
A Dynamic Improvement of a Training Dataset for Source Code

Classification Using Deep Learning approach

*Ms Anshika Shukla1, Mr Sanjeev Kumar Shukla2

1M.Tech Research Scholar, Department of Computer Science and Engineering, Kanpur Institute of Technology,

Kanpur, India

2Assistant professor and Head of Department, Department of Computer Applications, Kanpur Institute of
Technology, Kanpur, India

1anshikashukla4@gmail.com , 2sas@kit.ac.in

Abstract
In recent years, there are various methods for source code classification using deep learning

approaches have been proposed. The classification accuracy of the method using deep learning is

greatly influenced by the training data set. Therefore, it is possible to create a model with higher

accuracy by improving the construction method of the training data set.In this study, we propose a
dynamic learning data set improvement method for source code classification using deep learning. In

the proposed method, we first train and verify the source code classification model using the training

data set. Next, we reconstruct the training data set based on the verification result. We create a high-
precision model by repeating this learning and reconstruction and improving the learning data set.In

the evaluation experiment, the source code classification model was learned using the proposed

method, and the classification accuracy was compared with the three baseline methods. As a result, it
was found that the model learned using the proposed method has the highest classification accuracy.

We also confirmed that the proposed method improves the classification accuracy of the model from

0.64 to 0.96

Index Terms - source code classification, Abstract Syntax tree, Graph Convolution network,

learning dataset

I. INTRODUCTION

For efficient software development, developers frequently reuse existing source code[1], [2].The
source code classification method is a method that automatically identifies which source code is

similar to the existing source code belonging to which class, based on the pre-prepared class. By

using this source code classification method, developers can quickly identify the source code to be
reused. Various source code classification methods have been proposed until now. [3] ~ [7].In

recent years, methods for source code classification using deep learning, such as TBCNN [6], have

been proposed. It showed the degree.
In general, the classification accuracy of a deep learning model is greatly influenced by the training

data set. In the existing research on source code classification using deep learning [6] and [7],

random sampling is used, which is a method to arrange the number of data between classes by

randomly extracting data considering learning time and request memory
 However, random sampling is a static method, which modifies the training data set by 1 degree

before the model is trained. Static methods may be inefficient in terms of classification accuracy

because it is generally difficult to predict the learning results of the model. Therefore, it is possible
to create a model with higher accuracy by dynamically improving the training data set many times

using the training result of the model. In this study, we propose a dynamic learning data set

improvement method for source code classification using deep learning. In the proposed method,
after actually learning a deep learning model, the similar source code is added to a class whose

learning is not progressing accurately based on the verification result of the model. As a result, the

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 7, July - 2021 Page -10

learning of the class proceeds accurately, and the classification accuracy of the model which was

declining is improved.
In the evaluation experiment, we constructed a learning data set using three baseline methods and a

proposed method from 20 kinds of similar methods included in open source software, respectively,

and learned the source code classification model, and compared the classification accuracy. As a

result, it was confirmed that the proposed method can classify methods with high accuracy
compared with the baseline method, which was trained by aligning the number of methods between

each class or the number of nodes in the Abstract Syntax Tree (AST).In addition, it was confirmed

that the classification accuracy was improved by repeated model training and addition of similar
source code using the proposed method.

Since, 2.The background of this research is described.3.The method proposed in this study is

described.4.The evaluation experiment of this study is described.5.In this article, we will talk about
the threat of validity in the future.6.In this article, we will talk about related research. Finally, 7.In

this paper, we will summarize and discuss future issues.

2. Background

 The source code classification method in this study is a method that automatically classifies the

source code given as an input into class in which the existing source code is classified. Using this

method, software can be developed efficiently. For example, if the source code can be automatically

classified by function, the tag related to the function can be automatically assigned to the newly

registered source code in a large software repository. In this way, by using the source code

classification method, it becomes easier for developers to search for source code with necessary

functions and reuse existing source code, and it is expected to improve the productivity of software

development.

