnetic fluid, magnetic field, hall current.

Mathematical Subject Classification 2020: 76A05, 76A10, 76D05, 76E06, 76E25, 76S05, 76W05.

Introduction
The developing significance of using non-Newtonian fluids in modern technology and industries has led diverse researchers to strive numerous flow problems associated with several non-Newtonian fluids. One such fluid that has attracted the attention of research workers during the last four decades is the couple-stress fluid. The theory of couple-stress fluids initiated by Stokes [1, 2] is a generalization of the classical theory of viscous fluids, which allows for the presence of couple-stresses and body couples in the fluid medium. Sunil et al. [3] have mentioned the effect of Hall currents on thermosolutal instability of compressible Rivlin-Ericksen fluid. Rani
and Tomar [4, 5] have investigated thermal and thermosolutal convection problem of micropolar fluid subjected to Hall current. Kumar [6] have examined the effect of Hall currents on thermal instability of compressible dusty viscoelastic fluid saturated in a porous medium subjected to vertical magnetic field.

There are diverse stability problems on ferromagnetic fluids. The convective instability, additionally referred to as Bénard convection (Chandrasekhar [7]) is one of the instability of ferromagnetic fluid. Rosensweig [8] has given a definite introduction about magnetic liquids in his monograph. Finlayson [9] have studied the convective instability of ferromagnetic fluid for a fluid layer heated from below in the presence of uniform vertical magnetic field. The effect of Hall current on thermal instability has additionally been mentioned by many authors (Raghavachar et al. [10], Sharma et al. [11], Gupta et al. [12], [13]). Aggarwal and Makhija [14] have studied the effect of Hall current on thermal stability of ferromagnetic fluids heated from below in porous medium in the presence of horizontal magnetic field.

In the present study, we have discussed the effect of Hall current on thermal instability of couple-stress ferromagnetic fluid in the presence of variable gravity field and horizontal magnetic field saturating in a porous medium. Recently, some stability problems about couple-stress ferromagnetic fluid have been discussed by Nadian et al. [15, 16, 17, 18]. In the present problem, we have assumed that the gravity is varying as $g = \lambda g_0$ where g_0 is the value of g at the surface of the Earth, which is always positive and λ can be positive or negative.

Mathematical Formulation of the Problem

We consider an infinite, incompressible, electrically non-conducting and thin layer of couple-stress ferromagnetic fluid which is bounded by the planes $z = 0$ and $z = d$ as shown in Fig. 1. The fluid layer is heated from below so that a uniform temperature gradient $\beta = \frac{dT}{dz}$ is maintained within the fluid. The whole system is acted upon by a uniform vertical magnetic field $H(0,0,H)$ and variable gravity field $g(0,0,-g)$, where $g = \lambda g_0$. Furthermore, the couple-stress ferromagnetic fluid layer is assumed to be flowing through an isotropic and homogeneous porous medium of porosity ε.

![Fig. 1 Geometrical Configuration](image)
The equation of conservation of momentum, continuity, temperature and equation of density for
the above model are as follows:

\[\frac{1}{\varepsilon} \left[\frac{\partial \mathbf{q}}{\partial t} + \frac{1}{\varepsilon} (\mathbf{q} \nabla) \mathbf{q} \right] = -\frac{1}{\rho_0} \nabla p + \mathbf{g} \left(1 + \frac{\partial p}{\partial \rho_0} \right) - \frac{1}{k_1} \mathbf{v}_q + \frac{1}{\rho_0} M \nabla \mathbf{H} + \left(\nu - \frac{\mu'}{\rho_0} \right) \nabla^2 \mathbf{q} + \frac{\mu_\ell}{4\pi\rho_0} \left[(\nabla \times \mathbf{H}) \times \mathbf{H} \right]. \tag{1} \]

\[\nabla \mathbf{q} = 0, \tag{2} \]

\[E \frac{\partial T}{\partial t} + (\mathbf{q} \nabla) T = \kappa_T \nabla^2 T, \tag{3} \]

\[\rho = \rho_0 \left[1 - \alpha (T - T_0) \right]. \tag{4} \]

