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Abstract 

 In this paper, a multi-objective linear fractional programming (MOLFP) problem is 

considered where all of its coefficients in the objective function and constraints are rough 

intervals (RIs). At first to solve this problem, we will construct two MOLFP problems with 

interval coefficients. One of these problems is an MOLFP where all of its coefficients are 

upper approximations of RIs and the other is an MOLFP where all of its coefficients are lower 

approximations of RIs. Second, the MOLFP problems are transformed into a single objective 

linear programming (LP) problem using a proposal given by Nuran Guzel. Finally the single 

objective LP problem is solved by a regular simplex method which yields an efficient solution 

of the original MOLFP problem. A numerical example is given to demonstrate the results.  

Keywords: rough set theory, multi-objective, interval coefficients, rough interval 

coefficients, multi-objective linear fractional programming, linear fractional programming. 

1. Introduction

In several applications of nonlinear programming a function is to be maximized or minimized 

which involves one or several ratios of functions. Such optimization problems are commonly 

called fractional programs, abbreviating the term 'fractional functionals program' initially 

suggested by Charnes and Cooper [2] in their classic paper in 1962. Rarely the term 

'hyperbolic program' is used as well. To improve the terminology one may think of the term 

'ratio program.' However, such a change may not come easy after well over one thousand 

publications have appeared in this area of nonlinear programming. 

Linear Fractional Programming (LFP) problem is a mathematical programming problem 

where the objective function is the ratio of two linear functions subject to the constraints with 

linear equalities or inequalities. The Hungarian mathematicians, Martos and Whinston, [4] 

developed linear fractional programming problem in the 1960s. LFP problem is applied when 

the constraints and objective functions are deterministic in nature.
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Fractional programming involves the optimization of one or several ratios of functions subject 

to some linear restrictions. In literature, various methods can be observed to solve different 

models of linear fractional programming LFP problem. Among the solution methods, the 

transformation technique developed by Charnes and Cooper [2], the simplex based algorithm 

proposed by Swarup [13] is widely accepted. The simplex method for solving LFP problem 

described by Bajaliov [9] is similar to Swarup’s method.

The Rough set theory approach has major importance in the areas of machine learning, 

knowledge acquisition, decision analysis, and knowledge discovery from a database [11]. It 

has been successfully applied in many real-world problems, counting decision algorithms 

[25], pharmacology [12], and civil engineering [17] and among others. at the current time, 

some papers have been established on rough programming [3]. Newly, a new kind of rough 

programming was suggested by Youness [8] and Osman et al. [15], where they defined two 

solutions, ideas as a surely optimal solution and possibly optimal solution. 

 In 2006, Robolledo [16] suggested RIs and then the rough intervals used to deal with 

partially unknown or ill-defined parameters and variables. RIs are presented to adjust the 

rough set principles to model continuous variables. RSTs were used only to handle discrete 

objects, initially, and could not represent continuous values. RI is a specific case of rough 

sets. It achieves all the rough sets’ properties and basic concepts, including the upper and 

lower approximation definitions [16]. More details of RIs are stated in the next section. 

In the modern age, some new approaches have also been reported to solve MOLFP and 

FMOLFP problems. Farhana Akond [10] developed a method for solving fuzzy multi-

objective linear fractional programming FMOLFP problem. At first the FMOLFP problem is 

converted into (crisp) multi-objective linear fractional programming MOLFP problem using 

the graded mean integration, representation (GMIR) method proposed by Chen and Hsieh. 

That is, all the fuzzy parameters of FMOLFP problem are converted into crisp values. Then 

the MOLFP problem is transformed into a single objective linear programming LP problem 

using a proposal given by Nuran Guzel [18]. Finally the single objective LP problem is solved 

by a regular simplex method which yields an efficient solution of the original FMOLFP 

problem. Jain [22] proposed a method using Gauss elimination technique to derive a 

numerical solution of multi-objective linear programming (MOLP) problem. Then Jain [23] 

extended his work for MOLFP problem. Porchelvi et al. [20] presented procedures for solving 

both MOLFP problem and FMOLFP problem using the complementary development method 

of Dheyab [1], where the fractional linear programming is transformed into a linear 

programming problem. Guzel and Sivri [19] presented a method for finding an efficient 

solution of MOLFP problem using goal programming. Later Guzel [18] proposed a simplex 

type algorithm for finding an efficient solution of MOLFP problem based on a theorem 

studied in a work by Dinkelbach [24], where he converted the main problem into a single 

objective LP problem. 

 Ammar and muamer [6] proposed algorithm for solving fuzzy rough linear fractional 

programming problem, where all variables and coefficients are fuzzy rough number. After 

that they used the decomposition to the fuzzy linear fractional programming problem for 

obtaining an optimal fuzzy rough solution, based on the variable transformation method. 

Further, the proposed approach can be extended for solving FRLFP problem where all 

coefficients are trapezoidal fuzzy numbers. Then Ammar and muamer [7] extended their work 

by presented a new approach for solving multi-objective linear fractional programming with 

fuzzy rough coefficients (MOFRLFP) problem by two methods (𝛼 −  𝑐𝑢𝑡, ranking function). 