In the research on source code classification, various methods have been proposed to date, such as

classification by descriptive language [3], classification by dependencies between components [4],

and classification by program meaning (functionality).In addition, source code classification

according to the meaning of programs is tackled at various granularity, and there are software-based

classification methods [5] and method-based classification methods [7].

In recent years, a method for classifying source code with high accuracy by using deep learning has

been proposed. [6], [7].

2. 1 Graph Convolution network

Graph Convolution network (GCN) [8] is a neural network that extracts nodes, edges, and features of

the entire graph by convolving adjacent nodes of the graph. When training a graph, the original graph

may be deformed according to the input format of the deep learning model. [6]However, the graph is

not deformed in GCN.Therefore; there is an advantage that the structural information of the graph is

not missing. This makes it possible to use the information contained in the graph more accurately than

the model in which the graph needs to be deformed. An example of the convolution layer of GCN is

shown in Figure.

Z=f(X,A) = softmax(Â ReLU(ÂXW^(0)) W^(1))

Fig: Graph convolution network

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 7, July - 2021 Page -11

It describes the procedure for calculating the vector representation of node 0 in the middle of the

graph in the upper right corner. For the vector in the convolution n+1 layer of node 0, an intermediate

vector is calculated from the vector in the n-th layer of adjacent nodes and the weights of each edge

(ingoing, outgoing, self-loop), and the vector obtained by adding all the intermediate vectors for each

edge is input to an activation function such as ReLU (a function that corrects the output of the

network). It is obtained in this way, the vector representation of node 0 is calculated by taking into

account the vector representation of nodes 1, 2, and 3 adjacent to node 0.

2. 2 Mutation for the purpose of creating similar source code

Mutation for source code is to change the source code based on the rules set in advance [9], [10].In

general, mutation is used to evaluate test cases. [9]Roy et al. propose a method to evaluate the accuracy

of similar source code detection tools by creating similar source code using mutation [10].

Fig: Cycle of GCN input with mutation

In this method, the source code change rules when creating similar source code are called mutation

operators. The following 14 types of mutation operators are defined

mCW: Change the number of whitespace

mCC : Change a comment

mCF: Change the coding style such as line breaks.

mRI: Change user-defined names such as variable names, variable types, etc. regularly.

mARI: Change user-defined names such as variable names, variable types, etc. irregularly.

mRPE: Replace a single expression of a variable with another expression.

mSIL: Make a slight insert into a statement

mSDL: Delete part of a sentence

mILs: Insert one or more statements.

mDLs: Delete one or more statements.

MMLs: to fix one or more statements.Sort

MRDS :declaration statements.Sort statements other than

mROS: declarations.replace a control structure, such as an

mCR :if statement, with another.

Figure shows an example of applying the mutation operator MSDL to the source code. By deleting the

statement in Line 2 a source code that is syntactically similar to the original source code which was

created. In this study, we create similar source code using the mutation operator defined by Roy et al.

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 7, July - 2021 Page -12

2. 3 Learning Dataset:

In general, in deep learning, the construction method of the training data set has a great influence on

the classification accuracy of the model. Therefore, a method for improving the training data set has

been proposed. [11]Unbalanced data problem is one of the causes that degrades the accuracy of

classification models using deep learning. The unbalanced data problem is a problem in which the

classification accuracy of the model is lowered because the number of data is unbalanced between

classes, and the training does not proceed accurately for a certain class.Yan et al. [11] are working to

improve the learning data set by solving this unbalanced data problem.

Specifically, we delete the data of the class with a large number of data, and add new data to the class

with a small number of data.In particular, the method of randomly deleting data from a class with a

large number of data and aligning the number of data between classes is called random sampling. This

random sampling is used in many existing studies [6] and [7] that have worked on source code

classification using deep learning.

However, the existing data set improvement method for learning is a static method. In this study, the

static method aims to equalize the weights of the data in each class, and it is a method to modify the

training data set by 1 degree without using the training result of the model. Since it is generally

difficult to predict the training results of the model, static methods that modify the training data set by

only 1 degree may be inefficient in terms of classification accuracy. Therefore, it is possible to create

a model with higher accuracy by dynamically improving the training data set many times using the

training result of the model.