where, \(\mathbf{q} (u_1, u_2, u_3) \) is the fluid velocity, \(p \) is the fluid pressure, \(\rho \) is the fluid density, \(\rho_0 \) is the reference density, \(T \) is the temperature, \(T_0 \) is the reference temperature, \(\alpha \) is the thermal coefficient of expansion, \(\mu_e \) is the magnetic permeability, \(\mu' \) is the couple-stress viscosity, \(\nu \) is the kinematic viscosity, \(\kappa_T \) is the thermal diffusivity, \(E = \varepsilon + (1-\varepsilon) \frac{\rho_\ell c_s}{\rho_0 c_v} \) (where, \(\rho_\ell, c_s, c_v \) denote the density of the solid (porous) material, heat capacity of the solid (porous) material and heat capacity of the fluid at constant volume), \(M \) is the magnetization, \(\nabla \mathbf{H} \) is the magnetic field gradient.

In presence of Hall current, the Maxwell's equations are given by,

\[\varepsilon \frac{\partial \mathbf{H}}{\partial t} = \nabla \times (\mathbf{q} \times \mathbf{H}) + \varepsilon \eta \nabla^2 \mathbf{H} - \frac{\varepsilon}{4\pi N_e} \nabla \times \left[(\nabla \times \mathbf{H}) \times \mathbf{H} \right], \tag{5} \]

and

\[\nabla \cdot \mathbf{H} = 0, \tag{6} \]

where, \(\mathbf{H} \) is the magnetic field intensity.

Now, we consider that the magnetization is independent of magnetic field intensity but depend
upon the temperature so that \(M = M(T) \). As a first approximation, we consider that

\[M = M_0 \left[1 - \gamma (T - T_0) \right], \tag{7} \]

where, \(\gamma = \frac{1}{M_0} \left(\frac{\partial M}{\partial T} \right)_H \) and \(M_0 \) is the magnetization at \(T = T_0 \) with \(T_0 \) being the reference temperature.

Basic State and Perturbation Equations

The basic state of which we wish to examine the stability is characterized by,

\[\mathbf{q} = (0, 0, 0), p = \rho (z), \rho = \rho (z) = \rho_0 (1 + \alpha \beta z), T = T_0 - \beta z, \mathbf{H} = (0, 0, H), M = M_0 (1 + \gamma \beta z), \mathbf{M} = \mathbf{M} (z) \tag{8} \]

Here, \(\beta \) may be either positive or negative.
Assuming small perturbations around the basic state and let \(q(u_1, u_2, u_3), h(h_x, h_y, h_z), \theta, \phi, \delta \rho, \delta p \) and \(\delta M \) denote respectively the perturbations in fluid velocity, magnetic field, temperature, density, pressure and magnetization. Hence, the perturbed flow may be represented as,

\[
\begin{align*}
q &= (0, 0, 0) + (u_1, u_2, u_3), \quad h = (0, 0, 0) + (h_x, h_y, h_z), \quad T = T(z) + \theta, \quad \rho = \rho(z) + \phi, \quad p = p(z) + \delta \rho, \quad M = M(z) + \delta M.
\end{align*}
\]

(9)

Linearizing the equations in perturbation and reading the perturbation into normal modes, we anticipate that the perturbation quantity are of the form,

\[
(u_3, \theta, \zeta, \xi, h_z) = \left[W(z), \Theta(z), Z(z), X(z), K(z) \right] e^{i(k_x x + k_y y + \omega t)},
\]

(10)

where, \(k_x \) and \(k_y \) are wave numbers in \(x \) and \(y \) directions respectively and \(k = \left(k_x^2 + k_y^2 \right)^{1/2} \) is the resultant wave number of the disturbance and \(\omega \) is the frequency of any arbitrary disturbance (that is generally a complex constant).

