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Abstract: The assembly line balancing problems have great importance in research and industry fields.
They allow minimizing the learning aspects and guaranteeing a fixed number of products per day. This paper 
introduces a new problem that combines the multi-manned concept with the U-shaped lines with time and 
space constraints under uncertainty. The processing time of the tasks is considered as random variables with 
known means and variances. Therefore, chance-constraints appear in the cycle time constraints. In addition, 
each task has an associated area, where the assigned tasks per station are restricted by a total area. The 
proposed algorithm for solving the problem is a stochastic local search algorithm. The parameter levels of the 
proposed algorithm are optimized by the Taguchi method to cover the small, medium, and large-sized 
problems. Well-known benchmark problems have been adapted to cover the new model. The computational 
results showed the importance of the new problem and the efficiency of the proposed algorithm. 

Keywords: U-shaped assembly line balancing problem; multi-manned assembly line balancing problem; 
The Taguchi method; chance-constrained programming; metaheuristics; stochastic local search. 

1. Introduction
The assembly lines are of great importance in the industry. They alternate the 

traditional way of assembling all tasks of a product by only one operator to assembling 
them in a set of stations, each of which has either one operator or more. The assembly 
line balancing problem is related to optimizing the assignment of the tasks with respect 
to some constraints. The simplified assumptions of the problem consider that the 
constraints are related to assigning each task in only one station, each station has a total 
processing time less than or equal to the cycle time, which is the total time spanned 
between two sequential products, and each task should be assembled after its 
predecessors. In most literature, the objective functions of this problem were to optimize 
either the number of stations, the cycle time, or the line efficiency. In addition, the 
problem in literature has been classified into simple assembly line balancing problems 
(SALBP), which is related to the simplified assumptions, and general assembly line 
balancing problems (GALBP). GALBP problems are related to adding some practical 
constraints to SALBP. This paper considers one of GALBP, which contains constraints 
related to stochastic processing times of the tasks, the form of the line, which is U-
shaped, the area related to each task, and the multi-manned concept. There are two 
objective functions of the problem in this paper. The first one is to minimize the number 
of stations and the second one is to minimize the number of operators. The proposed 
algorithm for solving the problem is a stochastic local search algorithm, which is a 
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metaheuristic approach that uses random walk solutions to cover the most areas in the 
solution space and a local search around each random walk to guarantee convergence. 
The paper is organized as follows. The second section shows a literature review that 
covers some papers published in both U-shaped and multi-manned assembly line 
balancing problems. The third section shows the mathematical model of the proposed 
problem. The fourth section shows the proposed algorithm. The fifth section presents the 
computational results. Finally, the sixth section is the conclusion.  

2. Literature Review
This paper discusses solving the multi-manned U-shaped assembly line 

balancing problem in case that the processing times of the tasks are random variables 
with known means and variances, and each task has an associated area. Therefore, it 
combines two types of assembly line balancing problems and deals with them under 
uncertainty. In this section, the literature review shows that this form of the problem, to 
the best of our knowledge, has not been investigated before and the stochastic local 
search seems that it was not developed to solve the assembly line balancing problems. 

2.1. U-shaped assembly line balancing problem 
The first work in the U-shaped assembly line balancing problems began by 

Miltenburg and Wijngaard [1]. They modeled the problem and developed a heuristic 
approach for solving it. Ajenblit and Wainwright [2] developed a genetic algorithm for 
solving the problem. They aimed to minimize the number of stations. Their research 
provided six different assignment algorithms. Nakade and Ohno [3] showed the first 
upgrade of the problem by including a worker assignment procedure. Their main 
objective was to minimize the cycle time by optimally allocating workers by using a 
heuristic algorithm. Gokcen and Agpak [4] developed a goal programming that 
minimizes the deviation of three goals, which are related to the number of stations, cycle 
time, and the number of tasks per station. They aimed to find a satisfactory solution 
rather than finding an optimal solution due to the conflicting goals. Through their paper, 
they developed the first multi-criteria decision-making approach for the U-shaped 
assembly lines. Baykasoglu [5] developed a simulated annealing approach to maximize 
the smoothness index and to minimize the number of stations. As it appears from his 
paper, there is a new objective function has been included in his formulation, which is to 
maximize the smoothness index besides minimizing the number of stations. Kara et al. 
[6] applied a binary fuzzy goal programming approach for both straight and U-shaped 
assembly line balancing problems. Simaria et al. [7] produced a new form of the 
problem that is related to meeting the demand variations. They aimed to minimize the 
number of workers according to many scenarios. Bagher et al. [8] discussed the 
stochastic nature of the processing time of the tasks. Therefore, they showed that the 
processing times of the tasks are random variables with means and variances. So, the 
cycle time constraints were formulated as chance-constraints, such as existed herein. 
They developed an algorithm that combines a computer method for sequencing 
operations for assembly lines, task assignment heuristic rules, and imperialist 
competitive algorithm. Kara et al. [9] developed an integer programming formulation 
the deals with a multi-objective model, where the model is to minimize the total cost 
associated with work station utilization, assistant, assignment, and equipment allocation.  