Later Mohamed S. Osman et al. [14] proposed approach to solve multi-level multi-objective 
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fractional programming problem where some or all of its coefficients in the objective function 

are rough intervals. in the first phase of the solution approach and to avoid the complexity of 

the problem, two FP problems with interval coefficients will be constructed. At the second 

phase, a membership function was constructed to develop a fuzzy goal programming model 

for obtaining the satisfactory solution of the multi-level multi-objective fractional 

programming problem. In 2021, E. Fathy [5] presented a suitable solution procedure to solve 

the fully rough multi-objective multi-level linear fractional programming (FRMMFP) 

problem. First, an extension of interval method is presented to deal with the roughness of the 

stated problem. Then, an iterative technique is proposed for linearization of fractional 

objectives. Finally, a modification of fuzzy approach is provided in the environment of the 

fully rough to solve the linear model. 

The motivation of our discussion in this paper is to improve a method to determine the 

optimal solution of an MOLFP problem with rough interval coefficients. 

The rest of the paper is prepared as follows. In Section 2, some basic knowledge of RI`s are 

presented. In Section 3, an MOLFP problem is discussed. In Section 4, an MOLFP problem 

with rough interval coefficients is discussed. Section 5, proposed a solution method for an 

MOLFP problem with rough interval coefficients. In section 6, numerical example for 

illustrating the solution of proposed method. Finally, concluding remarks are given in Section 

7. 

2. Rough intervals

in this section, Some definitions and properties of rough intervals are given. [16]

Definition: The qualitative value 𝐴 is called a rough interval when one can assign two closed

intervals 𝐴∗ and 𝐴∗  on R to it where 𝐴∗ ⊆ 𝐴∗ . Moreover,

(a) If 𝑥 ∈  𝐴∗ then 𝐴 surely takes 𝑥 (denoted by 𝑥 ∈  𝐴).

(b) If 𝑥 ∈  𝐴∗ then 𝐴 possibly takes 𝑥.
(c) If 𝑥 ∉  𝐴∗ then 𝐴 surely does not take 𝑥 (denoted by 𝑥 ∉  𝐴).

𝐴∗ and 𝐴∗ are called the lower approximation interval (LAI) and the upper approximation

interval (UAI) of 𝐴, respectively. Additional, 𝐴 is denoted by 𝐴 =  (𝐴∗, 𝐴∗).
Note that the intervals 𝐴∗ and 𝐴∗ are not the complement of each other.

The arithmetic operations on RIs are based on interval arithmetic [16]. We will state some of

these arithmetic operations as follows [12]:

Let 𝐴 = ( [𝑎𝑙, 𝑎𝑢], [𝑎𝑙, 𝑎𝑢])  and 𝐵 = ( [𝑏𝑙, 𝑏𝑢], [𝑏𝑙, 𝑏𝑢])  be two rough intervals. Then, we

have:

[Addition] 𝐴 + 𝐵 = ([𝑎𝑙 + 𝑏𝑙, 𝑎𝑢 + 𝑏𝑢], [𝑎𝑙 + 𝑏𝑙, 𝑎𝑢 + 𝑏𝑢]).

[Subtraction] 𝐴 − 𝐵 = ([𝑎𝑙 − 𝑏𝑢, 𝑎𝑢 − 𝑏𝑙], [𝑎𝑙 − 𝑏𝑢, 𝑎𝑢 − 𝑏𝑙]).

[Negative] −𝐴 = ([−𝑎𝑢, −𝑎𝑙], [−𝑎𝑢, − 𝑎𝑙]).

[Intersection] 𝐴 ∩ 𝐵 = ([max{𝑎𝑙, 𝑏𝑙} , min{𝑎𝑢, 𝑏𝑢}], [max {𝑎𝑙 , 𝑏𝑙} , min{𝑎𝑢, 𝑏𝑢}]. 
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[Union] 𝐴 ∪ 𝐵 = ([min{𝑎𝑙, 𝑏𝑙} , max{𝑎𝑢, 𝑏𝑢}], [min {𝑎𝑙, 𝑏𝑙} , max{𝑎𝑢, 𝑏𝑢}]. 

3. Multi-Objective Linear Fractional Programming Problem

An MOLFP problem is defined as follows

(𝑴𝑶𝑳𝑭𝑷) 𝑴𝒂𝒙𝒊𝒎𝒊𝒛𝒆 {𝒁(𝒙) = (𝒛𝟏(𝒙), 𝒛𝟐(𝒙), … , 𝒛𝒌(𝒙))} 

𝒔. 𝒕   𝑨𝒙 ≤ 𝒃                (1) 

          𝒙 ≥ 𝟎. 

Where: 

𝑺 = {𝒙𝝐ℝ𝒏 | 𝑨𝒙 ≤ 𝒃, 𝒙 ≥ 𝟎, 𝒃𝝐ℝ𝒎} ,  is the Feasible Set in Decision Space.

𝑨 𝒊𝒔 𝒂𝒏 𝒎 × 𝒏 𝒎𝒂𝒕𝒓𝒊𝒙,  𝒙 ∈ ℝ𝒏 𝒂𝒏𝒅 𝒃 ∈ ℝ𝒎;  (𝒃 ≥ 𝟎), 𝒌 ≥ 𝟐.

𝒛𝒊(𝒙) =
𝒄𝒊

𝑻𝒙 + 𝜶𝒊

𝒅𝒊
𝑻𝒙 + 𝜷𝒊

=
𝑵𝒊(𝒙)

𝑫𝒊(𝒙)
 ; 𝒄𝒊

𝑻, 𝒅𝒊
𝑻𝝐ℝ𝒏 ;  𝜶𝒊 , 𝜷𝒊 𝝐ℝ;  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 = 1,2, … , 𝑘

𝒂𝒏𝒅 𝑫𝒊(𝒙) = 𝒅𝒊
𝑻𝒙 + 𝜷

𝒊
> 𝟎, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 = 1,2, … , 𝑘, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 𝜖 𝑆.