3. Proposed Approach:

In this study, we propose a dynamic learning data set improvement method for source code

classification using deep learning. Since the method of constructing the data set has a large influence

on the learning result of the deep learning model, it is expected that the classification accuracy of the

model can be improved by constructing a more appropriate data set.

The proposed method unlike the existing training data set improvement method described in further

Section , a major feature is the reconstruction of the dynamic training data set based on the learning

results of the source code classification model. Since it is generally difficult to predict the learning

results of deep learning, the proposed method actually learns the deep learning model, and then

reconstructs the data set based on the learning results.

3. 1 Definition of Terms:

Similar Source code set A set of source code that is syntactically similar to each other is defined as a

similar source code set S.If the number of classes is n, the source code covered in this study is similar

to the source code set S0:::Sn. Similar source code set ID In this study, the unique index 0:::n for each

n similar source code set. Learning Dataset The source code group used to train the model is defined

as a learning dataset. Evaluation Data Set The source code group used to evaluate the classification

accuracy of the model is defined as the evaluation data set.

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 7, July - 2021 Page -13

3. 2 Dynamic Learning Data Set Improvement Methods:

First, we define STEP A (Adjustment) as a method for improving dynamic learning data sets

proposed in this study. In STEPA, learning the source code classification model and adding the source

code to the training data set are repeated until the classification accuracy of the model is no longer

improved. In this case, the initial training data set is constructed by random sampling. In this study, 2.

The source code classification method using GCN introduced in 2 is used. This source code

classification method is. The AST can be used as training data as it is. Therefore, unlike the existing

method using deep learning, AST is not changed due to the convenience of the input format, so there

is an advantage that the program structure information is not missing. This classification method

consists of two steps: STEP T (Training) to train the model and STEP C (Classification) to classify

the source code using the trained model.

STEP A1: To handle the very first adjustment for data.

STEP T : train the learning data set to the source code classification model.

STEP A2: To verify that the source code classification model accurately trains the training data set,

STEP C : Classify the source code in the training data set using the trained model.

As a result, the model outputs inferred results of similar source code set IDs for each source code, so

it is divided into source code with the correct ID output(true classification)and source code with the

wrong ID output(false classification).

STEP A3 For the source code that outputs the wrong ID 2. Apply 3 mutations and create a certain

number of similar source code.In this study, when creating a similar source code, one of 11 operators

except MCW, MCC, and MCF, which are operators that do not change AST, are randomly selected

and applied.

STEP A4: For similar source code created by mutation, assign the same ID as the similar source code

set ID assigned to the original source code, and then add a certain number to the training data set.

Repeat above STEPS A1 to A4 until the number of false classifications no longer decreases.

3. 2. 1 GCN Learning Procedure for Source Code Classification Model (STEP T)

In STEP T, we create a source code classification model by supervised learning.An overview of STEP

T is as below:

STEP T1 Construct a similar source code set from the source code to be studied, and assign a unique

similar source code set ID to each similar source code set.

STEP T2 Parse each source code and convert it to AST.S

TEP T3 Convert each AST to the form of adjacency matrix and feature matrix.

STEP T4 We train GCN by supervised learning using adjacency and feature matrices as explanatory

variables and target variables with similar source code set IDs, and create a source code classification

model.

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 7, July - 2021 Page -14

3. 2. 2 SOURCE CODE Classification PROCEDURE USING A Trained Model (STEP C)

In STEP C, source code classification is performed using the trained model created by STEP

T.Overview of STEP C is as below:

STEP C1: Parse the source code to be classified, convert it to AST, and then convert it to the form of

adjacency matrix and feature matrix.

STEP C2: Enter the adjacency and feature matrices into the source code classification model.

STEP C3: Inferred result of similar source code set ID for source code to be classified is output.

STEP C4: Classify the source code to be classified as a similar source code set indicated by the output

similar source code set ID.

