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Abstract: In this paper, we studied the rotation effect on the thermosolutal convection in visco-elastic 

nanofluid in the presence of porous medium using Walters` (model B`). To solve the conservation equation, we 

used the normal mode technique and Galerkin weighted residual method. For stationary convection, the onset 

criterion derived analytically and experiential that visco-elastic nanofluid behaves as a regular Newtonian 

nanofluid. The effect of rotation, thermo-nanofluid Lewis number, thermosolutal Lewis number and solutal 

Rayleigh number analyze analytically and graphically. 
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1. Introduction

The problem of thermosolutal convection in porous medium has motivated during the last few decades, 

because it has various applications in soil science, oceanography, engineering, astrophysics etc. The thermal 

instability for Newtonian fluid with hydrodynamic and hydromagnetic assumptions was discussed by 

Chandrasekhar [2]. Kuznetsov and Nield [6] investigated theoretically the expression for thermal Rayleigh 

number, the condition for oscillatory motions derived and the instability of nanofluids using conservation 

equation. The nanofluid was firstly used by Choi [4] in regular fluid with nanometer sized particles for the 

colloidal suspension. The nanoparticles size is less than 100 nm in a base fluid, in nanofluids, for instance water, 

engine oils, ethanol are commonly used as base fluids. The materials of nanoparticles may be in use as nitrides 

(AIN, SiN), metal carbides (SiC), oxide ceramics (Al2O3, Cuo) or metals (Cu, Al). Kuznetsov and Nield was 

studied to the convection in a binary nanofluid layer in porous medium. The thermosolutal and thermal 

instability problems for Walters` (model B`) with elastico-viscous fluid in a porous medium studied by Rana 

and Sharma [9]. Gupta et al. studied the effect of horizontal magnetic field on nanofluid convection [5]. Pundir 

et al. studied on the onset of thermosolutal convection of an elastico-viscous nanofluid in porous medium in 

presence of magnetic field [8]. Sharma and Gupta studied double diffusive nanofluid convection in porous 

medium with rotation using Darcy-Brinkman model [10]. The effect of rotation on nanofluid convection in 

porous was studied by Chand and Rana [3].  We are investigate the effect of rotation on thermosolutal 

convection of visco-elastic nanofluid presence of porous medium using Walters` (model B`). The coriolis force 

term is added in the momentum equation due to the presence of rotation so we introduce a non-dimensional 

rotation parameter Taylor number. The problem is analized with normal mode technique and Galerkin weighted 

residual method. The effect of rotation, thermo-nanofluid Lewis number, thermosolutal Lewis number and 

solutal Rayleigh number analyze graphically. 
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2. Mathematical Model 

Here we regard a rotating horizontal layer with thickness 𝑑 and angular velocity 𝛀 of Walters` (model B`) 

elastico-viscous nanofluid situated between the plates 𝑧 = 0 and 𝑧 = 𝑑. The fluid layer is heated from lower 

layer and working upwards direction with a gravity force 𝒈 = (0,0, −𝑔). Temperature 𝑇𝐷 , concentration 𝐶𝐷 and 

volumetric fraction  𝜑𝐷 of nanoparticle, at the lower boundary and upper boundary are taken to be 𝑇1 and 𝑇0,  𝐶1 

and 𝐶0,  𝜑1 and  𝜑0 respectively, with  𝑇1 > 𝑇0, 𝐶1 > 𝐶0 and  𝜑0 >  𝜑1. The governing equation for 

Walters’(model B’) elastico-viscous nanofluid in porous medium as given by Yadav et al. [11] and Nield and 

Kuznetsov [7] are: 

∇𝒒𝐷 = 0              (1) 

𝜌

𝜀

𝜕𝒒𝐷

𝜕𝑡
= −∇𝑝 +   𝜑𝐷𝜌𝑝 +  1 −  𝜑𝐷  𝜌 1 − 𝛼𝑇 𝑇𝐷 − 𝑇0 − 𝛼𝐶 𝐶𝐷 − 𝐶0    𝒈   −

1

𝒌
 𝜇 − 𝜇′ 𝜕

𝜕𝑡
 𝒒𝐷 + 𝜇∇2𝒒𝐷 +

2𝜌

𝜀
(𝒒𝐷 × Ω)                   (2) 

where 𝒒𝐷 , 𝑝, 𝜇, 𝜇′, 𝒈, 𝑘, 𝜌, 𝜀,  𝜑𝐷 , 𝛼𝐶 , and 𝛼𝑇 denoted by the Darcy velocity, hydrostatic pressure, viscosity, 

viscoelasticity, acceleration attainable to gravity, medium permeability, density, porosity, volume fraction of 

nanoparticles, solute concentration and coefficient of thermal expansion respectively. 