A solution �̅�𝝐 𝑺 is an efficient solution of the problem (MOLFP) if and only if there is no 

𝒙 𝝐 𝑺 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝒛𝒊(𝒙) ≥ 𝒛𝒊(𝒙) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 = 1,2, … , 𝑘 𝑎𝑛𝑑 𝒛𝒊(𝒙) > 𝒛𝒊(�̅�) 𝑓𝑜𝑟 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑖. 

Note that, for vectors 𝑎𝑛  ; 𝒙 ≥ 𝒚 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝒙𝒊 ≥ 𝒚𝒊 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝒊 , 𝒙 ≥ 𝒚 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝒙𝒊 ≥ 𝒚𝒊 𝑓𝑜𝑟 𝒊 

𝑎𝑛𝑑 𝒙𝒓 > 𝒚𝒓 𝑓𝑜𝑟 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝒊 =  𝒓  𝑎𝑛𝑑 𝒙 > 𝒚 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝒙𝒊 > 𝒚𝒊 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑖 . 

4. MOLFP with Rough Interval Coefficients

In this section, Multi-objective linear fractional programming problem with rough interval 

coefficients (MOLFPRIC) is considered. Formulating an MOLFP model requires that Crisp 

values be selected for the model coefficients. The values of several of these coefficients are 

only approximately known. The major advantage of the proposed operations over the existing 

one is that algorithm deal with uncertainty coefficients which take the form of fully rough 

interval coefficients. Now, joining all the data in the MOLFP model is required.  

Let us consider an MOLFPRIC as: 

max 𝑧1 =  
∑ ([𝑐𝑖𝑗

𝑙 , 𝑐𝑖𝑗
𝑢 ] ,𝑛

𝑗=1 [𝑐𝑖𝑗
𝑙 , 𝑐𝑖𝑗

𝑢 ]) 𝑥𝑗 + ([𝛼𝑖𝑗
𝑙 , 𝛼𝑖𝑗

𝑢 ] , [𝛼𝑖𝑗
𝑙 , 𝛼𝑖𝑗

𝑢 ])

∑ ([𝑑𝑖𝑗
𝑙 , 𝑑𝑖𝑗

𝑢 ] ,𝑛
𝑗=1 [𝑑𝑖𝑗

𝑙 , 𝑑𝑖𝑗
𝑢 ]) 𝑥𝑗 + ([𝛽𝑖𝑗

𝑙 , 𝛽𝑖𝑗
𝑢] , [𝛽𝑖𝑗

𝑙 , 𝛽𝑖𝑗
𝑢])

max 𝑧2 =  
∑ ([𝑐𝑖𝑗

𝑙 , 𝑐𝑖𝑗
𝑢 ] ,𝑛

𝑗=1 [𝑐𝑖𝑗
𝑙 , 𝑐𝑖𝑗

𝑢 ]) 𝑥𝑗 + ([𝛼𝑖𝑗
𝑙 , 𝛼𝑖𝑗

𝑢 ] , [𝛼𝑖𝑗
𝑙 , 𝛼𝑖𝑗

𝑢 ])

∑ ([𝑑𝑖𝑗
𝑙 , 𝑑𝑖𝑗

𝑢 ] ,𝑛
𝑗=1 [𝑑𝑖𝑗

𝑙 , 𝑑𝑖𝑗
𝑢 ]) 𝑥𝑗 + ([𝛽𝑖𝑗

𝑙 , 𝛽𝑖𝑗
𝑢] , [𝛽𝑖𝑗

𝑙 , 𝛽𝑖𝑗
𝑢])

. 

. 

. 
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. 

max 𝑧𝑘 =  
∑ ([𝑐𝑖𝑗

𝑙 , 𝑐𝑖𝑗
𝑢 ] ,𝑛

𝑗=1 [𝑐𝑖𝑗
𝑙 , 𝑐𝑖𝑗

𝑢 ]) 𝑥𝑗 + ([𝛼𝑖𝑗
𝑙 , 𝛼𝑖𝑗

𝑢 ] , [𝛼𝑖𝑗
𝑙 , 𝛼𝑖𝑗

𝑢 ])

∑ ([𝑑𝑖𝑗
𝑙 , 𝑑𝑖𝑗

𝑢 ] ,𝑛
𝑗=1 [𝑑𝑖𝑗

𝑙 , 𝑑𝑖𝑗
𝑢 ]) 𝑥𝑗 + ([𝛽𝑖𝑗

𝑙 , 𝛽𝑖𝑗
𝑢] , [𝛽𝑖𝑗

𝑙 , 𝛽𝑖𝑗
𝑢])