4. Evaluation experiment

 Evaluation experiments were carried out to confirm that the proposed method is effective for

improving the learning data set. In the evaluation experiment, we constructed a learning data set using

3 kinds of baseline methods, a proposed method, and a total of four methods, respectively, and

compared the classification accuracy of each model in which each constructed learning data set was

trained. The accuracy of classification in this evaluation experiment is 4. Included in the evaluation

dataset created according to 1.

Table: Experimental Environment Tuning

The method is classified correctly by the model.In this evaluation experiment, the source code unit to

be classified was a method, and the method name and arguments were not used, and the classification

was carried out based on the description of the method body.The reason for classifying methods in

evaluation experiments is that methods are a collection of one function, so they are easy to be reused.

In this evaluation experiment, antlr is used for the ast transformation of the method in step t2, and

cpp14 is used for the grammar file.In addition, the implementation of GCN used the implementation

of Kipf et al. [12].The environment in which this evaluation experiment was carried out is shown in

Table above.

4. 1 Data Set

In the evaluation experiment, open source software Versions of OpenSSL
(Note 4)

 0.9.1 to 1.1.1, in 13

versions, used more than 20 methods that were edited between versions.In this experiment, we created

a similar source code set under the assumption that methods with the same name, including the file

path, have the same function in each version of the same project, and methods with different names

have different functions.First, we selected a set of similar source code to be used for learning and

evaluation.Specifically, we have created a similar source code set that collects methods with the same

name that are being edited between versions.In this case, 20 similar source code sets were randomly

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 7, July - 2021 Page -15

selected and used due to the memory capacity.Next, Figure shows how to create a learning and

evaluation dataset from each similar source code set.First, we added methods other than the oldest

version in the similar source code set to the evaluation dataset. At this time, we added only methods

with differences in descriptions between versions. As a result, the number of methods in the

evaluation data set in this evaluation experiment was 166.Next, you can create a certain number of

similar methods by applying mutation to the oldest version of the method in the similar source code

set

Figure: Overview of how to create Learning and Evaluation Datasets

It was created and added to the training data set. Here, when creating a similar method, one of 11

different operators except MCW, MCC, and MCF, which are mutation operators that do not change

AST, is randomly selected and applied to 1.Also, the number of similar methods to create and add is

4. It depends on the data set construction method of 2.We applied this to the selected 20 similar

source code sets, and created a learning and evaluation data set. By creating the data set as described

above, we avoided that syntactically matching methods are included in both the training and

evaluation data sets. In this way, we can evaluate the classification accuracy of deep learning models

for uneducated methods.

However, a method created with mutation applied may belong to a similar source code set that is

different from the original method. In order to solve this problem, the first author of this paper

visually verified all 20 similar source code sets, and confirmed that there are large differences in

implementation functions between methods belonging to different similar source code sets. In

addition, when the mutation operator is applied, the percentage of lines to be changed is limited to 5%

or less of the total number of lines of the method. Due to the above visual confirmation and the

limitation of the number of lines of change, even if you create a method that has slightly changed its

functionality due to mutation, it is similar to the original method, so it is included in the same similar

source code set as the original method.

4. 2 Data Set Construction Method:

The details of the 3 types of baseline methods and proposed methods are as follows. Method-oriented-

n Use the method created by applying mutation to the training dataset for each similar source code set

ID n times. In this evaluation experiment, n=50; the experiment is carried out for 500 2 streets. The

training data set in Method-oriented-n has n 20 methods because it uses 20 similar source code sets.

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 7, July - 2021 Page -16

Table: Details of the datasets constructed by each method

Node-Oriented AST The method created by applying mutation is used for the training dataset so that

the total number of nodes is approximately 15,000 per similar source code set.As a result, the number

of methods in the training dataset in Node-oriented was 6461.The proposed method starts learning

from the state of Method-oriented-50, 3. 2STEP A4 adds 10 new methods.Therefore, Method-

oriented-50 is the initial state of the proposed method. As a result of the improvement of the training

data set using the proposed method, the final training data set has 1360 methods.In addition, Table

below shows details of the data sets for each method.Here,”For learning“is the number of methods

included in the training data set,”for evaluation“is the number of methods included in the evaluation

data set, and”percentage“is the ratio of”for learning“and”for evaluation".

