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Abstract: Power transformer is an important link in power system. Utilities will face a
huge loss if a fault occurs transformer. The outage can cause loss to industry sector.
Transformer incipient fault can be predicted using Dissolved Gas Analysis (DGA) based
on gas ratios. The current work is an effort to use SVM to predict transformer incipient
fault more precisely. DGA data of various transformer oil samples were collected and
analyzed to select the best SVM kernel function and kernel factor to be used and to
observe the prediction accuracy.
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1. Introduction

Transformers form a crucial link in power system. It is one of the major asset of utilities.
With increased demand for electric energy, transformers are being overloaded to cope
with the demand. Failure of a transformer in-service, can result in loss of millions of
dollars, based on the duration the transformer is out of duty. It is time consuming and
costly to replace faulty transformers. Hence it is important to monitor the gases in the
transformer condition. Due to various operating conditions in the transformer gasses are
evolved in the transformer oil. These gases dissolve in insulation oil and can be used as
indicator of incipient fault. Key gases evolved during the operation of transformer are
shown in table 1.

Table 1: Key gases evolved during fault

Kev (ras Chemical Fault ope
representation
Hydrogsn H, Corona
Carbon monoxids and . . Cellulos= insulation
carbon dioxide CO /CO, brezkdown
Methane =nd Ethane CH. C.H, | o tmpersmrsod
wezkdown
Apstylens C.H, Arcing
s - High temperaturs oil
Ethylene C.H, brezkdown

Monitoring gases evolved in the transformer oil can help in predicting the possible faults
and this can be achieved by using DGA.

2. Dissolved Gas Analysis and IEC 60599

One of the most acceptable method to identify incipient fault in transformer is DGA [1].
The combustible concentration limits vary between different countries, continents and
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transformers. Hence setting the concentration limits is not easier. The incipient faults in
oil-filled power transformer can be detected using DGA, which is more reliable. DGA is
not science, but an art. It is the most prominent test in determining the state of a
transformer. It acts as a first indicator to identify partial discharge, deteriorating
insulation & oil, over heating hot spots, and arcing [2]. IEC60599 and IEEEC 57-104TM
standards are used as standard for DGA. It helps in early diagnosis and provides
opportunity to find suitable cure [3]. A characteristic amount of gas is produced in the
transformer oil based on type of fault. There is a significant increase in the individual
gas concentration, Total Dissolved Combustible Gas (TDCG). Gas chromatography is
used to detect the gases as parts per million (ppm). It is used to identify, separate, and
quantify mixtures of gases. The key gases found during DGA are hydrogen (H.), methane
(CHa), acetylene (CzH>), ethylene (C2H4), ethane (CzHs), carbon monoxide (CO), and
carbon-di-oxide (CO,). By using DGA incipient faults in a transformer can be predicted.
Certain gases are formed in transformer oil even under normal transformer operational
conditions. Therefore, large sampling is required to build concentration norms. The cost
of unplanned outages can be reduced by the early detection of such internal faults in
transformer. The interpretation of transformer faults using dissolved gases analysis is
produced using some techniques that are assumed by Dornenberg, Rogers, Duval triangle
and key gases methods. All the techniques mentioned above have its own pro’s and
con’s. All the techniques do not arrive at same conclusion. The accuracy depends upon
the expertise of the person handling the analysis. IEC standard 60599 for ratio method
of DGA shown in table 2.

Table 2: IEC 60599 for fault prediction based on DGA

IEC 60599 C:H;/ CH,/ | C;H,/
C.H, H; C.Hs
Ratios of characteristic
gases
0.1 0 1 ]
1 0 ]
0.1 -1 1 - 1
1-3 - : -
=3 = = =
Case . - :
No. Characteristic Fault Typical examples
] No fault ] 0 0 Normal ageing,.
Partial discharges oflow Discharges in gas filled cawities
1 energy density 0 but not 1 o resulting from incomplete
significant impregnation or super saturation or
cavitations or high humidity.
- Partial discharges oflow 1 1 o All above but leading to tracking or

energy density perforation of solid insulation.
Dizcharge oflow energy Continuous sparking in oil between
bad commections of different

. 1-2 b 1-2 peotential. Breakdowmn of oil between
solid materials.
Dizcharge ofhigh energy Dizcharges with power follow
through. Arcing breakdown ofoil
4 1 h] 2 between windings or coils, or
between gpilto earth. Selector
breaking cinrent.
= Thenmal fault of Low o o 1 Generalinsulated conductor
- temperatre << 130°C overheating.
Thernmal fault o f hMediiom Local ovetheating ofthe core dueto
] termperatire range ] 2 0 concentrations of flux. Increasing hot
150°C - 300°C spot temperatires, varying from
Thernmal fault o f hMediiom smallhot spotsin core, overheating
T termperatire range o 2 1 of copper due to eddy currents, bad
300°C- 700°C contactsjoints { pyrolitic carbon

Thernmnal fault ofhigh
temperatare = T00°C

formation) up to core and tank
circulating currents
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3. SVM Algorithm

Support Vector Machine” (SVM) is a supervised machine learning algorithm which is
suitable for both classification and regression challenges [4][5]. In the SVM algorithm,
a n-dimensional space is plotted where n is the number of features in data set. The value
of each feature being the value of a particular coordinate. A hyper-plane is determined
that differentiates the two classes the classification is done. The hyperplane should divide
the set of samples such that all the points with the same label are on the same side of the
hyperplane [6]-[11].