S.T 

∑([𝑎𝑖𝑗
𝑙 , 𝑎𝑖𝑗

𝑢 ] ,

𝑛

𝑗=1

[𝑎𝑖𝑗
𝑙 , 𝑎𝑖𝑗

𝑢 ]) 𝑥𝑗  ≤ [𝑏𝑖
𝑙 , 𝑏𝑖

𝑢], [𝑏𝑖
𝑙, 𝑏𝑖

𝑢]  𝑖 = 1, 2, … , 𝑚 

     𝑥𝑗 ≥ 0         𝑗 = 1, 2, … , 𝑛     (2) 

where  

([𝒄𝒊𝒋
𝒍 , 𝒄𝒊𝒋

𝒖 ] , [𝒄𝒊𝒋
𝒍 , 𝒄𝒊𝒋

𝒖 ]), ([𝒅𝒊𝒋
𝒍
, 𝒅𝒊𝒋

𝒖
], [𝒅𝒊𝒋

𝒍
, 𝒅𝒊𝒋

𝒖
]) are rough intervals coefficients of the objective

function    (𝑗 = 1, 2, … , 𝑛  , 𝑖 = 1, 2, … , 𝑚) ,   

([𝛼𝑖𝑗
𝑙 , 𝛼𝑖𝑗

𝑢 ] , [𝛼𝑖𝑗
𝑙 , 𝛼𝑖𝑗

𝑢 ])  are rough intervals constants of the numerator, 

([𝛽𝑖𝑗
𝑙 , 𝛽𝑖𝑗

𝑢] , [𝛽𝑖𝑗
𝑙 , 𝛽𝑖𝑗

𝑢]) are rough intervals constants of the denominator,

[𝑎𝑖𝑗
𝑙, 𝑎𝑖𝑗

𝑢], [𝑎𝑖𝑗
𝑙, 𝑎𝑖𝑗

𝑢] , [𝑏𝑖
𝑙 , 𝑏𝑖

𝑢], [𝑏𝑖
𝑙 , 𝑏𝑖

𝑢] are rough interval coefficients of the constraints.

𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛)𝑇  denote the vector of all decision variables 

5. Our Proposed Approach for Solving MOLFPRIC

We first find the possibly optimal range [𝑧1
𝑝𝑙

, 𝑧1
𝑝𝑢

], [𝑧2
𝑝𝑙

, 𝑧2
𝑝𝑢

] by solving MOLFP with the

interval coefficients problem. Secondly, we find the surly optimal range

[𝑧1
𝑠𝑙, 𝑧1

𝑠𝑢] , [𝑧2
𝑠𝑙, 𝑧2

𝑠𝑢] by solving MOLFP with the interval coefficients problem. Then we

transform MOLFP problems into linear programming problems using Guzel’s proposal [18].

Finally, the linear programming problems are solved by simplex method, whose optimal

solution is the required efficient solution of the original problem.

Input: Consider an MOLFPRIC problem illustrated in the model (2)

Step1: Find the possibly optimal range [𝑧1
𝑝𝑙

, 𝑧1
𝑝𝑢

], [𝑧2
𝑝𝑙

, 𝑧2
𝑝𝑢

]   by solving the following

MOLFP with interval coefficients problem [16]:

max 𝑧1 =  
∑ [𝑐𝑖𝑗

𝑙 , 𝑐𝑖𝑗
𝑢 ]𝑛

𝑗=1 𝑥𝑗 + [𝛼𝑖𝑗
𝑙 , 𝛼𝑖𝑗

𝑢 ]

∑ [𝑑𝑖𝑗
𝑙 , 𝑑𝑖𝑗

𝑢 ]𝑛
𝑗=1 𝑥𝑗 + [𝛽𝑖𝑗

𝑙 , 𝛽𝑖𝑗
𝑢]

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 7, July - 2021 Page -98



max 𝑧2 =  
∑ [𝑐𝑖𝑗

𝑙 , 𝑐𝑖𝑗
𝑢 ]𝑛

𝑗=1 𝑥𝑗 + [𝛼𝑖𝑗
𝑙 , 𝛼𝑖𝑗

𝑢 ]

∑ [𝑑𝑖𝑗
𝑙 , 𝑑𝑖𝑗

𝑢 ]𝑛
𝑗=1 𝑥𝑗 + [𝛽𝑖𝑗

𝑙 , 𝛽𝑖𝑗
𝑢]

S.T 

∑([𝑎𝑖𝑗
𝑙 , 𝑎𝑖𝑗

𝑢 ] ,

𝑛

𝑗=1

[𝑎𝑖𝑗
𝑙 , 𝑎𝑖𝑗

𝑢 ]) 𝑥𝑗  ≤ [𝑏𝑖
𝑙 , 𝑏𝑖

𝑢], [𝑏𝑖
𝑙, 𝑏𝑖

𝑢]  𝑖 = 1, 2, … , 𝑚 

      𝑥𝑗 ≥ 0          𝑗 = 1, 2, … , 𝑛     (3) 

If the problem (3) is infeasible go to step 3.  

Step 2: Find the surely optimal range [𝑧1
𝑠𝑙, 𝑧1

𝑠𝑢] , [𝑧2
𝑠𝑙 , 𝑧2

𝑠𝑢] by solving the following

MODNP with interval coefficients problem [16]:  

max 𝑧1 =  
∑ [𝑐𝑖𝑗

𝑙 , 𝑐𝑖𝑗
𝑢 ]𝑛

𝑗=1 𝑥𝑗 + [𝛼𝑖𝑗
𝑙 , 𝛼𝑖𝑗

𝑢 ]

∑ [𝑑𝑖𝑗
𝑙 , 𝑑𝑖𝑗

𝑢 ]𝑛
𝑗=1 𝑥𝑗 + [𝛽𝑖𝑗

𝑙 , 𝛽𝑖𝑗
𝑢]

max 𝑧2 =  
∑ [𝑐𝑖𝑗

𝑙 , 𝑐𝑖𝑗
𝑢 ]𝑛

𝑗=1 𝑥𝑗 + [𝛼𝑖𝑗
𝑙 , 𝛼𝑖𝑗

𝑢 ]