For the nanofluid, the equation of thermal energy is given as: 

 𝜌𝑐 𝑚
𝜕𝑇𝐷

𝜕𝑡
+ 𝜌𝑐𝒒𝐷 . ∇𝑇𝐷 = 𝑘𝑚∇2𝑇𝐷 + 𝜀 𝜌𝑐 𝑝  𝐷𝐵∇ 𝜑𝐷 . ∇𝑇𝐷 +

𝐷𝑇

𝑇0
∇𝑇𝐷 . ∇𝑇𝐷 + 𝜌𝑐𝐷𝑇𝐶∇

2𝐶𝐷        (3) 

where  𝐷𝑇𝐶  is a Dufour diffusivity, 𝑘𝑚  is thermal conductivity,  𝜌𝑐 𝑝  is the heat capacity of nanoparticles and 

 𝜌𝑐 𝑚  is heat capacity of the fluid in porous medium. 

For the nanoparticles, the continuity equation given by Biongiorno [1] as: 

𝜕  𝜑𝐷

𝜕𝑡
+

𝒒𝐷

𝜀
. ∇ 𝜑𝐷 = 𝐷𝐵∇2 𝜑𝐷 +

𝐷𝑇

𝑇0
∇2𝑇𝐷               (4) 

where 𝐷𝐵 and 𝐷𝑇 are the Brownian diffusion coefficient and the thermoporetic diffusion coefficient, 

respectively. 

The equation of conservation of solute concentration is given as: 

𝜕𝐶𝐷

𝜕𝑡
+

1

𝜀
𝒒𝐷 . ∇𝐶𝐷      = 𝐷𝑆∇

2𝐶𝐷      + 𝐷𝐶𝑇∇
2𝑇𝐷            (5) 

where  𝐷𝐶𝑇 and 𝐷𝑆 are Soret type diffusivity and the solute diffusivity of porous medium. 

The boundary conditions are given as: 

𝑞 = 0,    𝑇𝐷 = 𝑇1,       𝜑𝐷 = 𝜑1,      𝐶𝐷 = 𝐶1 at 𝑧 = 0        (6) 

𝑞 = 0,    𝑇𝐷 = 𝑇0,       𝜑𝐷 = 𝜑0,      𝐶𝐷 = 𝐶0 at 𝑧 = 𝑑        (7) 

We establish nondimensional variables as: 

 𝑥∗, 𝑦∗, 𝑧∗ =
 𝑥, 𝑦, 𝑧 

𝑑
, 𝒒∗ = 𝒒𝐷

𝑑

𝛼𝑚
,   𝑡∗ =

𝑡𝛼𝑚

𝜍𝑑2
, 𝑝∗ =

𝑝𝑘

𝜇𝛼𝑚
,    𝜙∗ =

 𝜑𝐷 − 𝜑1

𝜑0 − 𝜑1
,

𝑇∗ =
𝑇𝐷 − 𝑇0

𝑇1 − 𝑇0
, 𝐶∗ =

𝐶𝐷 − 𝐶0

𝐶1 − 𝐶0
,      

where 𝛼𝑚 =
𝑘𝑚

𝜌𝑐
,      𝜍 =

 𝜌𝑐 𝑚

𝜌𝑐
. 

Dropping the star (*) for simplification. Equations (1) and equation (5) to (10) reduce in non-dimensional form: 

∇𝒒 = 0                (8) 

0 = −∇𝑝 −  1 − 𝐹
𝜕

𝜕𝑡
 𝑞 + 𝑃𝑙∇2𝑞 − 𝑅𝑚𝑘 − 𝑅𝑛𝜑𝑘 + 𝑅𝐷𝑇𝑘 +

𝑅𝑠

𝐿𝑠
𝐶𝑘 +  𝑇𝑎(𝑞 × 𝑘 )       (9) 

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 2, February - 2021 Page-464



𝜕𝑇

𝜕𝑡
+ 𝒒. ∇𝑇 = ∇2𝑇 +

𝑁𝐵

𝐿𝑛
∇𝜑. ∇𝑇 +

𝑁𝐷𝑁𝐵

𝐿𝑛
∇𝑇. ∇𝑇 + 𝑆𝑇𝐶∇

2𝐶          (10) 

