Transformer Incipient fault prediction using Support Vector Machine (SVM)

* A. Kumar¹, Vidya H. A.²

¹ Visvesvaraya Technological University, Belagavi, ¹kumarbnmiteee@gmail.com ²Amrita Vishwa Vidyapeetham, Bengaluru, ^Lkumarbnmiteee@gmail.com, ² ha_vidya@blr.amrita.edu

DOI: 10.51201/JUSST/21/05208

http://doi.org/10.51201/JUSST/21/05208

Abstract: Power transformer is an important link in power system. Utilities will face a huge loss if a fault occurs transformer. The outage can cause loss to industry sector. Transformer incipient fault can be predicted using Dissolved Gas Analysis (DGA) based on gas ratios. The current work is an effort to use SVM to predict transformer incipient fault more precisely. DGA data of various transformer oil samples were collected and analyzed to select the best SVM kernel function and kernel factor to be used and to observe the prediction accuracy.

Key words: DGA, Transformer Incipient fault, IEC 60599, SVM classifier.

1. Introduction

Transformers form a crucial link in power system. It is one of the major asset of utilities. With increased demand for electric energy, transformers are being overloaded to cope with the demand. Failure of a transformer in-service, can result in loss of millions of dollars, based on the duration the transformer is out of duty. It is time consuming and costly to replace faulty transformers. Hence it is important to monitor the gases in the transformer condition. Due to various operating conditions in the transformer gasses are evolved in the transformer oil. These gases dissolve in insulation oil and can be used as indicator of incipient fault. Key gases evolved during the operation of transformer are shown in table 1.

Key Gas	Chemical representation	Fault type
Hydrogen	H ₂	Corona
Carbon monoxide and carbon dioxide	CO / CO ₂	Cellulose insulation breakdown
Methane and Ethane	$\mathrm{CH_4}/\mathrm{C_2H_6}$	Low temperature oil breakdown
Acetylene	C_2H_2	Arcing
Ethylene	C_2H_4	High temperature oil breakdown

 Table 1: Key gases evolved during fault

Monitoring gases evolved in the transformer oil can help in predicting the possible faults and this can be achieved by using DGA.

2. Dissolved Gas Analysis and IEC 60599

One of the most acceptable method to identify incipient fault in transformer is DGA [1]. The combustible concentration limits vary between different countries, continents and

* Corresponding author – A.Kumar

transformers. Hence setting the concentration limits is not easier. The incipient faults in oil-filled power transformer can be detected using DGA, which is more reliable. DGA is not science, but an art. It is the most prominent test in determining the state of a transformer. It acts as a first indicator to identify partial discharge, deteriorating insulation & oil, over heating hot spots, and arcing [2]. IEC60599 and IEEEC 57-104TM standards are used as standard for DGA. It helps in early diagnosis and provides opportunity to find suitable cure [3]. A characteristic amount of gas is produced in the transformer oil based on type of fault. There is a significant increase in the individual gas concentration, Total Dissolved Combustible Gas (TDCG). Gas chromatography is used to detect the gases as parts per million (ppm). It is used to identify, separate, and quantify mixtures of gases. The key gases found during DGA are hydrogen (H_2) , methane (CH_4) , acetylene (C_2H_2) , ethylene (C_2H_4) , ethane (C_2H_6) , carbon monoxide (CO), and carbon-di-oxide (CO₂). By using DGA incipient faults in a transformer can be predicted. Certain gases are formed in transformer oil even under normal transformer operational conditions. Therefore, large sampling is required to build concentration norms. The cost of unplanned outages can be reduced by the early detection of such internal faults in transformer. The interpretation of transformer faults using dissolved gases analysis is produced using some techniques that are assumed by Dornenberg, Rogers, Duval triangle and key gases methods. All the techniques mentioned above have its own pro's and con's. All the techniques do not arrive at same conclusion. The accuracy depends upon the expertise of the person handling the analysis. IEC standard 60599 for ratio method of DGA shown in table 2.