∑ [𝑑𝑖𝑗
𝑙 , 𝑑𝑖𝑗

𝑢 ]𝑛
𝑗=1 𝑥𝑗 + [𝛽𝑖𝑗

𝑙 , 𝛽𝑖𝑗
𝑢]

S.T 

∑([𝑎𝑖𝑗
𝑙 , 𝑎𝑖𝑗

𝑢 ] ,

𝑛

𝑗=1

[𝑎𝑖𝑗
𝑙 , 𝑎𝑖𝑗

𝑢 ]) 𝑥𝑗  ≤ [𝑏𝑖
𝑙 , 𝑏𝑖

𝑢], [𝑏𝑖
𝑙, 𝑏𝑖

𝑢]  𝑖 = 1, 2, … , 𝑚 

     𝑥𝑗 ≥ 0          𝑗 = 1, 2, … , 𝑛     (4) 

Step 3: Transform MOLFP with interval coefficients (possibly optimal range) 

[𝑧1
𝑝𝑙

, 𝑧1
𝑝𝑢

], [𝑧2
𝑝𝑙

, 𝑧2
𝑝𝑢

]   to two models where their feasible set are 𝑈𝐿 ,  𝑈𝑈, respectively.

Step 4: Transform MOLFP with interval coefficients (surly optimal range) 

[𝑧1
𝑠𝑙, 𝑧1

𝑠𝑢] , [𝑧2
𝑠𝑙, 𝑧2

𝑠𝑢]  to two models where their feasible set are 𝑈𝐿 , 𝑈𝑈  respectively.

Step 5: Solve the problem 𝑈𝑈, and obtain the upper bound [𝑧1
𝑝𝑢

, 𝑧2
𝑝𝑢

] by using Guzel’s

proposal. 

Step 6: Solve the problem 𝑈𝐿 , and obtain the lower bound [𝑧1
𝑝𝑙

, 𝑧2
𝑝𝑙

] by using Guzel’s

proposal.  

Step 7: Solve the problem 𝑈𝑈 and obtain the upper bound [𝑧1
𝑠𝑢, 𝑧2

𝑠𝑢] by using Guzel’s

proposal. 
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Step 8: Solve the problem 𝑈𝐿 and obtain the lower bound [𝑧1
𝑠𝑙, 𝑧2

𝑠𝑙] by using Guzel’s

proposal. 

Step 9: There are three potential outcomes for MOLFPRIC Problem (2) as follows: 

1) If MOLFP with interval coefficients Problems (3) and (4) have optimal ranges, then

MOLFPRIC Problem (2) has a rough range as

( [𝑧1
𝑠𝑙, 𝑧1

𝑠𝑢] , [𝑧1
𝑝𝑙

, 𝑧1
𝑝𝑢

]), ([𝑧2
𝑠𝑙, 𝑧2

𝑠𝑢] , [𝑧2
𝑝𝑙

, 𝑧2
𝑝𝑢

]).

2) If MOLFP with interval coefficients Problem (4) has unbounded range, then

MOLFPRIC Problem (2) has unbounded range.

3) If MOLFP with interval coefficients Problem (3) is infeasible, then MOLFPRIC

Problem (2) is infeasible.
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Figure 1: Flow chart to solve MOLFPRIC problems 

Construct the mathematical model of MOLFP 

with rough interval coefficients 

Step 1:  Find the possibly optimal range 

[𝑧1
𝑝𝑙

, 𝑧1
𝑝𝑢

], [𝑧2
𝑝𝑙

, 𝑧2
𝑝𝑢

]

Feasible Infeasibl

e 

 Step 4: Transform MOLFP with interval coefficients 

(surly optimal range) [𝑧1
𝑠𝑙 , 𝑧1

𝑠𝑢] , [𝑧2
𝑠𝑙 , 𝑧2

𝑠𝑢]  to two

models where their feasible set are 

𝑈𝐿 , 𝑈𝑈   respectively. 

Step 3: Transform MOLFP with interval coefficients 

(possibly optimal range) [𝑧1
𝑝𝑙

, 𝑧1
𝑝𝑢

], [𝑧2
𝑝𝑙

, 𝑧2
𝑝𝑢

]   to

two models where their feasible set are 𝑈𝐿 ,  𝑈𝑈, 
respectively. 

Step 2: Find the surely optimal 

range [𝑧1
𝑠𝑙 , 𝑧1

𝑠𝑢] , [𝑧2
𝑠𝑙 , 𝑧2

𝑠𝑢]

Start 

Step6: Solve the problem 

𝑈𝐿 , and obtain the lower 

bound [𝑧1
𝑝𝑙

, 𝑧2
𝑝𝑙

]

Step5: Solve the problem 

𝑈𝑈, and obtain the upper 

bound [𝑧1
𝑝𝑢

, 𝑧2
𝑝𝑢

]

Step 8: Solve the problem 𝑈𝐿 and

obtain the lower bound [𝑧1
𝑠𝑙 , 𝑧2

𝑠𝑙]

Step 7: Solve the problem 

𝑈𝑈 and obtain the upper

bound [𝑧1
𝑠𝑢 , 𝑧2

𝑠𝑢]