1

𝜍

𝜕𝜑

𝜕𝑡
+

1

𝜀
𝒒. ∇𝜑 =

1

𝐿𝑛
∇2𝜑 +

𝑁𝐷

𝐿𝑛
∇2𝑇              (11) 

1

𝜍

𝜕𝐶

𝜕𝑡
+

1

𝜀
𝒒. ∇𝐶 =

1

𝐿𝑠
∇2𝐶 + 𝑆𝐶𝑇∇

2𝑇            (12) 

where the dimensionless parameters are: 

Thermosolutal Lewis number 𝐿𝑠 =
𝛼𝑚

𝐷𝑆
, Thermonanofluid Lewis number 𝐿𝑛 =

𝛼𝑚

𝐷𝐵
, Kinematic viscoelastic 

parameter 𝐹 =
𝜇 ′ 𝛼𝑚

𝜇𝜍 𝑑2 , Density Rayleigh number 𝑅𝑚 =
𝜌𝑝𝜑1+𝜌 1−𝜑1 𝑔𝑘𝑑

𝜇𝛼𝑚
, Nanoparticle Rayleigh number  𝑅𝑛 =

 𝜌𝑝−𝜌  𝜑0−𝜑1 𝑔𝑘𝑑

𝜇𝛼𝑚
,   Thermal Rayleigh Darcy number 𝑅𝐷 =

𝜌𝛼𝑇 𝑇1−𝑇0 𝑔𝑘𝑑

𝜇𝛼𝑚
,  Solutal Rayleigh number 𝑅𝑠 =

𝜌𝛼𝐶 𝐶1−𝐶0 𝑔𝑘𝑑

𝜇𝐷𝑆
,  Dimensionless medium permeability 𝑃𝑙 =

𝑘

𝑑2,  Modified diffusivity ratio 𝑁𝐷 =
𝐷𝑇 𝑇1−𝑇0 

𝐷𝐵𝑇0 𝜑0−𝜑1 
,     

Modified particle density increment 𝑁𝐵 =
 𝜌𝑐 𝑝  𝜑1−𝜑01 

𝜌𝑐
,   Soret parameter 𝑆𝐶𝑇 =

𝐷𝐶𝑇  𝑇1−𝑇0 

𝛼𝑚  𝐶1−𝐶0 
   Dufour parameter 

𝑆𝑇𝐶 =
𝐷𝑇𝐶  𝐶1−𝐶0 

𝛼𝑚  𝑇1−𝑇0 
, Taylor number 𝑇𝑎 =  

2Ω𝑑2𝜌

𝜀𝜇
 

2

. 

The dimensionless boundary conditions are: 

𝑤 = 0,    𝑇 = 1,      𝜑 = 1,      𝐶 = 0 at 𝑧 = 0         (13) 

𝑤 = 0,    𝑇 = 0,      𝜑 = 0,      𝐶 = 1 at 𝑧 = 1         (14) 

3.1 Basic states and its solutions 

The basic state of nanofluid is assumed and does not depend on  time and describes as: 

𝒒 𝑢, 𝑣, 𝑤 = 0,   𝑝 = 𝑝 𝑧 ,    𝑇 = 𝑇𝑖 𝑧 ,   𝜑 = 𝜑𝑖 𝑧 , 𝐶 = 𝐶𝑖 𝑧      

The basic variable represented by subscript 𝑖. 

The equations (8) to (12) with boundary conditions (13) and (14) gives the solution: 

𝑇𝑖 = 1 − 𝑧,     𝐶𝑖 = 1 − 𝑧  and  𝜑𝑖 = 𝑧.                        (15) 

 

3.2 Perturbation solutions 

We introduced small perturbations on the basic state for the investigate the stability of the system and write 

𝒒∗ = 0 + 𝒒′ 𝑢, 𝑣, 𝑤 , 𝑇∗ =  1 − 𝑧 + 𝑇′ , 𝐶∗ =  1 − 𝑧 + 𝐶 ′ , 𝜑∗ = 𝑧 + 𝜑′ ,    𝑝∗ = 𝑝𝑖 + 𝑝,                         (16) 

Using equation (16) in equations (8) to (12) and linearise by disuse the multiplication of the prime quantities, 

and after dipping the dash   ′  , we get the subsequent equations: 

∇𝒒 = 0              (17) 

0 = −∇𝑝 −  1 − 𝐹
𝜕

𝜕𝑡
 𝑞 + 𝑃𝑙∇2𝑞 − 𝑅𝑛𝜑𝑘 + 𝑅𝐷𝑇𝑘 +

𝑅𝑠

𝐿𝑠
𝐶𝑘 +  𝑇𝑎(𝑞 × 𝑘 )    (18) 

