
A Python based Design Verification Methodology

Ankitha1, Dr. H. V. Ravish Aradhya* 2
 1 Student, R.V. College of Engineering, Bengaluru

2 Professor & Associate PG Dean, R.V. College of Engineering, Bengaluru
1ankitha.ec17@rvce.edu.in, 2 ravisharadhya@rvce.edu.in

Abstract: While the UVM-constrained random and coverage-driven verification
methodology revolutionized IP and unit-level testing, it falls short of SoC-level verification
needs. A solution must extend from UVM and enable for vertical (IP to SoC) and horizontal
(verification engine portability) reuse to completely handle SoC-level verification. To
expedite test-case generation and use rapid verification engines, it must also provide a
method to collect, distribute, and automatically amplify use cases. Opting a Python based
Design Verification approach opens the door to various such merits. Cocotb is a very useful,
growing methodology which can be used for the same.

This paper elaborates on the application of cocotb, an open source framework hosted on
Github which is based on CO-routine and CO-simulation of Testbench environment for
verifying VHDL/Verilog RTL using Python. It employs equivalent design-reuse and
functional verification concepts like UVM, however is implemented in Python, which is much
simpler to understand and that leads to faster development and reduces the turn around time.

Keywords: system-on-chip, design verification, universal verification methodology,
intellectual property, design under test

1. Introduction

Modern system-on-chip (SoC) designs have been evolving towards heterogeneous
compositions of general purpose and specialized computing fabrics as Dennard scaling has
ended and Moore’s law has slowed. This heterogeneity makes the already difficult work of
SoC design and verification much more difficult. Multiple generations of open-source
hardware modelling frameworks have attempted to address the growing complexity of
hardware design and verification. Comprehensive, productive, and open-source verification
procedures that decrease the labour necessary to build completely validated hardware blocks
are a critical missing component in the open-source hardware ecosystem.

Verification of open-source hardware has numerous substantial hurdles as compared
to closed-source hardware. Closed source hardware, for starters, is typically owned and
maintained by firms with specialized verification teams. These verification engineers often
have a lot of expertise with constraint-based random testing using commercial
SystemVerilog simulators utilizing a universal verification methodology (UVM). Open
source hardware teams, on the other hand, typically use an agile test-driven design method
borrowed from the open-source software community, in which the designer is also
responsible for writing the tests. Furthermore, due to the high learning curve and limited
support in existing open-source tools, open-source hardware teams seldom employ the
UVM-based method. Instead of replicating closed-source hardware testing frameworks, the
open-source hardware industry deliberately needs an alternate way for verifying open-source
hardware.

The top-down approach offered by UVM does not work well for complex
multimedia IP blocks like image signal processing pipeling, video codec, neural processing
unit etc. due to the algorithmic/system architecture complexity. An SoC chain can contain

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 6, June - 2021 Page -901

more than 20 blocks, which a verification testbench is expected to handle. There is a need
for SoC DV to be able to take a portion of the IP DV environment and be able to re-run valid
semi-randomized scenarios at SoC level. To fully address SoC-level verification, a solution
must extend from UVM and allow for vertical (IP to SoC) reuse and horizontal (verification
engine portability) reuse. A solution must provide a way to capture, share, and automatically
amplify use cases to speed test-case creation and leverage fast verification engines.

2. Background

 Design Verification is a process in which a design is compared against a given design
specification before tape-out. This happens along with the development of the design and
can start from the time the design architecture definition is completed. The main goal of
verification is to ensure functional correctness of the design. However, with increasing
design complexities, the scope of verification is also evolving to include much more than
functionality. This includes verification of performance and power targets, security and
safety aspects of design and complexities with multiple asynchronous clock domains.
Simulation of the design model (RTL) remains the primary vehicle for verification while a
lot of other methodologies like formal property verification, power-aware simulations,
emulation/FPGA prototyping, static and dynamic checks, etc. are also used for efficiently
verifying all aspects of design. The Verification process is considered very critical as part of
design life cycle as any serious bugs in design not discovered before tape-out can lead to the
need of newer steppings and increasing the overall cost of design process.