Agpak and Yegul [10] have formulated the two-sided and U-shaped assembly 
line balancing problem in one mathematical model and solved the new problem by using 
GAMS/CPLEX-12 mathematical programming software package. They aimed to 
minimize the number of stations and positions. Hamzadayi and Yildiz [11] developed a 
simulated annealing approach for balancing mixed-model U-lines. Their objective 
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function was to minimize the number of stations. Hazır and Dolgui [12] formulated a 
robust optimization model for the U-shaped assembly line problem. They considered 
that the processing times of the tasks are represented as intervals, then they solved the 
problem by iterative approximation algorithm. Alavidoost et al. [13] developed an 
interactive fuzzy programming approach for minimizing the number of stations and the 
cycle time. They considered that the processing times of the tasks are triangular fuzzy 
numbers. Alavidoost et al. [14] formulated the U-shaped assembly line balancing 
problem with fuzzy processing time and solved it using genetic algorithm. They aimed 
to optimize the line efficiency and the percentage of idleness. Aydoğan et al. [15] 
developed particle swarm optimization for solving the U-shaped assembly line 
balancing problem in case that the processing times are stochastic. Zhang et al. [16] 
considered that the processing time of the tasks is related to the workers. So, they took 
into consideration the worker assignment. Their main objective is to minimize the cycle 
time. They developed migrating birds optimization algorithm for solving the problem. 
Zhang et al. [17] developed a multi-objective Jaya algorithm for solving UALBP 
considering maintenance scenarios. Chutima and Jirachai [18] addressed multi-model 
line balancing of  parallel U-shaped assembly lines. They aimed to optimize multi-
objectives, which are task un-relatedness, the variation of workload, and the number of 
stations. The developed algorithm is a hybridized multi-objective evolutionary 
optimization based on decomposition with biogeography-based optimization. 

2.2. Multi-Manned assembly line balancing problem 
The multi-manned assembly line balancing problem is concerned with assigning 

at least one operator to each station with taking into account sequencing constraints. 
This section shows some literature related to the multi-manned assembly line balancing 
problem. 

Fattahi et al. [19] developed a mathematical model as well as an ant-colony 
optimization algorithm for solving the multi-manned assembly line balancing problem. 
Roshani et al.[20] developed a simulated annealing algorithm for solving the assembly 
line balancing problem with multi-manned stations. They aimed to maximize the line 
efficiency and smoothness index. Kellegöz and Toklu [21] proposed a priority rule-
based constructive heuristic for solving the parallel multi-manned assembly line 
balancing problem. They used a genetic algorithm to improve their solutions found by 
their proposed heuristic. Hamid and Mustafa Yilmaz [22] considered load-balancing 
constraints in the assembly line balancing problem with multi-manned stations. They 
aimed to minimize the number of workers and stations. Kellegöz [23] proposed a Gannt-
based heuristic method for solving the multi-manned assembly line balancing problem. 
The proposed heuristic in this paper has been improved by using simulated annealing. 
Roshani and Giglio [24] proposed a mathematical model for the multi-manned assembly 
line balancing problem. They aimed to minimize the cycle time and the number of 
workers. Their developed approach for solving the problem is simulated annealing. 
Chen [25] proposed a simulated annealing that aimed to minimize the number of stations 
and operators in the multi-manned assembly line balancing problem. 

Chen et al. [26] proposed a mixed-integer programming model for the resource-
constrained multi-manned assembly line balancing problem. They proposed a genetic 
algorithm to minimize the number of stations and operators. Michels et al. [27] 
developed a benders’ decomposition algorithm for solving the multi-manned assembly 
line balancing problem. They aimed to minimize the number of workers as a primary 
objective and the number of stations as secondary. Şahin et al. [28] developed a mixed-
integer linear programming model and particle swarm for solving resource investment 
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and balancing multi-manned assembly lines. They aimed to minimize the total cost. 
Lopes et al.[29] proposed station frontiers for multi-manned lines. They developed a 
mixed-integer programming model and model-based heuristic for solving the problem. 
Yilmaz et al. [30] proposed a tabu search algorithm for solving the multi-manned 
assembly line balancing problem. They aimed to minimize the number of workers and 
stations. Michels et al. [31] developed decomposition techniques and bender’s cuts for 
minimizing the cycle time of multi-manned assembly line balancing problems. 

3. The Mathematical Model
This section contains a mixed-integer programming formulation of the chance-

constrained multi-manned U-shaped assembly line balancing problem. 