If MOLFP with interval coefficients Probles 

(step5:step8) have optimal ranges, then MOLFPRIC 

Problem has a rough range as 

( [𝑧1
𝑠𝑙 , 𝑧1

𝑠𝑢] , [𝑧1
𝑝𝑙

, 𝑧1
𝑝𝑢

]), ([𝑧2
𝑠𝑙 , 𝑧2

𝑠𝑢] , [𝑧2
𝑝𝑙

, 𝑧2
𝑝𝑢

]).

stop
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6. Numerical Example

Consider the following multi-objective linear fractional programming problem with rough 

interval coefficients. (we modified This example in [10] with new assumptions)  

min 𝑧1(𝑥) =
[−3, −1][−4, −1]𝑥1 + [1,3][0.5,4]𝑥2 + [1,2][0.5,3]

[0.5,1][0.25,1.5]𝑥1 + [1,2][0.5,2.5]𝑥2 + [0.5,1][0.25,1.25]

min 𝑧2(𝑥) =
[2,5][1,6]𝑥1 + [1,2][0.5,3]𝑥2 + [1,2][0.5,3]

[1,2][0.5,2.5]𝑥1 + [1,3][0.5,4]𝑥2 + [0.5,1][0.25,1.25]

s.t

[1,2][0.5,2.5]𝑥1 + [0.5,1][0.25,1.5]𝑥2  ≤ [2,4][1,5]

[2,3][1,4]𝑥1 − [3,2][4,1]𝑥2  ≤ [2,5][1,6]  (5) 

[0.5,1][0.25,1.75]𝑥1 +  [1,2][0.5,2.5]𝑥2  ≤ [1,3][0.5,3.5]

[0.5,1][0.25,1.5]𝑥1 + [2,3][1,4]𝑥2  ≤ [1,2][0.5,3.5]

𝑥1, 𝑥2 ≥ 0

To solve Problem (5), we have to solve two MOLFP with interval coefficients problems as 

follows: 

Step1: 

min 𝑧1(𝑥) =
[−4, −1]𝑥1 +  [0.5,4]𝑥2 + [0.5,3]

[0.25,1.5]𝑥1 + [0.5,2.5]𝑥2 + [0.25,1.25]

min 𝑧2(𝑥) =
[1,6]𝑥1 + [0.5,3]𝑥2 + [0.5,3]

[0.5,2.5]𝑥1 + [0.5,4]𝑥2 + [0.25,1.25]

s.t

[0.5,2.5]𝑥1 + [0.25,1.5]𝑥2  ≤ [1,5]

[1,4]𝑥1 − [4,1]𝑥2  ≤ [1,6]  (6) 

[0.25,1.75]𝑥1 + [0.5,2.5]𝑥2  ≤ [0.5,3.5]

[0.25,1.5]𝑥1 + [1,4]𝑥2  ≤ [0.5,3.5]

𝑥1, 𝑥2 ≥ 0
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Step 2: 

min 𝑓1(𝑥) =
[−3, −1]𝑥1 + [1,3]𝑥2 + [1,2]

[0.5,1]𝑥1 + [1,2]𝑥2 + [0.5,1]

min 𝑓2(𝑥) =
[2,5]𝑥1 + [1,2]𝑥2 + [1,2]

[1,2]𝑥1 +  [1,3]𝑥2 + [0.5,1]

s.t

[1,2]𝑥1 + [0.5,1]𝑥2  ≤ [2,4]

[2,3]𝑥1 − [3,2]𝑥2  ≤ [2,5]  (7) 

[0.5,1]𝑥1 + [1,2]𝑥2  ≤ [1,3]

[0.5,1]𝑥1 + [2,3]𝑥2  ≤ [1,2]

𝑥1, 𝑥2 ≥ 0

Step 3: The MOLFPIC Problem (6) is transformed to MOLFP problems R1 and R2, where 

their feasible sets are  𝑈
𝑙
 𝑎𝑛𝑑  𝑈

𝑢
, respectively. 

Step4: The MOLFPIC Problem (7) is transformed to MOLFP problems R3 and R4, where 

their feasible sets are  𝑈𝑙 𝑎𝑛𝑑 𝑈𝑢, respectively.

R1: 𝑧1
𝑙

= min
−4𝑥1+ 0.5𝑥2+0.5

0.25𝑥1+ 0.5𝑥2+0.5

𝑧2
𝑙

= min
𝑥1+ 0.5𝑥2+0.5

0.5𝑥1+ 0.5𝑥2+0.25

s.t

2.5𝑥1 +  1.5𝑥2 ≤ 1
4𝑥1 −  𝑥2 ≤ 1
1.75𝑥1 +  2.5𝑥2 ≤ 0.5
1.5𝑥1 +  4𝑥2 ≥ 0.5
        𝑥1, 𝑥2 ≥ 0 

R2: 𝑧1
𝑢

= min
−𝑥1+ 4𝑥2+3

1.5𝑥1+ 2.5𝑥2+1.25

𝑧2
𝑢

= min
6𝑥1+ 3𝑥2+3

2.5𝑥1+ 4𝑥2+1.25

s.t

0.5𝑥1 +  0.25𝑥2 ≤ 5
𝑥1 −  4𝑥2 ≤ 6
0.25𝑥1 +  0.5𝑥2 ≤ 3.5
0.25𝑥1 +  𝑥2 ≥ 3.5
        𝑥1, 𝑥2 ≥ 0 