2.1. Functional Verification
 The process of demonstrating the functional correctness of a design in relation to the
design specifications is known as functional verification. Functional verification does not
confirm the correctness of the design specification and instead assumes that it is correct. It is
one of the most difficult steps in the IC design cycle and the primary cause of IC re-spin.
The main objectives are: Functional correctness of individual IPs, Internal module
communication, External module communication, End to end functional paths, Clock and
reset circuits, Power up and down sequence, Complete integration of all IPs.
Different types of Functional Verification methods are shown in Figure 1.

Figure 1. Types of Functional Verification

1) Static Verification: It is the process of checking a design against some predefined
rules without running it. It enables validation of design at an early stage, without any stimulus
or setup, and is thus performed early in the IC design cycle, that is, as soon as the RTL code
is available. It doesn’t do any timing checks. The earlier a bug is discovered, the easier it is
to fix it. The goal of static verification is to decrease the verification effort at the RTL level.

2) Functional Simulation: The process of simulating a design’s functional behaviour in
software is known as functional simulation. It is not useful in software development because

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 6, June - 2021 Page -902

it does not account for the timing delays of internal logic or interconnects. The goal of
simulation is to validate the individual IPs or blocks of the IC. Functional simulation does
not allow for system-level verification.

3) FPGA Prototyping: FPGA prototyping is the process of testing the functionality of
an integrated circuit (IC) on FPGAs. With the increasing complexity of ICs and the
increasing demand to reduce IC time to market, FPGA prototyping remains a critical
solution. The goal of FPGA prototyping is to ensure that the design works as expected when
driven with live data and that all of its external interfaces are operational.

4) Emulation: Emulation, also known as pre-silicon validation, is the process of testing
the system’s functionality on a hardware device known as an emulator. An emulator can
handle both system-level and RTL designs (written in C, C++, or SystemC) (in Verilog or
VHDL). Simulators take much longer to run than emulators. A design that takes days to
simulate will only take hours to emulate. Emulation is used to find issues in system level
design using live data, to verify system integration and to develop embedded software.

5) Universal Verification Methodology (UVM): UVM is a well-defined set of coding
guidelines with a well-defined testbench structure. It’s written in SystemVerilog and comes
with a SystemVerilog base class library for creating advanced reusable verification
components. It was created with significant guidance and input from Mentor by the Accellera
Systems Initiative, an EDA standards body. IPs are extremely complex, and fully verifying
them takes time. The standard test benches are not reusable, so verification engineers must
build them from scratch. Due to time constraints, a verification methodology is highly
recommended. UVM has a fixed testbench architecture, which makes the testbench highly
reusable and saves time.

2.2. Switching to Python
 SystemVerilog is a fairly complex programming language. The SystemVerilog
specification is almost a thousand pages long. There are 221 keywords in the language,
compared to 83 in C++. It’s a powerful tool, but it takes some time to master. UVM has
comparable concerns with complexity. There are numerous ways to accomplish the same
task. Again, highly powerful, but difficult to master.
 Ergo, SV-UVM is powerful but complicated. So hardware description languages are
kept for designing whereas for developing testbenches, a high-level, general-purpose
language with object oriented programming is considerably more beneficial. Thus, cocotb
was created.

3. Design Verification using cocotb

 Cocotb automatically connects to a variety of HDL simulators (such as Icarus,
Modelsim, Questasim, and others) and allows you to control the signals in your design
straight from Python. The whole testbench may be written in Python, and automation and
randomization are simple to implement, resulting in increased productivity.
 Cocotb does not necessitate the use of any additional RTL code. In the simulator,
the top level is instantiated as the Design Under Test. Python is used to provide stimulation
to the DUT’s inputs and monitor the outputs. Given that it does not necessitate knowledge
of HDLs, it can be of great help to those who are unfamiliar with it. Python is also an object-
oriented scripting language. Cocotb has certain significant advantages over HDL testing
techniques since it uses Python for verification:

 Python is an extremely productive language that allows one to write code quickly.