3.1. Notations 
𝑖 = {1, … ,𝑛} The set of tasks 
𝑗 = {1, … ,𝑚} The set of stations 
𝑘 = {1, … , 𝑙} The set of operators 

𝑐𝑡 Cycle time 
𝐴 The total area 

𝑘𝑚𝑎𝑥  The maximum number of operators in any 
station 

𝑡𝑖  The processing time of task 𝑖 (random variable) 
𝐸(𝑡𝑖) The expected processing time of task 𝑖 
𝑉𝑎𝑟(𝑡𝑖) The variance of task 𝑖 
𝑎𝑖 The area associated to task 𝑖 

𝐼𝑃(𝑖) The immediate predecessors of task 𝑖 
𝐼𝑆(𝑖) The immediate successors of tasks 𝑖 

3.2. Decisions Variables 
𝑥𝑖𝑗𝑘 = �1, 𝑖𝑓 𝑡𝑎𝑠𝑘 𝑖 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝑘 𝑖𝑛 𝑠𝑡𝑎𝑡𝑖𝑜𝑛 𝑗

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑦𝑗 = �1, 𝑖𝑓 �𝑥𝑖𝑗𝑘

𝑛

𝑖=1

> 0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 The opened station decision variable 

𝑅𝑘 = �1, 𝑖𝑓 �𝑥𝑖𝑗𝑘

𝑛

𝑖=1

> 0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 The operator assignment decision 
variable 

𝑃𝑖 = �1, 𝑖𝑓 �𝑗 𝑥𝑖𝑗𝑘

𝑚

𝑗=1

≥�𝑗 𝑥ℎ𝑗𝑘

𝑚

𝑗=1

,∀ℎ ∈ 𝐼𝑃(𝑖)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

The immediate predecessors 
assignment decision variable 

𝑆𝑖 = �1, 𝑖𝑓 �𝑗 𝑥𝑖𝑗𝑘

𝑚

𝑗=1

≥�𝑗 𝑥ℎ𝑗𝑘

𝑚

𝑗=1

,∀ℎ ∈ 𝐼𝑆(𝑖)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

The immediate successors assignment 
decision variables 

3.3. The Objective Function 

𝑀𝑖𝑛.�𝑦𝑗

𝑚

𝑗=1

−
1

∑ 𝑅𝑘𝑙
𝑘=1

(1) 
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3.4. The constraints 

�𝑥𝑖𝑗𝑘 = 1,∀𝑖 = {1, … ,𝑛}
𝑚

𝑗=1

 (2) 

𝑃��𝑡𝑖  𝑥𝑖𝑗𝑘

𝑛

𝑖=1

≤ 𝑘𝑚𝑎𝑥  𝑐𝑡� ≥ 𝛼,∀𝑗 = {1, … ,𝑚} (3) 

�𝑎𝑖  𝑥𝑖𝑗𝑘

𝑛

𝑖=1

≤ 𝐴,∀𝑘 = {1, … , 𝑙} (4) 

𝑃𝑖 + 𝑆𝑖 ≥ 1,∀𝑖 = {1, … ,𝑛} (5) 

𝑃��𝑡𝑖  𝑥𝑖𝑗𝑘

𝑛

𝑖=1

≤  𝑐𝑡� ≥ 𝛼,∀𝑘 = {1, … , 𝑙} (6) 

𝑃�𝑡𝑖𝑥𝑖𝑗𝑘 + � 𝑡𝑔𝑥𝑔𝑗𝑘
𝑔∈𝑖𝑃(𝑖)

+ � 𝑡ℎ𝑥ℎ𝑗𝑘
ℎ∈𝑖𝑆(𝑖)

≤ 𝑐𝑡� ≥ 𝛼,∀𝑗 = {1, … ,𝑚}  (7) 

 
The objective function (1) seeks to minimize two objectives, which are the 

number of stations as a primary objective and the number of operators as a secondary. 
The set of constraints (2), which are the assignment constraints, ensures that each task 
must be assigned in only one station. The set of chance-constraints (3), which are the 
stations’ cycle time constraints, shows that each station contains tasks that their 
processing times are less than or equal to the cycle times of its operators under chance 
probability less than or equal 𝛼. The set of constraints (4), which are the space 
constraints, ensures that each operator should implement a set of tasks that their areas 
are less than or equal to a predetermined total area 𝐴. The set of constraints (5), which 
are the predecessors and successors’ constraints, shows that each task in any station 
must be assigned after either its immediate predecessors or immediate successors. The 
set of constraints (6), which are the cycle time constraints of operators, ensures that each 
operator implements a set of tasks that their total processing time is less than or equal to 
the cycle time and they are also chance-constraints that restricted by probability less 
than or equal 𝛼. The set of constraints (7), which are the sequence constraints, ensures 
that if any immediate predecessors or immediate successors of a task are included in the 
same station of such task, then the sum of their processing times plus the task processing 
time must not exceed the cycle time. This set of constraints are also chance-constraints 
that are restricted by probability less than or equal 𝛼. 