	IEC 60599	$C_2H_2/$	$CH_4/$	$C_2H_4/$	
		C_2H_4	H_2	C_2H_6	
	Ratios of characteristic				
	gases	0	1	0	
	<0.1	i i	ō	ŏ	
	0.1 -1	1	2	1	
	1-3	2	2	2	
	>3	2	2	2	
Case No.	Characteristic Fault				Typical examples
0	No fault	0	0	0	Normal ageing.
1	Partial discharges of low energy density	0 but not significant	1	0	Discharges in gas filled cavities resulting from incomplete impregnation or super saturation or cavitations or high humidity.
2	Partial discharges of low energy density	1	1	0	All above but leading to tracking or perforation of solid insulation.
3	Discharge of low energy	1-2	0	1-2	Continuous sparking in oil between bad connections of different potential. Breakdown of oil between solid materials.
4	Discharge of high energy	1	0	2	Discharges with power follow through. Arcing break down of oil between windings or coils, or between coil to earth. Selector breaking current.
5	Thermal fault of Low temperature <150°C	0	0	1	General insulated conductor overheating.
6	Thermal fault of Medium temperature range 150°C - 300°C	0	2	0	Local overheating of the core due to concentrations of flux. Increasing hot spot temperatures, varying from
7	Thermal fault of Medium temperature range 300°C - 700°C	0	2	1	small hot spots in core, overheating of copper due to eddy currents, bad contacts/joints (pyrolitic carbon
8	Thermal fault of high temperature > 700°C	0	2	2	formation) up to core and tank circulating currents

Table 2: IEC 60599 for fault prediction based on DGA

3. SVM Algorithm

Support Vector Machine" (SVM) is a supervised machine learning algorithm which is suitable for both classification and regression challenges [4][5]. In the SVM algorithm, a n-dimensional space is plotted where n is the number of features in data set. The value of each feature being the value of a particular coordinate. A hyper-plane is determined that differentiates the two classes the classification is done. The hyperplane should divide the set of samples such that all the points with the same label are on the same side of the hyperplane [6]-[11].

4. MATLAB simulation and analysis

For the experimentation and testing a data set of 200 samples were used. The data used were concentration of various gases like C_2H_2 , CH_4 , C_2H_6 , C_2H_4 and H_2 . The experimentation was conducted in two stages. In the first investigation various kernel function and kernel factors of SVM was used and predictions were done. The purpose was to identify the model best suited for fault prediction. The second investigation was done by varying the Kernel Scale and observing the impact on the prediction accuracy for the model selected. MATLAB version R2020a was used for the investigation. Table 3 shows sample data.

SI.		Gas	s Concentr	ations ppi	n	E 14 4
No.	\mathbf{H}_2	CH ₄	C_2H_2	C_2H_4	C ₂ H ₆	Fault type
1	2238	826	537988	335279	4008	High intensity discharge
2	2373	817	669150	447061	4284	High intensity discharge
3	2394	754	673175	360327	4049	High intensity discharge
4	6729	323	2	45353	2323	Low intensity discharge
5	10000	800	40	9	222	Low intensity discharge
6	9900	780	35	10	150	Low intensity discharge
7	10000	769	36	11	180	Low intensity discharge
8	30	80	3	220	675	Thermal fault
9	4000	6076	2	23232	4544	Thermal fault
10	100	200	1212	3222	188	No Fault

Table 3: Sample data of gas concentrations in ppm.

5. **Results and discussion**

5.1. Selection of Algorithm

Based on the kernel function, there are 4 types of SVM algorithm available for fault classification. They are Linear SVM (LSVM), Quadratic SVM (QSVM), Cubic SVM (CSVM) and Fine Gaussian SVM (FGSVM). In the initial experimentation fine tuning of the kernel factor with all the 4 cases was taken up to identify the most suitable kernel function and the value of kernel factor. The results are tabulated in Table 4 and represented in figure 1.