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 6, June - 2021 Page -903

 Python makes it simple to connect to other languages.
 Python contains a large library of pre-existing code that can be reused.
 Python is an interpreted language, which means that tests can be modified and re-

run without having to recompile the design or exit the simulator GUI.
 Python is widely used; significantly more engineers are familiar with it than

SystemVerilog or VHDL.

3.1. Architecture of cocotb
 A normal cocotb testbench does not necessitate any additional RTL code. Without
any wrapper code, the Design Under Test (DUT) is instantiated as the simulator’s toplevel.
Cocotb applies stimuli to the DUT’s inputs (or lower in the hierarchy) and monitors the
outputs directly from Python. Cocotb acts as a bridge between the simulator and Python as
shown in Figure 2 [9]. Verilog Procedural Interface (VPI) or VHDL Procedural Interface
(VHDLPI) is used (VHPI).

Figure 2. Architecture of cocotb

 A test is merely a Python function. The await keyword indicates when control of
execution should be returned to the simulator. A test can start numerous coroutines,
permitting separate execution flows.
Python testbench code has the ability to:

 Traverse the DUT hierarchy and update values.
 Wait for the simulation timer to run out.
 Wait for a signal’s rising or falling edge.

3.2. Design Methodology
 The cocotb framework is made to be a goal-directed design verification tool. The
following steps are included in the python based verification flow.

1) Capture the IP-level actions needed to create a desired use case, if not already
captured.
2) Compose the desired use case in text format.
3) Use cocotb for vector generation:
cocotb allows constrained randomization through which all the parameters of the IP core can
be randomized.

4) Verify the resulting vectors on a golden reference:
These vectors can be run on a C test design and the validity of vectors can be checked.

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 6, June - 2021 Page -904

5) Review coverage results: Gcov and Lcov reports are then used to review the
coverage results.

3.3. Cosimulation
 It is the independent simulation of the design and testbench. Communication is
accomplished using VPI/VHPI interfaces, which are represented by cocotb ‘triggers’. The
simulation time does not advance while the Python function is running. When a trigger is
delivered, the testbench suspends execution until the triggered condition is met before
restarting execution.
Some triggers availed are:

 Timer(time, unit): Waits for a given amount of simulation time to pass before acting.
 Edge(signal): Waits for a signal’s state to change (rising or falling edge).
 RisingEdge(signal): Waits for a signal’s rising edge.
 FallingEdge(signal): Waits for a signal’s falling edge.
 ClockCycles(signal, num): Waits for a certain number of clocks to cycle (transitions

from 0 to 1).
Sample RTL code of a 2:1 Multiplexer:

// example_mux.v
module example_mux(output wire out1, input wire in1, input wire
wire1, input wire wire2);
 // Switch between inputs depending on value of readout mode.
 assign out1 = in1 ? wire1 : wire2;
endmodule

Sample cocotb code for a 2:1 Multiplexer:

mux_tester.py
import cocotb
from cocotb.triggers import Timer
from cocotb.result import TestFailure
@cocotb.test()
def mux_test(dut):
 dut.L0_i <= 0
 dut.we_lp_i <= 0
 dut.readout_mode_i <= 1
 dut.L0_i <= 1
 yield Timer(1, "ns")
 if dut.we_lp_muxed_o != 1:
 raise TestFailure("Failure!")
 dut.readout_mode_i <= 0
 yield Timer(1, "ns")
 if dut.we_lp_muxed_o != 0:
 raise TestFailure("Failure!")

The following are some critical points in the testbench code:

 The decorator @cocotb.test() declares a function as a test.
 The hierarchy is represented by the variable dut.
 The expression dut.L0_i=0 is shorthand for assigning an RTL variable.
 Timer(1,‘n’) waits for the simulator to progress by 1 ns.
 If the MUX is not operational, raise TestFailure fails the test.