We eliminate the physical quantities using the non-dimensional parameters

\[
a = k d, \quad \sigma = \frac{nd^2}{\nu}, \quad p_1 = \frac{v}{\kappa_T}, \quad p_2 = \frac{v}{\eta},
\]

\[
F = \frac{\mu^2}{\rho_0 d^2 \nu}, \quad R_1 = \frac{k_1}{d^2} D^* = dD. Also dropping (*) for convenience, we obtain,
\]

\[
\begin{align*}
\left(D^2 - a^2 \right) \left[\frac{\sigma}{\epsilon} + \frac{1}{R_1} \right] + \frac{F(D^2 - a^2)}{\nu} \left(D^2 - a^2 \right) W + \frac{\lambda a a^2 d^2}{\nu} \left(s_0 - \gamma M_0 VH \rho_0 \alpha \right) \Theta - \frac{\mu \rho_0 H d}{4 \pi \eta \nu} (D^2 - a^2) DK &= 0, \\
\left[\frac{\sigma}{\epsilon} + \frac{1}{R_1} \right] + \frac{F(D^2 - a^2)}{\nu} \left(D^2 - a^2 \right) Z &= \frac{\mu \rho_0 H d}{4 \pi \eta \nu} DX, \\
(D^2 - a^2 - \sigma p_2) X &= \frac{H d}{\epsilon \eta} DZ - \frac{H}{4 \pi \eta} \left(D^2 - a^2 \right) DK, \\
(D^2 - a^2 - \sigma p_2) K &= \frac{H d}{\epsilon \eta} DW + \frac{H d}{4 \pi \eta} DX, \\
(D^2 - a^2 - E \sigma p_1) \Theta &= -\frac{\beta d^2}{\kappa_T} W.
\end{align*}
\]

(11)

(12)

(13)

(14)

(15)

Now, eliminating \(X, \Theta, K, Z \) among Eqs. (11) - (15), we obtain the stability governing equation,

\[
\begin{align*}
\lambda R f a^2 W &= \left(D^2 - a^2 \right) \left[\frac{\sigma}{\epsilon} + \frac{1}{R_1} \right] + \frac{F(D^2 - a^2)}{\nu} \left(D^2 - a^2 \right) W \\
&+ \frac{\rho_0 D^2 (D^2 - a^2)}{\nu} \left[\frac{\rho_0}{\epsilon} + \frac{D^2 - a^2 - \sigma p_2}{\nu} \left(\frac{\sigma}{\epsilon} + \frac{1}{R_1} \right) + \frac{F(D^2 - a^2)}{\nu} \left(D^2 - a^2 \right) \right] W \\
&+ \frac{M d^2 (D^2 - a^2)}{\nu} \left(\frac{\sigma}{\epsilon} + \frac{1}{R_1} \right) + \frac{F(D^2 - a^2)}{\nu} \left(D^2 - a^2 \right)
\end{align*}
\]

(16)
where, \(R_f = \frac{\alpha \beta d^4}{\nu \kappa T} \left(g_0 - \frac{\gamma M_0 \nabla H}{\rho \alpha \gamma} \right) \) is the Rayleigh number for ferromagnetic fluid, \(Q = \frac{\mu_e H^2 d^2}{4 \pi \eta v \eta} \) is the Chandrasekhar number and \(M_h = \left(\frac{H}{4 \pi Ne \eta} \right)^2 \) is the Hall current parameter.

Now, the appropriate boundary condition (when we take the case of two free boundaries) are,

\[
W = W_0, \quad D = 0, \quad Z = 0, \quad X = 0, \quad DX = 0, \quad DK = 0 \quad \text{at} \quad z = 0 \quad \text{and} \quad z = 1. \tag{17}
\]

Here, it is obvious that all even order derivatives of \(W \) at the boundaries vanish. Therefore, the solution of Eq. (16) characterizing the lowest mode is,

\[
W = W_0 \sin \pi z, \quad \text{where} \quad W_0 \text{ is a constant.} \tag{18}
\]

Now, using Eq. (18) in Eq. (16), we get,

\[
R_1 = \frac{(1+x)^2}{\lambda x} \left\{ \left(\frac{i \sigma_1}{\varepsilon} + \frac{1}{P} \right) + F_1 (1+x)^2 + (1+x) \left(1 + x + Ei \sigma_1 p_1 \right) \right\} + \frac{Q_1}{\lambda xe} \left(1 + x + i \sigma_1 p_2 \right) \left\{ \left(\frac{i \sigma_1}{\varepsilon} + \frac{1}{P} \right) + F_1 (1+x)^2 + (1+x) \left(1 + x + Ei \sigma_1 p_1 \right) \right\} + M_h \left(1 + x + Ei \sigma_1 p_1 \right) \left(1 + x + Ei \sigma_1 p_2 \right) + \frac{Q_1}{\lambda xe} \left(1 + x + i \sigma_1 p_2 \right) \left\{ \left(\frac{i \sigma_1}{\varepsilon} + \frac{1}{P} \right) + F_1 (1+x)^2 + (1+x) \left(1 + x + Ei \sigma_1 p_1 \right) \right\} \right\} \tag{19}
\]