Kernel Scale	0.1	0.25	0.4	0.5	0.6	0.75	1	2
LSVM	84.4	69.8	61.8	59.8	60.3	60.3	70.9	84.4
QSVM	92.0	89.9	86.9	85.4	84.9	85.4	70.9	73.4
CSVM	67.8	61.3	91.5	91.5	91.5	81.4	70.9	73.4
FGSVM	88.4	88.9	87.9	86.9	85.9	83.9	87.9	72.9

Table 4: Prediction accuracy for different kernel function and kernel values

The results obtained depicted that CSVM gave a consistent prediction efficiency of 91.5% over a kernel scale of 0.4 to 0.6. The prediction efficiency of other methods was found to be not at the range of CSVM and was also not consistent. Hence CSVM was selected for the analysis in this work. The kernel scale was fixed at 0.55. The confusion matrix of CSVM with kernel factor of 0.55 is shown in figure 2.

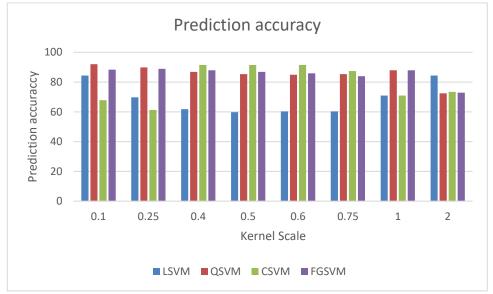


Figure 1: Prediction accuracy of various SVM function with the variation of kernel scale

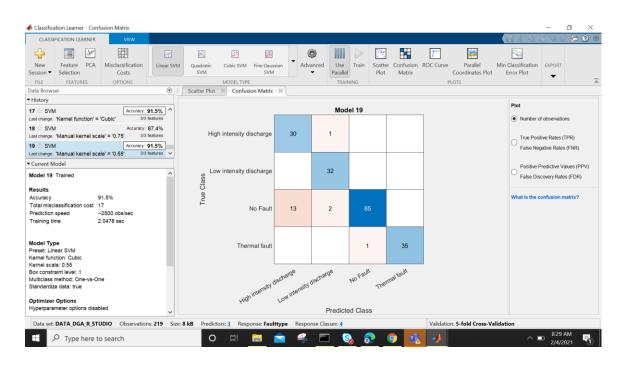


Figure 2: Confusion matrix for CSVM with kernel scale 0.55

The confusion matrix is a matrix of true class versus predicted class. It can be seen from the confusion matrix that the selected model has confusion in the prediction of "No-Fault" case only.

5.2. Transformer incipient fault prediction

From the analysis carried out in 5.1 the CSVM with kernel scale of 0.55 was selected. Region of Conversion (ROC) was used to identify the prediction accuracy for each of the fault type i.e. Low intensity fault, High intensity fault, Thermal fault and No fault cases. The ROC gives the prediction accuracy as a plot of true positive predictions v/s false positive predictions. The area under curve (AUC) is an indicator of accuracy. If the AUC is 0.97 it indicates 97% accuracy of prediction. The ROC curve for the four classes of faults namely Low intensity fault, High intensity fault, Thermal fault and No-fault cases are shown in figure 3 to figure 6.