As aforementioned, the mathematical model contains some set of chance-
constraints that need to be converted into a deterministic form. The assumption herein is 
to consider the processing times of the tasks as normally distributed random numbers 
that have known means and variances. Taha [32] mentioned in his book how to convert 
the chance-constraints to non-linear deterministic constraints. The procedures mentioned 
in this book can be used with the set of constraints (3), (6), and (7), where the results 
replace these set of constraints, each of which respectively, as follows: 

�𝐸(𝑡𝑖) 𝑥𝑖𝑗𝑘 + 𝐾𝛼��𝑉𝑎𝑟(𝑡𝑖)𝑥𝑖𝑗𝑘

𝑛

𝑖=1

𝑛

𝑖=1

≤ 𝑘𝑚𝑎𝑥  𝑐𝑡,∀𝑗

= {1, … ,𝑚},𝑤ℎ𝑒𝑟𝑒 𝐾𝛼 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑛𝑜𝑟𝑚𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝛼 

(8) 

�𝐸(𝑡𝑖) 𝑥𝑖𝑗𝑘 + 𝐾𝛼��𝑉𝑎𝑟(𝑡𝑖)𝑥𝑖𝑗𝑘

𝑛

𝑖=1

𝑛

𝑖=1

≤  𝑐𝑡,∀𝑘 = {1, … , 𝑙} 

(9) 

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 4, April - 2021 Page-282



𝐸(𝑡𝑖)𝑥𝑖𝑗𝑘 + � 𝐸(𝑡𝑔)𝑥𝑔𝑗𝑘
𝑔∈𝑖𝑃(𝑖)

+ � 𝐸(𝑡ℎ)𝑥ℎ𝑗𝑘
ℎ∈𝑖𝑆(𝑖)

+ 𝐾𝛼�𝑉𝑎𝑟(𝑡𝑖)𝑥𝑖𝑗𝑘 + � 𝑉𝑎𝑟(𝑡𝑔)𝑥𝑔𝑗𝑘
𝑔∈𝑖𝑃(𝑖)

+ � 𝑉𝑎𝑟(𝑡ℎ)𝑥ℎ𝑗𝑘
ℎ∈𝑖𝑆(𝑖)

 

≤ 𝑐𝑡,∀𝑗 = {1, … ,𝑚}  

(10) 

4. The Proposed Algorithm 
The proposed algorithm for solving the problem depends on the concept of 

stochastic local search algorithms (SLS). Those algorithms begin by generating a 
random walk, which represents a solution in the solution space. Then a local search is to 
be utilized to find better solutions around such random walk solution. The iterative 
procedure of the algorithm allows exploring more areas in the solution space using those 
random walks and the local search helps to find the local best solutions for each area. 
The global best solution is the best solution found per all iterations. The random walk 
solution in the proposed algorithm is to be created by generating a random sequence of 
the tasks, where such random sequence represents the priority structure that will be used 
as a base of a heuristic procedure. Thus, each task in the priority structure will be tested 
if it confirms the problem constraints, and if it does, then it will be assigned in the 
opened station. In the local search, the random walk priority structure will be mutated by 
randomly swapping a percentage of its first tasks with the remaining tasks of the 
structure. Then, the heuristic procedure will be applied again. The algorithm contains a 
fixed number of random walks, mutation rate, and local search solutions, where those 
parameters are optimized later on using The Taguchi method. Figure 1 shows the 
flowchart of the proposed algorithm. 

For farther illustration of the flowchart, the pseudo code of the proposed algorithm is as 
follows: 
𝐵𝑒𝑔𝑖𝑛 
 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑡ℎ𝑒 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚′𝑠 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 (𝑁,𝑀𝑅, 𝐿𝑁) 
 𝑆𝑒𝑡 𝑓(𝐺) =  ∞ 𝑎𝑛𝑑 𝑖 = 1 
 𝑊ℎ𝑖𝑙𝑒 𝑖 ≤ 𝑁 
  𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 (𝑅𝑆𝑖) 
  𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑟𝑎𝑛𝑑𝑜𝑚 𝑤𝑎𝑙𝑘 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑢𝑠𝑖𝑛𝑔 ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑅𝑆𝑖   
  𝑆𝑒𝑡 𝑗 = 1,𝑓(𝐿) =  ∞ 
  𝑊ℎ𝑖𝑙𝑒 𝑗 ≤ 𝐿𝑁 
   𝑆𝑒𝑡 𝑚𝑢𝑡𝑎𝑡𝑒𝑑 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒�𝑀𝑆𝑗� = 𝑅𝑆𝑖  𝑎𝑓𝑡𝑒𝑟 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑠𝑤𝑎𝑝 𝑖𝑡𝑠 𝑓𝑖𝑟𝑠𝑡 𝑀𝑅 𝑡𝑎𝑠𝑘𝑠  
   𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝐿𝑗  𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑢𝑠𝑖𝑛𝑔 ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑀𝑆𝑗  𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 
   𝑖𝑓 𝑓(𝐿𝑖) < 𝑓(𝐿) 𝑡ℎ𝑒𝑛 𝑓(𝐿) = 𝑓(𝐿𝑖) 𝑎𝑛𝑑 𝐿 = 𝐿𝑖  
   𝑗 = 𝑗 + 1 
   𝐸𝑛𝑑 
  𝑖𝑓 𝑓(𝐿) < 𝑓(𝐺) 𝑡ℎ𝑒𝑛 𝑓(𝐺) = 𝑓(𝐿) 𝑎𝑛𝑑 𝐺 = 𝐿  
  𝑖 = 𝑖 + 1 
 𝐸𝑛𝑑 
𝐸𝑛𝑑 
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Start