where, \(x = \frac{a^2}{\pi^2}, \frac{i \sigma_1}{\varepsilon} = \frac{\sigma}{\pi^2}, F_1 = \pi^2 F, R_1 = \frac{R_f}{\pi^4}, Q_1 = \frac{Q}{\pi^2}, P = \pi^2 R. \)

Analytical Discussion

Stationary Convection

When stability sets in at stationary convection, the marginal state will be characterized by \(\sigma_1 = 0 \).

So, put \(\sigma_1 = 0 \) in Eq. (19), we get,

\[
R_1 = \frac{(1+x)^2}{\lambda x} \left\{ \frac{1}{P} + F_1 (1+x)^2 + (1+x) \right\} + \frac{Q_1}{\lambda xe} \left\{ \frac{1}{P} + F_1 (1+x)^2 + (1+x) \right\} + \frac{Q_1}{\lambda xe} \left\{ \frac{1}{P} + F_1 (1+x)^2 + (1+x) \right\} + M_h \left(1 + x + Ei \sigma_1 p_1 \right) \left(1 + x + Ei \sigma_1 p_2 \right) + M_h \left(1 + x + Ei \sigma_1 p_1 \right) \left(1 + x + Ei \sigma_1 p_2 \right) + \frac{Q_1}{\lambda xe} \left\{ \frac{1}{P} + F_1 (1+x)^2 + (1+x) \right\} \right\}. \tag{20}
\]

This relation expresses the modified Rayleigh number \(R_1 \) as a function of the parameters \(P, F_1, Q_1, M_h \) and dimensionless wave number \(x \). Now, to have a look at the effect of medium permeability parameter, couple-stress parameter, magnetic field parameter and Hall current parameter, we examine the behavior of \(\frac{dR_1}{dP}, \frac{dR_1}{dF_1}, \frac{dR_1}{dQ_1} \) and \(\frac{dR_1}{dM_h} \).

So, by Eq. (20), we have,
\[
\frac{dR_1}{dp} = \frac{(1+x)^2}{\lambda \alpha p^2} \left[\frac{M_\alpha Q_1^2}{\epsilon^2} \left[\frac{Q_1}{\epsilon^2} \left(\frac{1}{p} + F_1 (1+x)^3 + (1+x)^2 \right) \right] \right]^{1},
\]

which indicates that medium permeability has a stabilizing effect on the system under the condition,

\[\lambda > 0, M_\alpha Q_1^2 > \epsilon^2 \left[\frac{Q_1}{\epsilon^2} \left(\frac{1}{p} + F_1 (1+x)^3 + (1+x)^2 \right) \right]^{1}\]

and \[\lambda < 0, M_\alpha Q_1^2 < \epsilon^2 \left[\frac{Q_1}{\epsilon^2} \left(\frac{1}{p} + F_1 (1+x)^3 + (1+x)^2 \right) \right]^{1}.\]

In the absence of magnetic field, Eq. (21) becomes,

\[\frac{dR_1}{dp} = \frac{(1+x)^2}{\lambda \alpha p^2},\]

which indicates that medium permeability has a stabilizing effect for \(\lambda < 0\) and destabilizing effect for \(\lambda > 0\).

\[
\frac{dR_1}{df} = \frac{(1+x)^4}{\lambda \alpha} \left[1 - \frac{M_\alpha Q_1^2}{\epsilon^2} \left[\frac{Q_1}{\epsilon^2} \left(\frac{1}{p} + F_1 (1+x)^3 + (1+x)^2 \right) \right]^{1} \right],
\]

which indicates that couple-stress has a stabilizing effect on the system under the condition,

\[\lambda > 0, M_\alpha Q_1^2 < \epsilon^2 \left[\frac{Q_1}{\epsilon^2} \left(\frac{1}{p} + F_1 (1+x)^3 + (1+x)^2 \right) \right]^{1}\]

and \[\lambda < 0, M_\alpha Q_1^2 > \epsilon^2 \left[\frac{Q_1}{\epsilon^2} \left(\frac{1}{p} + F_1 (1+x)^3 + (1+x)^2 \right) \right]^{1}.\]