Journal of University of Shanghai for Science and Technology

Å Classifica	tion Learne	r - ROC	Curve														- 0	• ×
CLASSI	ICATION LE	ARNER	VIEW														11 9 6 1	- 3
- }-	:	y			200	<u>i</u>			۲			100		7				
New Session 🔻	Feature Selection	PCA	Misclassification Costs	Linear SVM	Quadratic SVM	Cubic SVM	Fine Gaussi SVM	an	Advanced	Use Parallel	Train	Scatter Plot	Confusion Matrix	ROC Curve	Parallel Coordinates Plot	Min Classification Error Plot	EXPORT	
FILE	FEATU	RES	OPTIONS			MODEL TYPE				TRAIN	ING				PLOTS		•	
Data Brows	6L.				Scatter Plot 2	Confusi	on Matrix	× RC	C Curve 🛛 🖂									
 History 																Plot		
17 😭 SVM Last change:		iction' =	Cubic' 3/3 1	eatures						Mode	el 19					Positive class	s	
18 🖄 SVM			Accuracy:	37.4%			1	_								Thermal fault		~
Last change:	'Manual ke	ernel sca	le' = '0.75' 3/3 f	eatures			1	(0.00,	0.97)									
19 🏫 SVM			Accuracy:	1.5%												Negative class	sses	
Last change:	'Manual ke	ernel sca	le' = '0.55' 3/3 f	eatures 🗸			0.8									High intensity	y discharge	
Current M	odel						0.8									Low intensity	discharge	
Model 19:	Trained			^												No Fault		
						positive rate												
Results						9	0.6											
Accuracy			1.5%			sitiv				AUC =	= 1.00							
Total miscl Prediction			7 2500 obs/sec			ö												
Training tir			.0478 sec			True	0.4											
		-				μ,												
Model Typ							0.2											
Preset: Lin Kernel fund																What is the	ROC curve?	
Kernel scal											[ROC cu						
Box constru	aint level: 1						0						rve der curve (A					
Multiclass r			e				0				•		classifier	.00)				
Standardiz	a data: true	•																
Optimizer Hyperpara		ne die ab	lod				0		0.2 Fi	0.4 alse pos	0.6 sitive ra		0.8	1				
			JDIO Observation	 219 Size: 	8 kB Predictor	e 3 Resnu	onse: Fault	vne	Response Cla					Validatio	on: 5-fold Cross-V	alidation		
		A.K.SIL	Observation	Size:			anse. Faure	ype i	response Cla	5565. 4	_	_		validatio			8:35 AM	
- 1	О Туре	here to	o search		0		E	-	🥰 🔤		26	2 (9 👘		WB		8:35 AM 2/4/2021	
										_							2/4/2021	

Figure 3: ROC for Thermal fault, AUC = 1.0

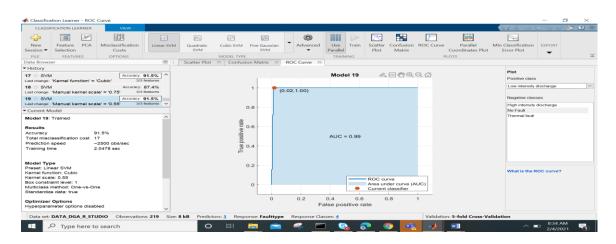


Figure 5: ROC for Low intensity discharge fault, AUC = 0.99

CLASSIF	ICATION LEA	RNER	VIEW														1 1 9 6	> 🗗 🕐
-	1	×				<u> </u>			0			122		7				
New	Feature	PCA	Misclassification	Linear SVM	Quadratic SVM	Cubic SVM	Fine Gaussian	•	Advanced	Use	Train	Scatter		ROC Curve	Parallel	Min Classificat	ion EXPORT	
sion 🔻	Selection		Costs		SVM	MODEL TYPE	SVM		÷	Parallel	ING	Plot	Matrix		Coordinates Plot	Error Plot	-	
a Browse					Scatter Plot	× Confusi	on Matrix 🖂	RO	C Curve 🖂									
istory																		
☆ SVM	Kernel fund	tion' = '	Accuracy:	91.5% ^						Mode	əl 19					Plot Positive d	lass	
☆ SVM	reenner rune		Accuracy:				1	_								High inter	sity discharge	
	Manual ker	nel sca		leatures				• (0	.08,0.97)									
			Accuracy:					(,							Negative	classes	
	Manual ker	nel sca	le' = '0.55' 3/3	features 🗸			0.8										sity discharge	
urrent Me	odel															No Fault Thermal f		
del 19:	Trained			^		æ										merman	aun	
sults						True positive rate	0.6											
curacy			1.5%			- A				AUC =	1 00							
tal miscli ediction :	assification		7 2500 obs/sec			öd				700-	- 1.00							
aining tin			.0478 sec			ILIE	0.4											
-						F												
del Typ																		
eset: Line	ar SVM						0.2										he ROC curve?	
rnel func	tion: Cubic															with a class	ne ROC curve?	
x constra	int level: 1						0					ROC cu	rve der curve (A	uci				
	ethod: One data: true	-vs-On					0					Current		,				
							0		0.2	0.4	0.6		.8	1				
timizer perparar	Options neter option	s disab	led	<u> </u>			0			alse pos								
		D 671	DIO Observation	e 219 Size	8 kB Predict	ors: 3 Resp	onse: Faultty	ne F	Response Cla	asses: 4				Validatio	on: 5-fold Cross-V	lidation		