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 6, June - 2021 Page -905

3.4. Modification of Hierarchy
 As Python and RTL are co-simulated, it is simple to climb the hierarchy. Any
internal signal may be read or changed by the Python testbench. It simplifies the modelling
of single-event upset.
Example code below shows how value of internal signal could be read (and changed):

import cocotb
from cocotb.triggers import RisingEdge
@cocotb.test()
def test(dut):
 yield RisingEdge(dut.clk)
 # Accessing value of internal signal.
 current = int(dut.submodule.important.value)
 # Changing it.
 dut.submodule.important <= (not current)
 yield RisingEdge(dut.clk)

 It is still allowed to have RTL testbench components. Creating a top-level Verilog
or VHDL logic involves instantiating the actual design being tested, as well as other
components for testing and use a trigger interface. However, it is not feasible to call
operations directly but it is still helpful for low-level testing, assertions, and so on.
 Cocotb can be used for post-synthesis simulations too. The wrapper approach can be
used to load timing constraints (SDF) files on demand.

3.5. Coroutines
 Cocotb employs a multitasking cooperative architecture. Tests, like regular Python,
can invoke other methods and functions. Coroutines are required if such procedures are to
use simulation time. Coroutines in cocotb are just functions that follow two rules:
1) The @cocotb.coroutine decorator is to be used.
2) Include at least one yield statement that results in another coroutine or trigger.
Sample code :

import cocotb
from cocotb.triggers import RisingEdge
@cocotb.coroutine
def test_helper(dut):
 dut.member <= 1
 yield RisingEdge(dut.clk)
@cocotb.test()
def test(dut):
 yield test_helper(dut)

3.6. Forking Coroutines
 Coroutines can also be forked such that they run concurrently. This enables the
development of something similar to a Verilog always block. Monitors can be started and
run in the background to create sophisticated testbenches.
Sample code:

import cocotb
from cocotb.triggers import RisingEdge
@cocotb.coroutine
def always_block(dut):
 while True:

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 6, June - 2021 Page -906

 yield RisingEdge(dut.clk)
 # Do something.
@cocotb.test()
def test(dut):
 # Start clock.
 thread = cocotb.fork(always_block(dut))

3.7. Joining Forked Coroutines
 A forked coroutine, unlike always blocks, can be joined by calling .join(). It returns
a trigger that wait until the coroutine completes its execution. It is also possible to kill a
coroutine immediately by using the command .kill().
Sample code:

import cocotb
from cocotb.triggers import RisingEdge, Timer
@cocotb.coroutine
def always_block(dut):
 while True:
 yield RisingEdge(dut.clk)
 # Do something.
@cocotb.test()
def test(dut):
 # Start clock.
 thread = cocotb.fork(always_block(dut))
 yield thread.join()

3.8. Communication with Coroutines
 It is vital to communicate information across forked coroutines when developing
sophisticated testbenches. There are a few options for doing this:
1) Using Event() trigger: A coroutine can yield event.wait() to block until another
coroutine calls event.set() Data can be passed between coroutines by setting event.data.
2) Using classes: Functions in classes can be made coroutines and forked. The class
will be accessible from both the main and the forked coroutine.
3) Combining the above two techniques: This can create advanced testbench
components like drivers and monitors.
Sample code:

import cocotb
from cocotb.triggers import RisingEdge, FallingEdge
class SimpleDriver:
 def __init__(self, dut):
 self.dut = dut
 self.value = 0
 @cocotb.coroutine
 def drive(self):
 while True:
 yield RisingEdge(self.dut.clk)
 self.dut.data <= self.value
@cocotb.test()
def test(dut):
 driver = SimpleDriver(dut)
 cocotb.fork(driver.drive())
 yield FallingEdge(dut.clk)
 driver.value = 1

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 6, June - 2021 Page -907

 This is a basic example of a cocotb driver with coroutines. It makes use of a Python
class (SimpleDriver). When the drive function is activated, it sets a port on the DUT to
self.value on each clock. This flag may then be set outside of the coroutine, from the test.