𝜕𝑇

𝜕𝑡
− 𝑤 = ∇2𝑇 +

𝑁𝐵

𝐿𝑛
 
∂T

∂z
−

∂φ

∂z
 − 2

𝑁𝐷𝑁𝐵

𝐿𝑛

∂T

∂z
+ 𝑆𝑇𝐶∇

2𝐶         (19) 

1

𝜍

𝜕𝜑

𝜕𝑡
+

1

𝜀
𝑤 =

1

𝐿𝑛
∇2𝜑 +

𝑁𝐷

𝐿𝑛
∇2𝑇              (20) 

1

𝜍

𝜕𝐶

𝜕𝑡
−

1

𝜀
𝑤 =

1

𝐿𝑠
∇2𝐶 + 𝑆𝐶𝑇∇

2𝑇                         (21) 

and boundary conditions are: 

𝑤 = 0,    𝑇 = 0,      𝜑 = 0,      𝐶 = 0       at   𝑧 = 0  and 𝑧 = 1.      (22) 

𝑅𝑚   is not involved in these because 𝑅𝑚  is presently a estimate of basic static pressure gradient. So by operating 

equation (18) with 𝑘 . 𝑐𝑢𝑟𝑙. 𝑐𝑢𝑟𝑙, we get: 
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 −  1 − 𝐹
𝜕

𝜕𝑡
 + 𝑃𝑙 ∇2𝑤 + 𝑅𝐷∇𝐻

2 𝑇 − 𝑅𝑛∇𝐻
2 𝜑 +

𝑅𝑠

𝐿𝑠
∇𝐻

2 𝐶 + 𝑇𝑎
𝜕2𝑤

𝜕𝑧2 = 0       (23) 

where ∇𝐻
2 =

𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2    and ∇2=
𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2 +
𝜕2

𝜕𝑧2 

4. Normal mode analysis 

The disturbances analyzing by normal mode analysis as follow: 

 𝑤, 𝑇, 𝐶, 𝜑 =  𝑊 𝑧 , Θ 𝑧 , Γ 𝑧 , ϕ(𝑧) 𝑒𝑥𝑝 𝑖𝑘𝑥𝑥 + 𝑖𝑘𝑦𝑦 + 𝑛𝑡           (24) 

where 𝑛 is the growth rate and 𝑘𝑥  and 𝑘𝑦  are the wave number along 𝑥 and 𝑦 directions, respectively. 

Using equation (24) in equations(27) to (29) and equation (23), we get; 

  − 1 − 𝑛𝐹 + 𝑃𝑙  𝐷2 − 𝑎2 + 𝑇𝑎𝐷2 𝑊 − 𝑅𝐷𝑎2Θ −
𝑅𝑠

𝐿𝑠
𝑎2Γ + 𝑎2𝑅𝑛𝜙 = 0      (25) 

𝑊 +   𝐷2 − 𝑎2 − 𝑛 + 𝜀
𝑁𝐵

𝐿𝑛
𝐷 − 2𝜀

𝑁𝐷𝑁𝐵

𝐿𝑛
𝐷 Θ + 𝑆𝑇𝐶 𝐷

2 − 𝑎2 Γ −
𝑁𝐵

𝐿𝑛
𝐷𝜙 = 0     (26) 

𝑊

𝜀
−

𝑁𝐷

𝐿𝑛
 𝐷2 − 𝑎2 Θ +  

𝑛

𝜍
−

𝐷2−𝑎2

𝐿𝑛
 𝜙 = 0           (27) 

𝑊

𝜀
+ 𝑆𝐶𝑇 𝐷

2 − 𝑎2  Θ +  
𝐷2−𝑎2

𝐿𝑠
−

𝑛

𝜍
  Γ = 0         (28) 

where 𝐷 =
𝑑

𝑑𝑧
 and 𝑎2 = 𝑘𝑥

2 + 𝑘𝑦
2 is the dimensionless ensuing wave number and the boundary conditions in 

view of normal mode are: 

𝑊 = 𝐷2𝑊 = Γ = Θ = 𝜙 = 0  at 𝑧 = 0  and 𝑧 = 1          (29) 

5. Linear stability analysis 

The eigen functions 𝑓𝑖(𝑧) corresponding to the eigen values problem (35) to (38) are 𝑓𝑗 = sin 𝜋𝑧 . the 

corresponding solutions are: 