4. 3 Experiment Procedure:

This evaluation experiment is carried out by the following procedure.

(1)Based on the four techniques described in sections above Construct a learning dataset from 20

similar source code sets selected as shown.

(2) Each of the 4 types of learning data sets constructed in step above is trained, and four source code

classification models are created.

(3) Evaluate the classification accuracy of each source code classification model using the evaluation

data set.

4. 4 Experimental results:

The classification accuracy of each data set construction method is shown in Table 3.As can be seen

from this table, the data constructed by the proposed method The model that trained the set has the

highest classification accuracy. Next, the classification accuracy of the model that trained the data set

constructed with Node-oriented is high. It was found that the classification accuracy of the model

trained with the data set constructed with Method-oriented-500 was the 3rd highest, and the

classification accuracy of the model trained with the data set constructed with Method-oriented-50

was the lowest.

Table: Accuracy of similar method classification

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 7, July - 2021 Page -17

Also, STEP A5 shows the change in classification accuracy when model training and the addition of

similar source code are repeated. It shows the change in classification accuracy when model training

and the addition of similar source code are repeated.From this figure, as a result of dynamically

adding similar source code by STEP A5, it was confirmed that the classification accuracy of the

source code classification model was improved from 0.64 to 0.96.

4.5 Research:

In the evaluation experiment, the classification accuracy of each source code classification model

which trained the learning dataset constructed by three baseline methods to improve the learning

dataset and a total of four methods of the proposed method was compared. As can be seen from Table,

the classification accuracy of the model trained by the training data set of the proposed method is the

highest. When we confirmed the classification result, there was a similar source code set in which the

methods contained in the evaluation data set were not classified at all in the baseline method. On the

other hand, in the proposed method, there was no similar source code set in which the methods

contained in the evaluation data set were not classified at all. In this way, it is clarified that the

classification accuracy can be improved by using the proposed method.

In addition, as can be seen from experiment result, we were able to improve the classification

accuracy by repeating the addition of similar source code (STEP A5) based on the learning results of

the model. From this result, it is also possible to improve the training data set.

It is shown that the proposed method is effective. In given figure, the classification accuracy may

decrease. This may be due to the fact that when adding similar source code to the training data set in

STEP A4, the ratio of the number of training data after the addition has moved away from the ideal

ratio of the number of training data after the addition than before the addition.

Next, in this evaluation experiment, the number of similar source code of the learning data set is

monotonically increased, but conversely, the method to reduce the number of similar source code is

also considered. However, it is not efficient in this evaluation experiment. As shown in given figure,

in this evaluation experiment, the classification accuracy of the initial state exceeds 0.5, and the

accuracy is high to some extent as a 20-class classification model. Therefore, it is not necessary to

make bold changes to the learning data set, and it is considered to be a stage to be fine-tuned. In

addition, we examined the classification results and confirmed that there were more similar source

code sets that could be classified correctly. Therefore, the method of increasing the similarity source

code requires less modification of the training. data set, and is more suitable for fine-tuning the

training data set.Therefore, when the classification accuracy is 0.5 or higher, the method of increasing

the number of similar source code is considered to be efficient. On the other hand, a method to reduce

the number of similar source code should also be considered when the classification accuracy is lower

than 0.5.

Below table shows the details of the number of methods and AST nodes in the training data set after

the improvement by the proposed method. As can be seen from this table, in the training data set

constructed using the proposed method, there is an imbalance between the number of methods and the

number of nodes in the AST each similar source code set. However, in the evaluation experiment in

this study, the classification accuracy of the model which trained the data set constructed using the

proposed method was the highest. In this way, even if the number of methods and the number of

nodes are ultimately unbalanced than the data set constructed by aligning the number of data between

classes like the baseline method, the training data set dynamically reconstructed based on the learning

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 7, July - 2021 Page -18

result of the source code classification model is more accurate training of the deep learning model I

found that I can run.

Table: Details of the dataset after improvement by the proposed method

5. Related research

5. 1 Efficient learning of unbalanced data:

As explained in sections above, an imbalance in the number of data between classes in the training

data set can adversely affect the learning results and efficiency of the model. Therefore, many

researchers are working on efficient learning of unbalanced data.