Input the number of random walks (N), the 
mutation rate(MR), and the number of 

local search solutions(LN), evaluation of 
global best f(G) = infinity

Set i = 1

Generate random 
walk solution (S)

Set j = 1

Randomly swap MR rate of the first tasks 
in the random walk priority structure with 

the other tasks

Generate the 
mutated solution 

(MS)

f(s) < f(MS)
Best local (L) = MS

yes
j <= LN F(L) < f(G)

G = L

Yes

j = j + 1

no

i = i + 1
yes

no

no

i < N

yes

Return 
Gno

Stop

 
Figure 1: The flowchart of the proposed algorithm 

4.1. Experimental design 
 The proposed SLS algorithm has three parameters, which are the number of 

random walks, the mutation rate, and the number of local search solutions. In order to 
optimize the parameters of the algorithm, The Taguchi method is used as follows. The 
proposed levels of the first parameter are 10, 15, and 20 random walks. The proposed 
levels of the second parameter are 0.05, 0.15, and 0.20. The proposed levels of the third 
parameter are 20, 50, and 80 local solutions. The problems found in https://assembly-
line-balancing.de/ differ in their sizes from 7 tasks to 297. Those problems can be 
classified into three categories, small, medium, and large. Table 1 shows the selected 
problems for calibration, where they are two problems from each category. The 
proposed response to evaluate the output of the trials is the relative percentage deviation 
(RPD). The equation of RPD is as follows: 
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𝑅𝑃𝐷 =  
𝑓(𝑠) − 𝑓(𝑠𝑏𝑒𝑠𝑡)

𝑓(𝑠𝑏𝑒𝑠𝑡)
× 100 (11) 

Both 𝑓(𝑠) and 𝑓(𝑠𝑏𝑒𝑠𝑡) are calculated by subtracting the inverse of CPU times of 
the algorithm from the value of the objective function. 𝑓(𝑠𝑏𝑒𝑠𝑡) represents the best 
solution of all trials. 

In the Taguchi approach, an orthogonal array is used to construct the required 
trials that should be implemented to optimize the parameter levels. According to the 
selected levels, which are 3 levels for each parameter, the required experiments in the 
full factorial design are 27 experiments, which are as in Table 2. After implementing the 
trials with respect to the settings included in each row in Table 2, the results of each 
problem size have been compared by using the analysis of variance (ANOVA). Table 3 
shows the analysis of variance, which indicates that the null hypothesis is rejected. 
Therefore, Tukey pairwise comparison has been applied to find which means differ. 
Table 4 shows the grouping information using the Tukey method and Figure 2 shows the 
interval plot. 

Table 1: The selected problems for experimental design 

Name 
Problem 

size 
Minimal task 

time 
Maximal task 

time Cycle time 
Problem 

class 
Buxey 29 1 25 27 Small 

Gunther 35 1 40 44 Small 
Arcus1 83 233 3691 3786 Medium 

Mukherje 94 8 171 176 Medium 
Arcus2 111 10 5689 5755 Large 

Barthold 148 3 383 403 Large 
Table 2: The required orthogonal array for experimental design 

Number of Random 
walks 

Mutation 
rate 

Number of local 
solutions 

5 0.05 20 
5 0.05 20 
5 0.05 20 
5 0.1 50 
5 0.1 50 
5 0.1 50 
5 0.15 80 
5 0.15 80 
5 0.15 80 
10 0.05 50 
10 0.05 50 
10 0.05 50 
10 0.1 80 
10 0.1 80 
10 0.1 80 
10 0.15 20 
10 0.15 20 
10 0.15 20 
15 0.05 80 
15 0.05 80 
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Number of Random 
walks 

Mutation 
rate 

Number of local 
solutions 

15 0.05 80 
15 0.1 20 
15 0.1 20 
15 0.1 20 
15 0.15 50 
15 0.15 50 
15 0.15 50 

Table 3 Analysis of variance of the RPDs experiments 

Source DF Sum of 
squres 

Mean 
squares F-Value P-

Value 
RPDs 5 4.255 0.85103 25.04 0 
Error 156 5.301 0.03398 
Total 161 9.556 

Table 4 The grouping information of Tukey method 

Problem Mean Grouping 
Problem 

size 
Barthold 0.4515 A Large 
Arcus2 0.3308 A Large 

Mukherje 0.1661 B Medium 
Arcus1 0.1009 B C Medium 
Gunther 0.016 C Small 
Buxey 0.01335 C Small 

Figure 2 Interval plot of Tukey comparison method for RPD experiments 

According to the grouping information, each problem size may have different 
parameter levels of the proposed algorithm. Therefore, for each problem size, The 
Taguchi method has been applied to optimize the parameter levels. Figure 3, Figure 4, 
and Figure 5 show the main effects plot for each problem size. 
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Figure 3 Main effects plot for small-sized problems 

 
Figure 4 Main effects plot for medium-sized problems 
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Figure 5 Main effects plot for large-sized problems 

The main effects plots show that for both the small and medium-sized problems, 
the optimized parameter levels are 5 random walks, either using 0.05 or 0.15 as mutation 
rate and 20 local solutions. In the case of the large-sized problems, the optimized 
parameter levels are 5 random walks, 0.10 as mutation rate, and 50 local solutions. 