𝑊 = 𝑊0 sin 𝜋𝑧 ,    Θ = Θ0 sin 𝜋𝑧 ,      Γ = Γ0 sin 𝜋𝑧 , 𝜙 = 𝜙0 sin 𝜋𝑧       (30) 

The linear system has a solutions if and only if 

𝑅𝐷 =
1

𝐽2𝜍𝜀+𝑛𝜀𝐿𝑠 −𝑆𝑇𝐶 𝐽2𝐿𝑠𝜍
 
 −{− 1−𝑛𝐹 +𝑃𝑙}𝐽2+𝜋2𝑇𝑎 𝜀

𝑎2   𝐽2 + 𝑛  𝐽2𝜍 + 𝑛𝐿𝑠 − 𝑆𝐶𝑇𝑆𝑇𝐶𝐽
4𝐿𝑠𝜍 + 𝑅𝑠𝜍 𝜀𝑆𝐶𝑇𝐽

2 −

 𝐽2 + 𝑛  −
𝑅𝑛𝜍

 𝐽2𝜍+𝑛𝐿𝑛  
   𝐽2 + 𝑛 𝐿𝑛 + 𝐽2𝑁𝐷𝜀  𝐽2𝜍 + 𝑛𝐿𝑠 + 𝑆𝑇𝐶𝐽

4𝐿𝑠𝜍 𝐿𝑛𝑆𝐶𝑇𝜀 + 𝑁𝐷            (31) 

where 𝐽2 = 𝜋2 + 𝑎2. 

 

6. The stationary convection 

The stationary convection will be characterized by 𝑛 = 0 in equation (31), and reduce it to 

𝑅𝐷 =
1

(𝜀−𝑆𝑇𝐶 𝐿𝑠)
 
𝐽2 −𝐽2𝑃𝑙+𝜋2𝑇𝑎 𝜀

𝑎2
 1 − 𝑆𝐶𝑇𝑆𝑇𝐶𝐿𝑠 + 𝑅𝑠 𝜀𝑆𝐶𝑇 − 1 − 𝑅𝑛  𝐿𝑛 + 𝑁𝐷𝜀 + 𝑆𝑇𝐶𝐿𝑠 𝐿𝑛𝑆𝐶𝑇 + 𝑁𝐷                 

             (32) 

the thermal Darcy Rayleigh number reveal by equation (32) which is a function of 𝑎, 𝑆𝐶𝑇 , 𝑆𝑇𝐶 , 𝐿𝑒, 𝑁𝐷 , 𝑅𝑠 , 𝑅𝑛 , 𝐿𝑛. 

Since  elastico-viscous parameter 𝐹 vanish with 𝑛, so the Walters`(model B`) elastico-viscous nanofluid react 

similar to usual Newtonian  nanofluid, In the nonappearance of the Dufour and Soret parameters equation (32) 

reduces to 

𝑅𝐷 =  
(𝜋2+𝑎2) −(𝜋2+𝑎2)𝑃𝑙+𝜋2𝑇𝑎 

𝑎2 −
𝑅𝑠

𝜀
− 𝑅𝑛  

𝐿𝑛

𝜀
+ 𝑁𝐷        (33) 

       Here, take 𝑥 =
𝑎2

𝜋2, in equation (43), then we get 
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𝑅𝐷 = 𝜋2  
𝑇𝑎 1+𝑥 

𝑥
−

𝑃𝑙 1+𝑥 2

𝑥
 −

𝑅𝑠

𝜀
− 𝑅𝑛  

𝐿𝑛

𝜀
+ 𝑁𝐷          (34) 

 

 

7. Results and Discussion 

The equation (34) express for stationary thermal Rayleigh Darcy number compute as a function of solute 

Rayleigh number, nanoparticle Rayleigh number, modified diffusivity ratio, thermo-nanofluid Lewis number, 

Taylor number, medium permeability, porosity, and dimensionless wave number.  

We observe the nature of  
𝜕𝑅𝐷

𝜕𝑇𝑎
,
𝜕𝑅𝐷

𝜕𝑁𝐷
,
𝜕𝑅𝐷

𝜕𝑅𝑛
,
𝜕𝑅𝐷

𝜕𝑅𝑠
,
𝜕𝑅𝐷

𝜕𝑃𝑙
 and 

𝜕𝑅𝐷

𝜕𝐿𝑛
 analytically. Equation (34) gives 

  
𝜕𝑅𝐷

𝜕𝑇𝑎
> 0 and  

𝜕𝑅𝐷

𝜕𝑅𝑠
< 0,  

𝜕𝑅𝐷

𝜕𝑁𝐷
< 0,

𝜕𝑅𝐷

𝜕𝑃𝑙
< 0, 

𝜕𝑅𝐷

𝜕𝑅𝑛
< 0,

𝜕𝑅𝐷

𝜕𝐿𝑛
< 0. 