Also, couple-stress has a destabilizing effect on the system under the condition,

\[\lambda > 0, M_\alpha Q_1^2 > \epsilon^2 \left[\frac{Q_1}{\epsilon^2} \left(\frac{1}{p} + F_1 (1+x)^3 + (1+x)^2 \right) \right]^{1}\]
and \(\lambda < 0, M_0 \eta_i \ll \varepsilon \left[\frac{Q_i}{\varepsilon} + (1 + M_0) \left(\frac{(1 + x)}{p} + F_1 \left(1 + x\right)^3 + (1 + x)^2 \right) \right]^2. \)

In the absence of magnetic field or hall current, Eq. (22) becomes,

\[\frac{dR_0}{dM_0} = (1 + x)^4, \]

which clearly indicates that couple-stress has a stabilizing effect for \(\lambda > 0 \) and destabilizing effect for \(\lambda < 0 \).

\[\frac{dR_1}{dQ_1} \]

and

\[\frac{dR_2}{dM_h} \]

which clearly indicates that magnetic field has a stabilizing effect on the system for \(\lambda > 0 \) and destabilizing effect for \(\lambda < 0 \).

\[\frac{dR_3}{dM_h} = -2 \left(\frac{(1 + x)}{p} + F_1 \left(1 + x\right)^3 + (1 + x)^2 \right), \]

which clearly indicates that Hall current has a stabilizing effect on the system for \(\lambda < 0 \) and destabilizing effect for \(\lambda > 0 \).

To see the effect of magnetization, we examine the effect of \(\frac{dR}{dM_0} \) analytically.

\[\frac{dR}{dM_0} = \left[\frac{\pi^4 (1 + x)^2}{\lambda x} \left(\frac{1}{p} + F_1 \left(1 + x\right)^2 + (1 + x) \right) + \frac{Q_i \pi^4}{\lambda x} \left(\frac{(1 + x)}{p} + F_1 \left(1 + x\right)^3 + (1 + x)^2 \right) \right] \]

which clearly indicates that magnetization has a stabilizing effect on the system for both \(\lambda > 0 \) and \(\lambda < 0 \).

The case of oscillatory modes

Multiplying Eq. (11) by the conjugate of \(W \) i.e. \(W^* \) and integrate over the range of \(z \) and making use of Eqs. (12) - (15) together with boundary conditions (17), we get,

\[\left(\frac{\sigma}{\varepsilon} + \frac{1}{\varepsilon} \right) I_1 + I_2 + F L_3 + d^2 \left[\frac{\sigma^*}{\varepsilon} + \frac{1}{\varepsilon} \right] I_4 + I_5 + F L_6 + \frac{\mu \varepsilon N \eta}{4 \pi \lambda \varepsilon} \left(I_7 + p_2 \sigma I_8 \right) + \frac{\mu \varepsilon N \eta}{4 \pi \lambda \varepsilon} \left(I_9 + p_2 \sigma^* I_{10} \right) \]

\[- \frac{\lambda \alpha}{\varepsilon} \lambda \alpha^2 - \frac{\gamma \mu \varepsilon N \eta}{\rho \varepsilon \alpha \lambda} \left(I_{11} + E \rho \sigma^* I_{12} \right) = 0, \]