Yan et al. [11] propose a learning method for classification models corresponding to unbalanced data

by constructing a training data set using oversampling and downsampling.This method addresses the

unbalanced data problem by statically improving the training data set.Yan et al., [14] propose a

learning method for classification models that addresses unbalanced data problems in multimedia data

sets by incorporating the bootstrap method into convolution neural networks (CNNs).Chen and Shyu

[15] propose a classification method corresponding to unbalanced data using the k-mean method.

These two methods address the unbalanced data problem by statically modifying the learning

algorithm. The proposed method differs from the existing method in that it dynamically improves the

learning data set.

Recently, a study on source code classification using deep learning has been published.

Mou et al. [6] proposed a model called TBCNN, which transforms AST into a tree, creates a vector

representation of AST nodes by unsupervised learning, and captures the features of the whole AST by

sliding a tree-based convolution kernel to the whole AST, and applies this model to the source code

classification. hang et al. [7] vectorize the source code by dividing the AST of the source code into

statement levels, vectorizing each, and then entering a stream of statement vectors into the Bi-

directional Gated Recurrent Unit (Bi-GRU) [16]. We propose a deep learning model called ASTNN

and apply this model to source code classification. The source code classification method used in this

study is characterized by the ability to learn the structure of the AST by using GCN.

6. Conclusion and Future Work

In this study, we propose a dynamic learning data set improvement method for source code

classification using deep learning.In the proposed method, after learning the source code classification

model, we verify the classification accuracy of the model using the training data set.Then, we mutate

the source code of the learning dataset that could not be classified correctly, and add the created

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 7, July - 2021 Page -19

similar source code to the learning dataset.In the evaluation experiment, the source code classification

model was trained using each learning data set constructed by a total of four data set construction

methods of the baseline method and the proposed method for open source software, and the

classification accuracy was compared. As a result, it was confirmed that the model learned from the

data set constructed using the proposed method classifies the source code with the highest accuracy.

In addition, it was confirmed that the classification accuracy was improved by repeated model training

and addition of similar source code using the proposed method.

The future aspects that could be worked on in future are:

 Compare the classification accuracy of existing and proposed methods for solving unbalanced

data problems. We apply the proposed method to the existing source code classification

method, which is different from the source code classification method using GCN in this

study, and evaluate the effectiveness of the proposed method.

 Evaluate the usefulness of the proposed method for larger data sets by increasing the number

of similar source code sets to be trained.

 The results of the evaluation experiment may be specialized in OpenSSL.Therefore; we

conduct evaluation experiments on other software to evaluate the versatility of the proposed

method.

 The effect of the initial state of the proposed method on classification accuracy is

investigated.

 Investigate how the additional number of source code in Step A4 affects the process of

improving the learning dataset and the final classification accuracy.

7. Acknowledgement

I would like to thank my deep sense of gratitude to college, that provided us an opportunity

to write a paper. I give special thanks my project guide, Mr. Sanjeev Kumar Shukla,

Kanpur Institute of Technology Kanpur for his inestimable guidance, valuable

suggestions and constant encouragement during the course of this study.

I am sincerely grateful to our Director Prof(Dr) Brajesh Varshney,Professor for his kind

help assistance and for providing me all the facilities in accomplishing this work of the

Institute for the help provided us during the writing the content of this paper.

I would also like to give special thanks to Mr. Ayush Mishra for his help and support

during writing this paper.

 I would also like to give special thanks to our HOD’s of CSE & IT and my Family

members for all their blessing for their true encouragement and guidance in the completion

of the paper.

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 7, July - 2021 Page -20

References:

[1] R. Hoffmann, J. Fogarty, and D.S. Weld, “Assieme: Finding andleveraging implicit references in a

web search interface for pro-grammers,” Proc. UIST 2007, pp.13–22, New York, NY, USA,Oct.

2007. DOI:10.1145/1294211.1294216

[2] K.T. Stolee, S. Elbaum, and D. Dobos, “Solving the search forsource code,” ACM Trans. Softw.