4.2. Illustrative Example 
The illustrative example shows the steps of the proposed algorithm using the 

optimized parameter levels. It contains the Jackson problem, which is one of the 
benchmark problems in https://assembly-line-balancing.de. The problem size is 11 tasks 
and it can be represented as a precedence graph network as shown in Figure 6. The cycle 
time is 7, the total area is 14, the maximum number of operators per station is 2, and the 
chance probability is 0.95. The first step of the algorithm is to generate a random 
priority structure (𝑅𝑆) of the problem tasks, which is used to create a random walk 
solution. The first priority structure (𝑅𝑆1) can be shown as follows: 

𝑅𝑆1 = {1,5,11,10,2,6,9,4,8,7,3} 
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The heuristic solution obtained from 𝑅𝑆1 is in Table 5. It shows that the number 
of stations is 5 and the number of operators is 9. Now, 𝑅𝑆1 will be mutated by swapping 
a 0.05 percentage of the left first tasks in 𝑅𝑆1, where only task 10 will be swapped 
randomly with one of the rest of the tasks. After mutating𝑅𝑆1, a new solution will be 
obtained by repeating the same heuristic procedure. The mutation process will be done 
to produce 20 local solutions, and then a new iteration will begin to produce a new 

random walk. For each iteration, the best local solution will be compared with the best 
global solution and it will replace it if it is better. As aforementioned, the number of 
random walks is 5. Therefore, Table 6 shows the final solution after implementing 5 
iterations. The solution shows that the number of stations is 4 and the number of 
operators is 8.  

Table 5: The first random walk solution 

Task Processing 
time Area Station Operator Completion 

time 
1 6 12 1 1 6 
5 1 2 1 1 7 

11 4 8 1 2 4 
10 5 10 2 3 5 
2 2 4 2 3 7 
9 5 10 2 4 5 
6 2 4 3 5 2 
4 7 14 3 6 7 
8 6 12 4 7 6 
7 3 6 4 8 3 
3 5 10 5 9 5 

1 3 

2 

4 

5 

6 

7 

8 

9 

10 

11 

𝒕𝒕𝟏𝟏 = 𝟔𝟔 
𝝈𝝈𝟏𝟏𝟐𝟐 = 𝟎𝟎.𝟏𝟏𝟏𝟏 
𝒂𝒂𝟏𝟏 = 𝟏𝟏𝟏𝟏 

𝒕𝒕𝟐𝟐 = 𝟐𝟐 
 𝝈𝝈𝟐𝟐𝟐𝟐 = 𝟎𝟎.𝟎𝟎𝟎𝟎 
𝒂𝒂𝟐𝟐 = 𝟒𝟒 

 