This implies that for stationary convection, Taylor number have stabilizing effect whenever Solute Rayleigh 

number, thermo-nanofluid Lewis number, modified diffusivity ratio, nanoparticle Rayleigh number and medium 

permeability have destabilizing effect on the system. 

Figure 1 represents the Rayleigh Darcy number increase with Taylor number and for different values of solute 

Rayleigh number 𝑅𝑠 = 100, 200, 300 with the constant values of  𝑁𝐷 = 1, 𝑃𝑙 = 5,  𝑅𝑛 = 1, 𝐿𝑛 = 1000, 𝜀 =

0.6. The Rayleigh number 𝑅𝐷  increase with the Taylor number 𝑇𝑎, which implise that on the stationary 

convection Taylor number has stabilizing effect. 

Figure 2 represents the Rayleigh Darcy number decrease with medium permeability and for different values of 

nanoparticle Lewis number 𝐿𝑛 = 1000, 4000, 7000 with the constant values of 𝑁𝐷 = 1, 𝑇𝑎 = 100,  𝑅𝑛 =

1, 𝑅𝑠 = 100, 𝜀 = 0.6. The Rayleigh number 𝑅𝐷  decrease with the medium permeability 𝑃𝑙, which implise that 

on the stationary convection medium permeability has destabilizing effect. 

Figure 3 represents the Rayleigh Darcy number decrease with solute Rayleigh number and for different values 

of Taylor number 𝑇𝑎 = 100, 300, 600 with the constant values of  𝑁𝐷 = 1, 𝑃𝑙 = 5,  𝑅𝑛 = 1, 𝐿𝑛 = 1000, 𝜀 =

0.6. The Rayleigh number 𝑅𝐷  decrease with the solute Rayleigh 𝑅𝑠, which implise that on the stationary 

convection solute Rayleigh has destabilizing effect. 

Figure 4 represents the Rayleigh Darcy number decrease with nanoparticle Rayleigh number and for different 

values of diffusive ratio 𝑁𝐷 = 1, 5, 10 with the constant values of 𝑇𝑎 = 100, 𝑅𝑠 = 100, 𝑃𝑙 = 5, 𝐿𝑛 = 200, 𝜀 =

0.6. The Rayleigh number 𝑅𝐷  decrease with the nanoparticle Rayleigh number  𝑅𝑛 , which implise that on the 

stationary convection nanoparticle Rayleigh number has destabilizing effect. 

Figure 5 represents the Rayleigh Darcy number decrease with diffusive ratio and for different values of medium 

permeability 𝑃𝑙 = 1, 5, 10 with the constant values of 𝑇𝑎 = 100, 𝑅𝑠 = 100,  𝑅𝑛 = 1, 𝐿𝑛 = 200, 𝜀 = 0.6. The 

Rayleigh number 𝑅𝐷  decrease with the diffusive ratio 𝑁𝐷 , which implise that on the stationary convection 

diffusive ratio has destabilizing effect. 

Figure 6 represents the Rayleigh Darcy number decrease with nanoparticle Lewis number and for different 

values of nanoparticle Rayleigh number  𝑅𝑛 = 1, 2, 3 with the constant values of 𝑇𝑎 = 100, 𝑅𝑠 = 100, 𝑃𝑙 =

1, 𝑁𝐷 = 1, 𝜀 = 0.6. The Rayleigh number 𝑅𝐷  decrease with the nanoparticle Lewis number  𝑅𝑛 , which implise 

that on the stationary convection nanoparticle Lewis number has destabilizing effect. 
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8. Conclusion 

The effect of rotation on thermosolutal convection of visco-elastic nanofluid with porous medium using 

Walters` (Model B`) is investigated by using linear stability analysis. We drawn the main conclusion are 

following as: 
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(i) Due to rotation, Taylor number has stabilizing effect for stationary convection. 

(ii) Solute Rayleigh number, thermo-nanofluid Lewis number, modified diffusivity ratio, nanoparticle 

Rayleigh number and medium permeability have destabilizing effect for stationary convection. 

The Walters` (model B`) elastico-viscous nanofluid react similar to regular Newtonian nanofluid for 

stationary convection. 
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