Eng. Methodol., vol.23, no.3,pp.26:1–26:45, June 2014. DOI:10.1145/2581377

[3] G. Kavita and F. Romano, “C# or java? typescript or javascript?machine learning based

classification of programming languages,”https://github.co/2Jif7Sg, 2019.

[4] R. Yokomori, N. Yoshida, M. Noro, and K. Inoue, “Use-relationship based classification for

software components,” Proc.QuASoQ 2018, pp.59–66, Nara, Japan, Dec. 2018.

[5]S. Kawaguchi, P.K. Garg, M. Matsushita, and K. Inoue, “Mud-ablue: An automatic categorization

system for open source repos-itories,” J. Systems and Software, vol.79, no.7, pp.939–953,

2006.DOI:10.1016/j.jss.2005.06.044

[6] L. Mou, G. Li, L. Zhang, T. Wang, and Z. Jin, “Convolutionalneural networks over tree structures

for programminglanguageprocessing,” Proc. AAAI 2016, pp.1287–1293, Phoenix, Arizona,USA, Feb.

2016. DOI:10.5555/3015812.3016002

[7] J. Zhang, X. Wang, H. Zhang, H. Sun, K. Wang, and X. Liu, “Anovel neural source code

representation based on abstrace syntaxtree,” Proc. ICSE 2019, pp.783–794, Montréal, QC, Canada,

May2019. DOI:10.1109/ICSE.2019.00086

[8] M. Schlichtkrull, T.N. Kipf, P. Bloem, R. Van Den Berg, I. Titov,and M. Welling, “Modeling

relational data with graph convo-lutional networks,” Proc. ESWC 2018, pp.593–607, Heraklion,Crete,

Greece, June 2018. DOI:10.1007/978-3-319-93417-4_38

[9] Y. Jia and M. Harman, “An analysis and survey of the developmentof mutation testing,” IEEE

Trans. Software Engineering, vol.37,no.5, pp.649–678, Sept. 2010. DOI:10.1109/TSE.2010.62

[10] C.K. Roy and J.R. Cordy, “A mutation/injection-based auto-matic framework for evaluating code

clone detection tools,”Proc. ICSTW 2009, pp.157–166, Denver, CO, USA, April

2009.DOI:10.1109/ICSTW.2009.18

[11] Y. Yan, Y. Liu, M.-L. Shyu, and M. Chen, “Utilizing conceptcorrelations for effective

imbalanced data classification,” Proc.IRI 2014, pp.561–568, Redwood City, CA, USA, Aug.

2014.DOI:10.1109/IRI.2014.7051939

[12] T.N. Kipf and M. Welling, “Semi-supervised classification withgraph convolutional networks,”

Proc. ICLR 2017, Palais des Con-grés Neptune, Toulon, France, April 2017.

[13] Hiroshi Fujiwara,”Similarity Source Code Search using Abstract Syntax Trees and Graph

Convolution Networks, " Master's Thesis, Graduate School of Information Science, Osaka University,

Feb. 2020. http://sel.ist.osaka-u.ac.jp/lab-db/Mthesis/contents.ja/150.html

[14] Y. Yan, M. Chen, M.-L. Shyu, and S.-C. Chen, “Deep learningfor imbalanced multimedia data

classification,” Proc. ISM 2015,pp.483–488, Miami, FL, USA, Dec.

2015.DOI:10.1109/ISM.2015.126

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 7, July - 2021 Page -21

[15] C. Chen and M.-L. Shyu, “Clustering-based binary-class classifi-cation for imbalanced data

sets,” Proc. IRI 2011, pp.384–389,LasVegas, NV, USA, Aug. 2011. DOI:10.1109/IRI.2011.6009578

[16] D. Tang, B. Qin, and T. Liu, “Document modeling with gatedrecurrent neural network for

sentiment classification,” Proc.EMNLP 2015, pp.1422–1432, Lisbon, Portugal, Sept.

2015.DOI:10.18653/v1/D15-1167

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 7, July - 2021 Page -22