where,

\[I_1 = \int \left(\frac{dW}{\lambda} \right)^2 + a^2 |W|^2 \, dz, I_2 = \int \left(\frac{d^2 W}{\lambda} \right)^2 + a^2 |W|^2 \, dz, \]
\[I_3 = \int \left(D^2 W + 3a^2 |D^2 W|^2 + 3a^4 |DW|^2 + a^6 |W|^2 \right) dz, \]
\[I_4 = \int \left(|Z|^2 \right) dz, \]
\[I_5 = \int \left(DZ^2 + a^2 |Z|^2 \right) dz, \]
\[I_6 = \int \left(D^2 Z + 2a^2 |DZ|^2 + a^4 |Z|^2 \right) dz, \]
\[I_7 = \int \left(DX^2 + a^2 |X|^2 \right) dz, \]
\[I_8 = \int \left(|X|^2 \right) dz, \]
\[I_9 = \int \left(D^2 K + 2a^2 |DK|^2 + a^4 |K|^2 \right) dz, \]
\[I_{10} = \int \left(DK^2 + a^2 |K|^2 \right) dz, \]
\[I_{11} = \int \left(D\Theta^2 + a^2 |\Theta|^2 \right) dz, \]
\[I_{12} = \int \left(|\Theta|^2 \right) dz. \]

All these integrals from \(I_1 \) to \(I_{12} \) are positive definite.

Now, putting \(\sigma = i\sigma_i \) (where \(\sigma_i \) is real) in Eq. (23) and equating the imaginary part, we get,
\[
\sigma_i \left[\frac{1}{e} I_1 - \frac{d^2}{e} I_4 + \frac{\mu_e \epsilon \sigma^2}{4\pi \alpha \lambda \nu} p_2 I_8 - \frac{\mu_e \epsilon \sigma^2}{4\pi \alpha \lambda \nu} p_2 I_{10} + \left(\frac{\lambda \alpha^2 \kappa T}{\beta \nu} \right) \left(g_0 - \frac{\gamma M_0 \nabla H}{\rho_0 \alpha} \right) E_p I_{12} \right] = 0. \tag{24} \]

In the absence of magnetic field (hence hall current), Eq. (24) becomes,
\[
\sigma_i \left[\frac{1}{e} I_1 + \frac{\mu_e \epsilon \sigma^2}{4\pi \alpha \lambda \nu} p_2 I_8 + \left(\frac{\lambda \alpha^2 \kappa T}{\beta \nu} \right) \left(g_0 - \frac{\gamma M_0 \nabla H}{\rho_0 \alpha} \right) E_p I_{12} \right] = 0. \tag{25} \]

If \(\lambda g_0 \geq \frac{\gamma M_0 \nabla H}{\rho_0 \alpha} \), then the terms in bracket are positive definite, which implies that \(\sigma_i = 0 \).

Therefore, oscillatory modes are not allowed and the principle of exchange of stabilities is satisfied if \(\lambda g_0 \geq \frac{\gamma M_0 \nabla H}{\rho_0 \alpha} \).

Numerical Discussion

The dispersion relation (20) is analyzed numerically also. The numerical value of thermal Rayleigh number \(R_l \) is decided for numerous values of medium permeability parameter \(P \), couple-stress parameter \(F_l \), magnetic field parameter \(Q_l \), Hall current parameter \(M_h \) and magnetization parameter \(M_0 \). Also, graphs have been plotted between \(R_l \) and these parameters as shown in Figures (2) - (15).

Fig. 2. Variation of \(R_l \) with \(P \) for \(\lambda > 0 \).
Fig. 3. Variation of R_i with P for $\lambda > 0$.

Fig. 4. Variation of R_i with P for $\lambda < 0$.
Fig. 5. Variation of R_i with P for $\lambda < 0$.

Fig. 6. Variation of R_i with F_i for $\lambda > 0$.

Fig. 7. Variation of R_i with F_i for $\lambda > 0$.

Fig. 8. Variation of R_1 with F_1 for $\lambda < 0$.

Fig. 9. Variation of R_1 with F_1 for $\lambda < 0$.

Fig. 10. Variation of R_1 with Q_1 for $\lambda > 0$.

Fig. 11. Variation of R_i with Q_1 for $\lambda < 0$.

Fig. 12. Variation of R_i with M_h for $\lambda > 0$.

Fig. 13. Variation of R_i with M_h for $\lambda < 0$.
Fig. 14. Variation of R_1 with M_0 for $\lambda > 0$.

Fig. 15. Variation of R_1 with M_0 for $\lambda < 0$.