𝒕𝒕𝟑𝟑 = 𝟓𝟓 
𝝈𝝈𝟑𝟑𝟐𝟐 = 𝟎𝟎.𝟏𝟏𝟏𝟏 
𝒂𝒂𝟑𝟑 = 𝟏𝟏𝟏𝟏 

𝒕𝒕𝟒𝟒 = 𝟕𝟕 
 𝝈𝝈𝟒𝟒𝟐𝟐 = 𝟎𝟎.𝟏𝟏𝟏𝟏 
𝒂𝒂𝟒𝟒 = 𝟏𝟏𝟏𝟏 

𝒕𝒕𝟓𝟓 = 𝟏𝟏 
 𝝈𝝈𝟓𝟓𝟐𝟐 = 𝟎𝟎.𝟎𝟎𝟎𝟎 
𝒂𝒂𝟓𝟓 = 𝟐𝟐 

𝒕𝒕𝟔𝟔 = 𝟐𝟐 
 𝝈𝝈𝟔𝟔𝟐𝟐 = 𝟎𝟎.𝟎𝟎𝟎𝟎 
𝒂𝒂𝟔𝟔 = 𝟒𝟒 

𝒕𝒕𝟕𝟕 = 𝟑𝟑  
𝝈𝝈𝟕𝟕𝟐𝟐 = 𝟎𝟎.𝟎𝟎𝟎𝟎 
𝒂𝒂𝟕𝟕 = 𝟔𝟔 

𝒕𝒕𝟗𝟗 = 𝟓𝟓 
 𝝈𝝈𝟗𝟗𝟐𝟐 = 𝟎𝟎.𝟏𝟏𝟏𝟏 
𝒂𝒂𝟗𝟗 = 𝟏𝟏𝟏𝟏 

𝒕𝒕𝟖𝟖 = 𝟔𝟔  
𝝈𝝈𝟖𝟖𝟐𝟐 = 𝟎𝟎.𝟏𝟏𝟏𝟏 
𝒂𝒂𝟖𝟖 = 𝟏𝟏𝟏𝟏 

𝒕𝒕𝟏𝟏𝟏𝟏 = 𝟓𝟓 
 𝝈𝝈𝟏𝟏𝟏𝟏𝟐𝟐 = 𝟎𝟎.𝟏𝟏𝟏𝟏 
𝒂𝒂𝟏𝟏𝟏𝟏 = 𝟏𝟏𝟏𝟏 

𝒕𝒕𝟏𝟏𝟏𝟏 = 𝟒𝟒  
𝝈𝝈𝟏𝟏𝟏𝟏𝟐𝟐 = 𝟎𝟎.𝟎𝟎𝟎𝟎 
𝒂𝒂𝟏𝟏𝟏𝟏 = 𝟖𝟖 

Figure 6 Precedence graph of Jackson problem 
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Table 6: The final solution (The global best) 

Task Processing 
time Area Station Operator Completion 

time 
11 4 8 1 1 4 
1 6 12 1 2 6 
5 1 2 1 2 7 
4 7 14 2 3 7 
3 5 10 2 4 5 
2 2 4 2 4 7 

10 5 10 3 5 5 
6 2 4 3 5 7 
9 5 10 3 6 5 
8 6 12 4 7 6 
7 3 6 4 8 3 

5. Computational results
The computational results section shows the results of implementing the 

proposed algorithm on 71 problems from the benchmark found in https://assembly-line-
balancing.de after adapting them to fit the requirements of the new model. The 
benchmark problems do not have areas, expected values of the processing times, and 
variances. Therefore, the area associated with each task is assumed to be 2 times the 
processing time and the total area is assumed to be 2 times the cycle time. The expected 
processing times are assumed to be the same as the deterministic processing times of the 
benchmarks and the variances are found by subtracting each processing time from the 
cycle time and divide the result by 1000. The maximum number of operators is 2. As far 
as known, the proposed model in this paper has not been discussed before in research. 
Therefore, to show the importance of the new model, the comparison is done with the 
deterministic multi-manned assembly line balancing problem. Table 7 shows a 
comparison between the values found by the proposed algorithm for solving the chance-
constrained multi-manned U-shaped assembly line balancing problem with time and 
space and some other algorithms that were used to solve the deterministic multi-manned 
assembly line balancing problem. Such algorithms are the ant-colony optimization 
(ACO) algorithm by Fattahi [19] and the simulated annealing (SA) by Roshani and 
Giglio [24]. The proposed algorithm is coded using python programming in a PC with 
2.93 GHz Core 2 Duo CPU and 2 GB rams. The CPU times are compared in seconds 
between the proposed SLS and SA. 

Table 7 Computational results 

Problem Size Cycle
time 

ACO SA 
SLS 

𝛼 = 0.95 

No. of 
operators 

No. of 
stations 

No. of 
operators 

No. 
of 

stati
ons 

CPU 
(S) 

No. of 
operator

s 

No. of 
station

s 

CPU 
(S) 

Merten 7 

6 6 3 6 3 0.15 6 3 0.20 
7 5 3 5 3 0.14 5 3 0.32 
8 5 3 5 3 0.15 5 3 0.16 

10 3 3 3 3 0.14 3 2 0.29 
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Problem Size Cycle 
time 

ACO SA 
SLS 

𝛼 = 0.95  

No. of 
operators 

No. of 
stations 

No. of 
operators 

No. 
of 

stati
ons 

CPU 
(S) 

No. of 
operator

s 

No. of 
station

s 

CPU 
(S) 

15 2 2 2 2 0.12 2 1 0.10 
18 2 1 2 1 0.09 2 1 0.10 

Bowman 8 

17 5 5 5 5 0.18 5 3 0.18 
20 – – 5 4 0.17 4 2 0.14 
21 5 4 5 4 0.19 4 2 1.37 
24 4 4 4 4 0.18 4 2 0.59 
28 3 2 3 2 0.17 3 2 0.14 
31 3 2 3 2 0.2 3 2 0.13 

Jaeschke 9 

6 8 6 8 6 0.26 8 4 0.21 
7 7 6 7 6 0.18 7 4 0.20 
8 6 5 6 5 0.19 6 3 0.19 

10 4 4 4 4 0.21 4 2 0.17 
18 3 2 3 2 0.2 3 2 0.15 

Jackson 11 

7 8 6 8 6 0.1 8 4 0.34 
9 6 4 6 4 0.39 6 3 0.27 

10 5 4 5 4 0.4 5 3 0.50 
13 4 3 4 3 0.25 4 2 0.43 
14 4 3 4 3 0.25 4 2 0.24 
21 3 2 3 2 0.28 3 2 0.19 