Figure 6: ROC for High intensity discharge fault, AUC = 0.99

Journal of University of Shanghai for Science and Technology

📣 Classifica	tion Learner - RO	C Curve										- 0	\times
CLASSIF	ICATION LEARNER	VIEW										1 9 ¢ E	9 😨
- } -					<u>.</u>	0		1	F				
New Session 🕶	Feature PCA Selection	Misclassification Costs	Linear SVM	Quadratic Cubic SVM SVM	Fine Gaussian SVM	Advanced	Use Train Parallel		nfusion ROC Curve latrix	Parallel Coordinates Plot	Min Classification Error Plot	EXPORT	
FILE	FEATURES	OPTIONS		MODEL TYPE			TRAINING		P	LOTS			<u></u>
Data Browse	н		👻 S	catter Plot 🛛 🗶 🗌 Confusi	on Matrix 🔀 🛛 🖡	tOC Curve 🛛 🖂							
 History 											Plot		
17 SVM	Kernel function	= 'Cubic' 3/3	91.5% ^				Model 19	£, (= 1	∰€Q (;;)		Positive class		
18 🕸 SVM		Accuracy:	87.4%		1	_		-			No Fault		~
19 😭 SVM		Accuracy:							sitive rate: 0.66667 tive rate: 0.99		Negative class	es	
	Manual kernel so	cale' = '0.55' 3/31	features 🗸		0.8 (0.0	1,0.85)					High intensity		
 Current Me 	odel										Low intensity of Thermal fault	lischarge	
Model 19:	Trained		^	Ð							I hermal fault		
Results				rate	0.6								
Accuracy		91.5%		positive r									
	assification cost			OSI			AUC = 0.99						
Prediction :		~2500 obs/sec		e b	0.4								
Training tin	10	2.0478 sec		True	0.4								
Model Typ					0.2								
Preset: Line Kernel func					0.2						What is the R	OC curve?	
Kernel scal								ROC curve					
Box constra	int level: 1				0			Area under c	surve (AUC)				
	nethod: One-vs-0	One			0		•	Current class					
Standardize	data: true												
Optimizer Hyperparan	Options neter options disa	abled	~		0	0.2 F	0.4 0.6 alse positive ra		1				
Data set:	DATA_DGA_R_S	TUDIO Observation	s: 219 Size: 8 kt	B Predictors: 3 Resp	onse: Faulttype	Response Cla	sses: 4		Validatio	n: 5-fold Cross-Va	alidation		
I <i>S</i>	D Type here	to search		O 🖽	=		I 💫 6	> 📀	🐝 📣	W 3	~ -	8:34 AM	-

Figure 7: ROC for No-fault, AUC = 0.99

The observations are tabulated in table 5

Table 5: Prediction	accuracy of incipien	t faults using	CSVM algorithm.
I upic cr I i cuichom	accuracy of merpion	c radito doning	CO THE MILLION

Sl. No.	Type of incipient fault	AUC	Prediction accuracy
1	Thermal fault	1.0	100 %
2	Low intensity discharge fault	0.99	99%
3	High intensity discharge fault	1.0	100%
4	No-fault	0.99	99%

6. Conclusion

Transformer incipient fault prediction was carried out using SVM machine learning algorithm. It was observed that CSVM model gave better and consistent prediction compared to LSVM, QSVM, and FGSVM. Further the prediction rate is high in CSVM with kernel scale of 0.55.

7. Acknowledgement

The authors wish to thank the management of Amrita School of Engineering, Amrita Vidyapeetam, Bengaluru Campus, GAT & its R&D center in Department of EEE and BNMIT & its R&D center in Department of EEE for providing opportunity to carry out our research work.