4. Coverage

 Code Coverage testing determines how much code is tested. Code coverage is a
metric that describes the extent to which the program’s source code has been tested. It is
given by the Eqn. 1:

𝐶𝑜𝑑𝑒 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =
ே௨௠௕௘௥ ௢௙ ௟௜௡௘௦ ௢௙ ௖௢ௗ௘ ௘௫௘௖௨௧௘ௗ

்௢௧௔௟ ௡௨௠௕௘௥ ௢௙ ௟௜௡௘௦ ௢௙ ௖௢ௗ௘
∗ 100 % (1)

There are several coverage types, which are as follows:
4.1. Statement coverage/ Line coverage
 Statement coverage, often known as line coverage, is the most simple to comprehend
sort of coverage. Statement coverage measures how many statements/lines are covered in the
simulation.

4.2. Block/ Segment coverage
 The nature of the statement and block coverage seems to be similar. The distinction
is that block coverage takes into account branching blocks of if/else, case branches, wait,
while, for, and so on. The dead code(lines which never get executed) is revealed by analyzing
block coverage.

4.3. Conditional coverage
 Conditional coverage, also known as expression coverage, shows how variables or
expressions in conditional statements are assessed. Only expressions using logical operators
are taken into account. Conditional coverage is the ratio of number of cases checked to the
total number of instances present.

4.4. Branch coverage
 Branch coverage, also known as decision coverage, reports the true or false of
conditions such as if-else, case, and ternary operator statements. Decision coverage for an
‘if’ statement will report if the ‘if’ statement is examined in both true and false instances,
even if a ‘else’ statement does not exist.

4.5. Toggle coverage
 It ensures how many times variables and nets are toggled (flipping between logic
high and logic low).Toggle coverage is just the ratio of toggled nodes to total nodes.

4.6. Path coverage
 Due to conditional statements such as if-else, a different path is generated in the
design, diverting the flow of input to the specific path. Path coverage is regarded to be more
comprehensive than branch coverage since it can detect flaws in the order of operations.

4.7. FSM coverage

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 6, June - 2021 Page -908

 As it works on the design’s behavior, it is the most complex sort of code coverage.
In a finite state machine, this evaluates how often states are visited, transited, and how many
sequences are covered.

 A coverpoint is a fundamental coverage unit in SystemVerilog. It has numerous bins,
each of which may hold multiple values. Every coverpoint has a variable or signal connected
with it. The coverpoint variable value is compared to each designated bin during the sampling
event. If a match is found, the number of hits in the given bin is increased.
Covergroups, which are special class-like structures, arrange coverpoints. A single
covergroup can have several instances, each of which can gather coverage on its own. A
covergroup necessitates sampling, which is a logic event (e.g. a positive clock edge). By
invoking the sample() function in the testbench, sampling can be called implicitly.
When a function with a coverage is called with cocotb-coverage, sampling is performed each
time. A cocotb coroutine that monitors the sample signal must be constructed in order to give
the exact same functionality.
An example of cocotb sampling is shown in the sample code below.

@cover_group_1
def sampling_function(...):
 #Function to sample the coverage of cover_group_1
 #Do something sampling_function(...) Implicit call of sampling
can be anywhere in the code
@cocotb.coroutine
def edge_sensitive_sampling():
 # process to observe the logical event that samples the
coverage while True:
 yield RisingEdge(en) sampling_function(...) #Implicit sampling
cocotb.fork(edge_sensitive_sampling) #Fork the process observing
the sampling event

5. Results and Discussions

 The python based verification methodology discussed so far form a foundation to
implement a complete verification environment for a DUT. The results obtained after
verifying an IP core is briefed in this section.
5.1. Coverage Report
 The Gcov report generated are run for an IP core and the table below is obtained
from verification environment in the initial run of C test.

IP Name Statements
Executed

Statements
missed

Code
Coverage

IP1 1081 331 69.380%

The Gcov report shown in table below is obtained after optimization of verification
environment by removing dead code.

IP Name Statements
Executed

Statements
missed

Code
Coverage

IP1 1081 135 87.511%

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 6, June - 2021 Page -909

5.2. Comparison between UVM and cocotb
 By providing an abstract modular method, cocotb based verification enables use case
extraction and, via abstraction, makes reuse, sharing, and amplification of use cases simple.
The IP cores of an SoC chain verified using standard UVM methodology was compared with
that of the cocotb framework. Results showed significant improvement in the simulation
time.