Mansoor 11 

45 5 3 5 3 0.23 5 3 0.22 
54 4 3 4 3 0.21 4 2 0.44 
63 3 2 3 2 0.26 3 2 1.05 
72 3 2 3 2 0.18 3 2 0.22 
81 3 2 3 2 0.25 3 2 0.21 

Mitchell 21 

14 8 7 8 7 0.92 8 4 4.85 
15 8 7 8 7 0.96 8 4 1.15 
21 5 5 5 5 0.9 6 3 0.55 
26 5 4 5 4 0.79 5 3 0.41 
35 3 3 3 3 0.85 3 2 2.13 
39 3 2 3 2 0.81 3 2 0.43 

Heskia 28 

138 8 5 8 5 32.3 9 5 1.38 
205 5 3 5 3 34.8 6 3 1.30 
216 5 3 5 3 29.6 5 3 1.48 
256 4 3 4 3 32.4 5 3 1.38 
324 4 2 4 2 23.9 4 2 1.29 
342 3 2 3 2 15 4 2 1.15 

Sawyer 30 

25 14 8 14 8 41.9 15 8 2.63 
27 13 8 13 8 40.4 14 7 1.20 
30 12 7 12 7 38.6 12 6 1.12 
36 10 6 10 6 37.1 10 5 2.22 
41 8 6 8 5 34.3 9 5 0.90 
54 7 4 7 4 33.7 7 4 1.04 
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Problem Size Cycle 
time 

ACO SA 
SLS 

𝛼 = 0.95  

No. of 
operators 

No. of 
stations 

No. of 
operators 

No. 
of 

stati
ons 

CPU 
(S) 

No. of 
operator

s 

No. of 
station

s 

CPU 
(S) 

75 5 3 5 3 25.8 5 3 0.79 

Kilbridg
e 45 

57 10 6 10 6 81.5 11 6 1.57 
79 7 5 7 5 105.8 8 4 1.53 
92 6 4 6 4 135.2 7 4 1.45 
110 6 3 6 3 68.5 6 3 1.39 
138 4 3 4 3 80.5 5 3 1.84 
184 3 2 3 2 51.2 3 2 1.59 

Tonge 70 

176 21 20 21 19 193.5 24 12 3.54 
364 10 7 10 7 309.8 11 6 3.10 
410 9 6 9 5 291.2 9 5 20.60 
468 8 4 8 4 106.3 8 4 6.28 
527 7 4 7 4 277.7 7 4 2.67 

Arcus 83 

5048 16 11 16 11 369.8 17 9 2.90 
5853 14 10 14 9 405.5 14 7 2.64 
6842 12 8 12 8 352.2 12 6 2.32 
7571 11 7 11 7 278.5 11 6 2.48 
8412 10 6 10 6 354.6 10 5 2.85 
8998 9 6 9 6 336.3 9 5 2.61 
10,81

6 8 5 8 5 355.7 8 4 3.02 

Arcus 111 
5755 27 20 27 21 578.9 31 16 8.03 
8847 18 12 18 12 603.2 19 10 67.60 

  10027 16 10 16 11 765.4 16 9 29.72 

  
10743 15 10 15 10 1235.6 15 8 39.74 
11378 14 9 14 9 738.9 15 8 7.26 
17067 9 6 9 6 1335.9 10 5 8.55 

Despite having space constraints and uncertainty in the new problem, it can be 
shown from Table 7 that the new problem and the proposed SLS algorithm both prove 
efficiency. 40 problems have a reduction in the number of stations and 2 problems have 
a reduction in the number of operators where that can be shown as bold italic numbers 
under SLS columns. The main objective in the proposed model is to minimize the 
number of stations as a primary objective and to minimize the number of operators as a 
secondary objective. Therefore, 18 problems are better than the proposed SLS 
concerning the number of operators. Figure 7 shows the box plots of the CPU times for 
both SLS and SA algorithms. The figure shows a very low variability in the case of SLS 
when compared with SA. The median of SLS CPU times is 1.15 seconds, while the 
median of SA CPU times is 23.9 seconds. Therefore, although the low performance of 
the used PC, the proposed algorithm proves efficiency in terms of CPU times. 
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Figure 7 Box plots of CPU times 

6. Conclusion 
The use of the multi-manned concept helped to radically minimize the number of 

stations. The U-shaped lines helped for more flexibility in the assignment procedures, 
which may also minimize the number of stations. Therefore, after combining the multi-
manned concept with the U-shaped assembly line balancing problem, a new 
mathematical model has been developed, which considers that the processing times are 
random variables with known means and variances, where that lead to a chance-
constrains, and considers that each task has an area. A stochastic local search algorithm 
has been developed to solve the new problem and its parameters have been optimized by 
using the Taguchi method. The computational results show the efficiency of combining 
the multi-manned concept with the U-shaped lines and they show also the efficiency of 
the proposed stochastic local search algorithm. 
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