R3: 𝑧1
𝑙 = min

−3𝑥1+ 𝑥2+1

0.5𝑥1+ 𝑥2+0.5

𝑧2
𝑙 = min

2𝑥1+ 𝑥2+1

𝑥1+ 𝑥2+0.5

s.t

2𝑥1 +  𝑥2 ≤ 2
𝑥1 −  2𝑥2 ≤ 2
𝑥1 +  2𝑥2 ≤ 1
𝑥1 +  3𝑥2 ≥ 1
        𝑥1, 𝑥2 ≥ 0 

R4: 𝑧1
𝑢 = min

−𝑥1+ 3𝑥2+2

𝑥1+ 2𝑥2+1

𝑧2
𝑢 = min

5𝑥1+ 2𝑥2+2

2𝑥1+ 3𝑥2+1

s.t

𝑥1 +  0.5𝑥2 ≤ 4
2𝑥1 −  3𝑥2 ≤ 5
0.5𝑥1 + 𝑥2 ≤ 3
0.5𝑥1 +  2𝑥2 ≥ 2
        𝑥1, 𝑥2 ≥ 0 
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Step 5: Solve the problem 𝑈𝑈, and obtain the upper bound [𝑧1
𝑝𝑢

, 𝑧2
𝑝𝑢

]  (R2) by using

Guzel’s proposal. 

𝑧1
𝑢

= min
−𝑥1+ 4𝑥2+3

1.5𝑥1+ 2.5𝑥2+1.25

𝑧2
𝑢

= min
6𝑥1 +  3𝑥2 + 3

2.5𝑥1 +  4𝑥2 + 1.25

s.t

0.5𝑥1 +  0.25𝑥2 ≤ 5

𝑥1 −  4𝑥2 ≤ 6

0.25𝑥1 +  0.5𝑥2 ≤ 3.5

0.25𝑥1 + 𝑥2 ≥ 3.5

𝑥1, 𝑥2 ≥ 0 

To solve this MOLFP problem, we find the optimal value of each of the objective functions 

𝑧1
𝑢

,  𝑧2
𝑢

 subject to the above constraints, using any of the methods for solving linear

fractional programming problems (we used the equivalent of Charnes A. and Cooper W.W. [2]).  

We get, 

min 𝑧1
𝑢

=  −0.10

min 𝑧2
𝑢

=  0.82

An LP problem, which is equivalent to the MOLFP problem, is constructed according to the 

proposed algorithm as follows: 

min 𝑈𝑈 = (−𝑥1 +  4𝑥2 + 3) + (0.10)(1.5𝑥1 +  2.5𝑥2 + 1.25) + (6𝑥1 +  3𝑥2 + 3)
− (0.82)(2.5𝑥1 +  4𝑥2 + 1.25) 

= 3.1𝑥1 +  3.97𝑥2 + 5.1 

s.t

0.5𝑥1 +  0.25𝑥2 ≤ 5

𝑥1 −  4𝑥2 ≤ 6

0.25𝑥1 +  0.5𝑥2 ≤ 3.5

0.25𝑥1 + 𝑥2 ≥ 3.5

𝑥1, 𝑥2 ≥ 0 

the resulting 𝑥1𝑜𝑝𝑡
𝑢

 ,   𝑥2𝑜𝑝𝑡
𝑢

 = (0, 3.5) and 𝑧1𝑜𝑝𝑡
𝑢

 ,   𝑧2𝑜𝑝𝑡
𝑢

=  (1.7, 0.89)
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Step 6: Solve the problem 𝑈𝐿 , and obtain the lower bound [𝑧1
𝑝𝑙

, 𝑧2
𝑝𝑙

] (R1) by using Guzel’s

proposal. 

𝑧1
𝑙

= min
−4𝑥1+ 0.5𝑥2+0.5

0.25𝑥1+ 0.5𝑥2+0.5

𝑧2
𝑙

= min
𝑥1 +  0.5𝑥2 + 0.5

0.5𝑥1 +  0.5𝑥2 + 0.25

s.t

2.5𝑥1 +  1.5𝑥2 ≤ 1

4𝑥1 −  𝑥2 ≤ 1

1.75𝑥1 +  2.5𝑥2 ≤ 0.5

1.5𝑥1 +  4𝑥2 ≥ 0.5

𝑥1, 𝑥2 ≥ 0 

min 𝑧1
𝑙

=  −1.45

min   𝑧2
𝑙

=  1.71

An LP problem, which is equivalent to the MOLFP problem, is constructed according to the 

proposed algorithm as follows: 

min 𝑈𝐿 = (−4𝑥1 +  0.5𝑥2 + 0.5) + (1.45)(0.25𝑥1 +  0.5𝑥2 + 0.5) + (𝑥1 +  0.5𝑥2 + 0.5)
− (1.71)(0.5𝑥1 +  0.5𝑥2 + 0.25) 

= −3.5𝑥1 +  0.9𝑥2 + 0.93 

s.t

2.5𝑥1 +  1.5𝑥2 ≤ 1

4𝑥1 −  𝑥2 ≤ 1

1.75𝑥1 +  2.5𝑥2 ≤ 0.5

1.5𝑥1 +  4𝑥2 ≥ 0.5

𝑥1, 𝑥2 ≥ 0 

The resulting 𝑥1𝑜𝑝𝑡
𝑙
 ,   𝑥2𝑜𝑝𝑡

𝑙
 = (0.23, 0.038) and 𝑧1𝑜𝑝𝑡

𝑙
 ,   𝑧2𝑜𝑝𝑡

𝑙
=  (−0.7, 1.95)

Step 7: Solve the problem 𝑈𝑈 and obtain the upper bound [𝑧1
𝑠𝑢, 𝑧2

𝑠𝑢] (R4) by using Guzel’s

proposal. 

