




















    Fig. 8. Variation of 1R with 1F for 0  . 

   

    Fig. 9. Variation of 1R with 1F for 0  . 

   

    Fig. 10. Variation of 1R with 1Q for 0  . 

   



    Fig. 11. Variation of 1R with 1Q for 0  . 

   

    Fig. 12. Variation of 1R with hM for 0  . 

   

    Fig. 13. Variation of 1R with hM for 0  . 

   



    Fig. 14. Variation of 1R with 0M for 0  . 

   

    Fig. 15. Variation of 1R with 0M for 0  . 

In fig. 2, critical Rayleigh number 1R increases with increase in medium permeability parameter

P for 50  , which indicates that medium permeability has a stabilizing effect on the system. In 

fig. 3, critical Rayleigh number 1R decreases with increase in medium permeability parameter P

for 2  , which indicates that medium permeability has a destabilizing effect on the system. In 

fig. 4, critical Rayleigh number 1R increases with increase in medium permeability parameter P

for 5  , which indicates that medium permeability has a stabilizing effect on the system. In fig. 

5, critical Rayleigh number 1R decreases with increase in medium permeability parameter P for

0.00001  , which indicates that medium permeability has a destabilizing effect on the system.  

In fig. 6, critical Rayleigh number 1R increases with increase in couple-stress parameter 1F for

5  , which indicates that couple-stress has a stabilizing effect on the system. In fig. 7, critical 

Rayleigh number 1R decreases with increase in couple-stress parameter 1F for 50  , which 

indicates that couple-stress has a destabilizing effect on the system. In fig. 8, critical Rayleigh 

number 1R increases with increase in couple-stress parameter 1F for 10000   , which indicates 

that couple-stress has a stabilizing effect on the system. In fig. 9, critical Rayleigh number 1R

decreases with increase in couple-stress parameter 1F for 2000  , which indicates that couple-

stress has a destabilizing effect on the system.  

In fig. 10, critical Rayleigh number 1R increases with increase in magnetic field parameter 1Q for

3  , which indicates that magnetic field has a stabilizing effect on the system. In fig. 11, critical 

Rayleigh number 1R decreases with increase in magnetic field parameter 1Q for 15   , which 

indicates that magnetic field has a destabilizing effect on the system.  

In fig. 12, critical Rayleigh number 1R decreases with increase in hall current parameter hM for

4  , which indicates that magnetic field has a destabilizing effect on the system. In fig. 13, 



critical Rayleigh number 1R increases with increase in hall current parameter hM for 0.5  , 

which indicates that magnetic field has a stabilizing effect on the system. 

In fig. 14, critical Rayleigh number 1R increases with increase in magnetization parameter 0M for

0.2  , which indicates that magnetic field has a stabilizing effect on the system. In fig. 15, 

critical Rayleigh number 1R increases with increase in magnetization parameter 0M for 0.25   , 

which indicates that magnetic field has a stabilizing effect on the system. 

Conclusions 

In the present paper, we are discussing about the effect of hall current on thermal stability of 

couple-stress ferromagnetic fluid in the presence of variable gravity field and horizontal 

magnetic field saturating in a porous medium. A linearized theory and normal mode technique 

are used to attain the dispersion relation. The main results from the evaluation of the present 

paper are as below: 

1. Medium permeability has both stabilizing and destabilizing effect on the system for 0 

and 0  under certain conditions. Furthermore, in the absence of magnetic field, medium 

permeability has a stabilizing effect on the system for 0  and destabilizing effect for

0  . 

2. Couple-stress has both stabilizing and destabilizing effect on the system for 0  and 

0  under certain conditions. Furthermore, in the absence of magnetic field, couple-

stress has a stabilizing effect on the system for 0  and destabilizing effect for 0  . 

3. Magnetic field has a stabilizing effect on the system for 0  and destabilizing effect for

0  . 

4. Hall current has a stabilizing effect on the system for 0  and destabilizing effect for

0  . 

5. Magnetization has a stabilizing effect on the system for both 0  and 0  . 

6. The principle of exchange of stabilities is not valid for the present problem under 

consideration, whereas in the absence of magnetic field (hence hall current), it is valid for 

the present problem if 0
0

0
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