6. Conclusion

 The python based verification methodology enables use case extraction and, via
abstraction, makes reuse, sharing, and amplification of use cases simple. It is a solution which
allows for vertical (IP to SoC) reuse and horizontal (verification engine portability) reuse. C
tests are often used in the verification of electronic SoCs and subsystems nowadays. These
tests are in addition to UVM’s IP-level verification and are often written manually or using
simple code generators and they trail significantly behind the UVM automation that has
become prevalent in hardware functional verification. Manually developing C tests does not
adequately handle the effort of test generation and maintenance, test reuse across subsystems
and systems, and utilising these tests for future system derivatives. Furthermore, the
complete flow of defining objectives, automating stimulus production, executing tests to
satisfy the goals, and gathering the findings in a succinct and intuitive dashboard presents
hurdles for effective system validation.
 Cocotb does not necessitate the use of any additional RTL code. In the simulator,
the top level is instantiated as the DUT. Python is used to provide stimulation to the DUT’s
inputs and monitor the outputs. Given that it does not necessitate knowledge of HDLs, it can
be of great help to those who are unfamiliar with it.
 The IP cores verified using standard UVM methodology versus cocotb framework
shows significant improvement in the simulation time as the python based framework
requires only the c-model to generate the vectors, in contrast to the UVM methodology which
requires both RTL as well as c-model to verify the design.

REFERENCES

[1] S. Jiang, P. Pan, Y. Ou and C. Batten, "PyMTL3: A Python Framework for Open-Source Hardware
Modeling, Generation, Simulation, and Verification," in IEEE Micro, vol. 40, no. 4, pp. 58-66, 1 July-Aug. 2020,
doi: 10.1109/MM.2020.2997638.

[2] S. Jiang, Y. Ou, P. Pan, K. Cheng, Y. Zhang and C. Batten, "PyH2: Using PyMTL3 to Create Productive
and Open-Source Hardware Testing Methodologies," in IEEE Design & Test, vol. 38, no. 2, pp. 53-61, April
2021, doi: 10.1109/MDAT.2020.3024144.

[3] C. Spear, “Systemverilog for verification, second edition: A guide to learning the testbench language
features,” 2008.

[4] F. Shahzad, "Pymote 2.0: Development of an Interactive Python Framework for Wireless Network
Simulations," in IEEE Internet of Things Journal, vol. 3, no. 6, pp. 1182-1188, Dec. 2016, doi:
10.1109/JIOT.2016.2570220.

[5] D. Gowda, R. Segu and K. A. Gupta, "Development of a verification environment to capture the
functional coverage of PUCCH features in 5G User Equipment Simulator," 2020 Third International Conference
on Advances in Electronics, Computers and Communications (ICAECC), 2020, pp. 1-5, doi:
10.1109/ICAECC50550.2020.9339510.

[6] S. Ali et al., "Towards Pattern-Based Change Verification Framework for Cloud-Enabled Healthcare
Component-Based," in IEEE Access, vol. 8, pp. 148007-148020, 2020, doi: 10.1109/ACCESS.2020.3014671.

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 6, June - 2021 Page -910

[7] M. W. Anwar, M. Rashid, F. Azam, A. Naeem, M. Kashif and W. H. Butt, "A Unified Model-Based
Framework for the Simplified Execution of Static and Dynamic Assertion-Based Verification," in IEEE Access,
vol. 8, pp. 104407-104431, 2020, doi: 10.1109/ACCESS.2020.2999544.

[8] L. Masing, F. Lesniak and J. Becker, "A Hybrid Prototyping Framework in a Virtual Platform Centered
Design and Verification Flow," in IEEE Embedded Systems Letters, vol. 13, no. 1, pp. 1-4, March 2021, doi:
10.1109/LES.2020.2995084.

[9] Cocotb’s documentation, https://docs.cocotb.org/en/stable/

[10] Gcov—a Test Coverage Program, https://gcc.gnu.org/onlinedocs/gcc/Gcov.html

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 6, June - 2021 Page -911