8. References

^{1.} M.Wang, A.J.Vandermaar and K.D.Srivastava, "Review of condition assessment of power transformers in service", vol 18, no.6, IEEE Electrical Insulation Magazine, Nov/Dec 2002.

^{2.} M N Bandyopadhyay, "Condition monitoring for Power transformer", International conference on condition monitoring and diagnosis, 2008.

^{3.} Ahmed Abu-Siada,Sdood Hmood," Fuzzy logic approach for power transformer asset management based on dissolved gas in oil analysis", Chemical Engineering Transactions, Vol 33, 2013. Pp: 997-1002.

- 4. Yan Zhang, Bide Zhang, Yuchun Yuan, Zichun Pei, "Transformer Fault Prediction Based on Support Vector Machine", IEEE, 978-1-4244-6379-7/10.
- S. Sasank Varthakavi, Babu, D. Rohith Pra, Reddy, L. Kumar Redd, and Remya Ajai A. S., "Analysis of preprocessing algorithms for face detection using KNN and SVM classifiers", in 10th International Conference on Advances in Computing, Control, and Telecommunication Technologies, ACT 2019, 2019.
- 6. Kavitha K. R., Gopinath, A., and Gopi, M., "Applying Improved SVM Classifier for Leukemia Cancer Classification Using FCBF", in 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Udupi, India, 2017.
- 7. M. V. Sukanya, Shiju Sathyadevan, and Sreeveni, U. B. Unmesha, "Benchmarking support vector machines implementation using multiple techniques", in Advances in Intelligent Systems and Computing, vol. 320, pp. 227-238, 2015.
- 8. S.M.S. and Maya L. Pai, "Improving the Performance of Sigmoid Kernels in Multiclass SVM Using Optimization Techniques for Agricultural Fertilizer Recommendation System", International Conference on Soft Computing Systems. Springer, vol. 837, 2018.
- 9. K.K. Natarajan and Gokulachandran J., "Artificial Neural Network Based Machining Operation Selection for Prismatic Components", International Journal of Advanced Science, Engineering and Information Technology, vol. 10, no. 2, pp. 618–628, 2020.
- Chaitanya Medini, Asha Vijayan, Ritu Maria Zacharia, Lekshmi Priya Rajagopal, Bipin Nair and Shyam Diwakar, "Spike encoding for pattern recognition: Comparing cerebellum granular layer encoding and BSA algorithms", 2015 International Conference on Advances in Computing, Communications and Informatics (ICACCI), IEEE, 978-1-4799-8792-4/15, 2015.
- 11. H Haripriya, Prathibhamol Cp, Yashwant RPai, M Sai Sandeep, Arya M Sankar, Srinivas Nag Veerla and Prema Nedungadi, "Multi Label Prediction Using Association Rule Generation and Simple k-Means", 2016 International Conference on Computational Techniques in Information and Communication Technologies (ICCTICT), IEEE, 978-1-5090-0082-1/16, 2016.

9. Biographies

A. Kumar was born in Karnataka, India, in 1969. He obtained the B.E. degree in Electrical and Electronics Engineering from Bangalore University, Karnataka, in 1993, the M.S. degree in Electronics and controls from BITS, Pilani, in 1999, the M.Sc (Engg) degree in Electrical Sciences from Visvesvaraya Technological University, India, in 2013 respectively. His area of research includes High voltage Engineering and Machine learning.

Vidya H.A was born in Karnataka, India in 1974. She obtained the B.E. degree in Electrical and Electronics Engineering from Mysore University, India, in 1996, the M.Tech degree in Computer Application in Industrial Drives from Visvesvaraya Technological University, India, in 2001, and the Ph. D degree in Electrical Sciences from Visvesvaraya Technological University, India, in 2009 respectively. She is a Senior IEEE Member, Fellow Institution of Engineers (FIE), Fellow Indian Society of Lighting Engineers (FISLE), & life member MISTE

Presently, she is the Professor and Chair, Department of EEE with Amrita School of Engineering, Amrita Vidyapeetam, Bengaluru Campus. India. Her research interests include Power Quality issues in electrical engineering and High voltage engineering.