In fig. 2, critical Rayleigh number R_1 increases with increase in medium permeability parameter P for $\lambda = 50$, which indicates that medium permeability has a stabilizing effect on the system. In fig. 3, critical Rayleigh number R_1 decreases with increase in medium permeability parameter P for $\lambda = 2$, which indicates that medium permeability has a destabilizing effect on the system. In fig. 4, critical Rayleigh number R_1 increases with increase in medium permeability parameter P for $\lambda = -5$, which indicates that medium permeability has a stabilizing effect on the system. In fig. 5, critical Rayleigh number R_1 decreases with increase in medium permeability parameter P for $\lambda = -0.00001$, which indicates that medium permeability has a destabilizing effect on the system.

In fig. 6, critical Rayleigh number R_1 increases with increase in couple-stress parameter F_1 for $\lambda = 5$, which indicates that couple-stress has a stabilizing effect on the system. In fig. 7, critical Rayleigh number R_1 decreases with increase in couple-stress parameter F_1 for $\lambda = 50$, which indicates that couple-stress has a destabilizing effect on the system. In fig. 8, critical Rayleigh number R_1 increases with increase in couple-stress parameter F_1 for $\lambda = -10000$, which indicates that couple-stress has a stabilizing effect on the system. In fig. 9, critical Rayleigh number R_1 decreases with increase in couple-stress parameter F_1 for $\lambda = -2000$, which indicates that couple-stress has a destabilizing effect on the system.

In fig. 10, critical Rayleigh number R_1 increases with increase in magnetic field parameter Q_1 for $\lambda = 3$, which indicates that magnetic field has a stabilizing effect on the system. In fig. 11, critical Rayleigh number R_1 decreases with increase in magnetic field parameter Q_1 for $\lambda = -15$, which indicates that magnetic field has a destabilizing effect on the system.

In fig. 12, critical Rayleigh number R_1 decreases with increase in hall current parameter M_h for $\lambda = 4$, which indicates that magnetic field has a destabilizing effect on the system. In fig. 13,
critical Rayleigh number \(R_i \) increases with increase in hall current parameter \(M_h \) for \(\lambda = -0.5 \), which indicates that magnetic field has a stabilizing effect on the system.
In fig. 14, critical Rayleigh number \(R_i \) increases with increase in magnetization parameter \(M_0 \) for \(\lambda = 0.2 \), which indicates that magnetic field has a stabilizing effect on the system. In fig. 15, critical Rayleigh number \(R_i \) increases with increase in magnetization parameter \(M_0 \) for \(\lambda = -0.25 \), which indicates that magnetic field has a stabilizing effect on the system.

Conclusions
In the present paper, we are discussing about the effect of hall current on thermal stability of couple-stress ferromagnetic fluid in the presence of variable gravity field and horizontal magnetic field saturating in a porous medium. A linearized theory and normal mode technique are used to attain the dispersion relation. The main results from the evaluation of the present paper are as below:

1. Medium permeability has both stabilizing and destabilizing effect on the system for \(\lambda > 0 \) and \(\lambda < 0 \) under certain conditions. Furthermore, in the absence of magnetic field, medium permeability has a stabilizing effect on the system for \(\lambda < 0 \) and destabilizing effect for \(\lambda > 0 \).
2. Couple-stress has both stabilizing and destabilizing effect on the system for \(\lambda > 0 \) and \(\lambda < 0 \) under certain conditions. Furthermore, in the absence of magnetic field, couple-stress has a stabilizing effect on the system for \(\lambda > 0 \) and destabilizing effect for \(\lambda < 0 \).
3. Magnetic field has a stabilizing effect on the system for \(\lambda > 0 \) and destabilizing effect for \(\lambda < 0 \).
4. Hall current has a stabilizing effect on the system for \(\lambda < 0 \) and destabilizing effect for \(\lambda > 0 \).
5. Magnetization has a stabilizing effect on the system for both \(\lambda > 0 \) and \(\lambda < 0 \).
6. The principle of exchange of stabilities is not valid for the present problem under consideration, whereas in the absence of magnetic field (hence hall current), it is valid for the present problem if \(\lambda g_0 \geq \frac{\gamma M_0 V H}{\rho_0 \alpha} \).

Acknowledgment

The corresponding author acknowledges CSIR, New Delhi for providing financial assistance through JRF Vide letter No. 08/688(0001)/2018-EMR-I.

References