4, MATLAB simulation and analysis

For the experimentation and testing a data set of 200 samples were used. The data used
were concentration of various gases like CyH,, CHi, C;Hs, CoHs and H,. The
experimentation was conducted in two stages. In the first investigation various kernel
function and kernel factors of SVM was used and predictions were done. The purpose
was to identify the model best suited for fault prediction. The second investigation was
done by varying the Kernel Scale and observing the impact on the prediction accuracy
for the model selected. MATLAB version R2020a was used for the investigation. Table
3 shows sample data.

Table 3: Sample data of gas concentrations in ppm.

Sl Gas Concentrations ppm
No. H CH CH CH CH Fault type
2 4 22 24 2Ms
1 2238 826 537988 | 335279 4008 | High intensity discharge
2 2373 817 669150 | 447061 4284 | High intensity discharge
3 2394 754 673175 | 360327 4049 | High intensity discharge
4 | 6729 | 323 2 45353 2323 | Low intensity discharge
5 | 10000 | 800 40 9 222 Low intensity discharge
6 9900 780 35 10 150 Low intensity discharge
7 | 10000 | 769 36 11 180 Low intensity discharge
8 30 80 3 220 675 Thermal fault
9 4000 | 6076 2 23232 4544 Thermal fault
10 100 200 1212 3222 188 No Fault
5. Results and discussion

5.1. Selection of Algorithm

Based on the kernel function, there are 4 types of SVM algorithm available for fault
classification. They are Linear SVM (LSVM), Quadratic SVM (QSVM), Cubic SVM
(CSVM) and Fine Gaussian SVM (FGSVM). In the initial experimentation fine tuning
of the kernel factor with all the 4 cases was taken up to identify the most suitable kernel
function and the value of kernel factor. The results are tabulated in Table 4 and
represented in figure 1.
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Table 4: Prediction accuracy for different kernel function and kernel values

Kernel 1 | 025 | 04 | 05 | 06 | 075 | 1 |2

Scale

LSVM | 844 | 698 | 61.8 | 59.8 | 60.3 | 603 | 70.9 | 844
QSVM | 920 | 899 | 860 | 854 | 849 | 854 | 709 | 734
CSVM | 678 | 613 | 915 | 915 | 915 | 814 | 709 | 734
FGSVM | 884 | 889 | 870 | 869 | 859 | 839 | 87.9 | 729

The results obtained depicted that CSVM gave a consistent prediction efficiency of
91.5% over a kernel scale of 0.4 to 0.6. The prediction efficiency of other methods was
found to be not at the range of CSVM and was also not consistent. Hence CSVM was
selected for the analysis in this work. The kernel scale was fixed at 0.55. The confusion

matrix of CSVM with kernel factor of 0.55 is shown in figure 2.
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Figure 1: Prediction accuracy of various SVM function with the variation of kernel scale
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Figure 2: Confusion matrix for CSVM with kernel scale 0.55

The confusion matrix is a matrix of true class versus predicted class. It can be seen from
the confusion matrix that the selected model has confusion in the prediction of “No-

Fault” case only.

5.2.Transformer incipient fault prediction

From the analysis carried out in 5.1 the CSVM with kernel scale of 0.55 was selected.
Region of Conversion (ROC) was used to identify the prediction accuracy for each of
the fault type i.e. Low intensity fault, High intensity fault, Thermal fault and No fault
cases. The ROC gives the prediction accuracy as a plot of true positive predictions v/s
false positive predictions. The area under curve (AUC) is an indicator of accuracy. If the
AUC is 0.97 it indicates 97% accuracy of prediction. The ROC curve for the four classes
of faults namely Low intensity fault, High intensity fault, Thermal fault and No-fault
cases are shown in figure 3 to figure 6.
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Figure 3: ROC for Thermal fault, AUC = 1.0
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Figure 6: ROC for High intensity discharge fault, AUC = 0.99
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Figure 7: ROC for No-fault, AUC = 0.99

The observations are tabulated in table 5

Table 5: Prediction accuracy of incipient faults using CSVM algorithm.

SI. No. Type of incipient fault AUC Prediction accuracy
1 Thermal fault 1.0 100 %
2 Low intensity discharge fault 0.99 99%
3 High intensity discharge fault 1.0 100%
4 No-fault 0.99 99%

6. Conclusion

Transformer incipient fault prediction was carried out using SVM machine learning
algorithm. It was observed that CSVM model gave better and consistent prediction
compared to LSVM, QSVM, and FGSVM. Further the prediction rate is high in CSVM
with kernel scale of 0.55.
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