𝑧1
𝑢 = min

−𝑥1 +  3𝑥2 + 2

𝑥1 +  2𝑥2 + 1
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𝑧2
𝑢 = min

5𝑥1 +  2𝑥2 + 2

2𝑥1 +  3𝑥2 + 1

s.t

𝑥1 +  0.5𝑥2 ≤ 4

2𝑥1 −  3𝑥2 ≤ 5

0.5𝑥1 +  𝑥2 ≤ 3

0.5𝑥1 +  2𝑥2 ≥ 2

𝑥1, 𝑥2 ≥ 0 

min 𝑧1
𝑢 =  −0.02

min 𝑧2
𝑢 =  0.8

An LP problem, which is equivalent to the MOLFP problem, is constructed according to the 

proposed algorithm as follows: 

min 𝑈𝑈 = (−𝑥1 +  3𝑥2 + 2) + (0.02)(𝑥1 +  2𝑥2 + 1) + (5𝑥1 +  2𝑥2 + 2)

− (0.8)(2𝑥1 +  3𝑥2 + 1) 

= 2.42𝑥1 +  2.64𝑥2 + 3.22 

s.t

𝑥1 +  0.5𝑥2 ≤ 4

2𝑥1 −  3𝑥2 ≤ 5

0.5𝑥1 +  𝑥2 ≤ 3

0.5𝑥1 +  2𝑥2 ≥ 2

𝑥1, 𝑥2 ≥ 0 

the resulting 𝑥1𝑜𝑝𝑡
𝑢 , 𝑥2𝑜𝑝𝑡

𝑢  = (0, 1) and 𝑧1𝑜𝑝𝑡
𝑢 , 𝑧2𝑜𝑝𝑡

𝑢 =  (1.67, 1)

Step 8: Solve the problem 𝑈𝐿 and obtain the lower bound [𝑧1
𝑠𝑙, 𝑧2

𝑠𝑙] (R3) by using Guzel’s

proposal. 

𝑧1
𝑙 = min

−3𝑥1 +  𝑥2 + 1

0.5𝑥1 + 𝑥2 + 0.5

𝑧2
𝑙 = min

2𝑥1 +  𝑥2 + 1

𝑥1 +  𝑥2 + 0.5

s.t

2𝑥1 +  𝑥2 ≤ 2
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𝑥1 −  2𝑥2 ≤ 2

𝑥1 +  2𝑥2 ≤ 1

𝑥1 +  3𝑥2 ≥ 1

𝑥1, 𝑥2 ≥ 0 

min 𝑧1
𝑙 =  −1.17

min 𝑧2
𝑙 =  1.5

An LP problem, which is equivalent to the MOLFP problem, is constructed according to the 

proposed algorithm as follows: 

min  𝑈𝐿 = (−3𝑥1 +  𝑥2 + 1) + (1.17)(0.5𝑥1 +  𝑥2 + 0.5) + (2𝑥1 +  𝑥2 + 1)

− (1.5)(𝑥1 +  𝑥2 + 0.5) 

= −1.91𝑥1 +  1.67𝑥2 + 1.84 

s.t

2𝑥1 +  𝑥2 ≤ 2

𝑥1 −  2𝑥2 ≤ 2

𝑥1 +  2𝑥2 ≤ 1

𝑥1 +  3𝑥2 ≥ 1

𝑥1, 𝑥2 ≥ 0 

the resulting 𝑥1𝑜𝑝𝑡
𝑙 , 𝑥2𝑜𝑝𝑡

𝑙  = (0.727, 0.090) and 𝑧1𝑜𝑝𝑡
𝑙 , 𝑧2𝑜𝑝𝑡

𝑙 =  (−1.14, 1.93)

The optimal values and the optimal solutions of MOLFP (R1: R4) are given in Table 1. 

Table 1: Optimal values and optimal solutions of numerical example 

Problem R1 R2 R3 R4

Optimal values 

 (𝒛𝟏, 𝒛𝟐) 

(−0.7, 1.95) 

(𝑧1
𝑙
, 𝑧2

𝑙
)

(1.7, 0.89) 

(𝑧1
𝑢

, 𝑧2
𝑢

)

(-1.14, 1.93) 

(𝑧1
𝑙, 𝑧2

𝑙)
(1.67, 1) 

(𝑧1
𝑢, 𝑧2

𝑢)

Optimal values with 

Single obj. 

(𝑼𝒍, 𝑼𝒖)

0.159 

𝑈𝑙 

19 

𝑈𝑢 

0.603 

𝑈𝑙
5.86 

𝑈𝑢

Optimal solutions  

(𝒙𝟏, 𝒙𝟐) 

(0.23, 0.038) 

(𝑥1
𝑙
, 𝑥2

𝑙
)

(0, 3.5) 

(𝑥1
𝑢

, 𝑥2
𝑢

)

(0.727, 0.090) 

(𝑥1
𝑙, 𝑥2

𝑙)
(0, 1) 

(𝑥1
𝑢, 𝑥2

𝑢)

So, for problem (2): 

- [𝑈𝑙, 𝑈𝑢] = [0.603, 5.86]  is the surely optimal range,

- [𝑈𝑙, 𝑈𝑢] = [0.159, 19] is the possibly optimal range, 
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- ([𝑈𝑙, 𝑈𝑢] [𝑈𝑙, 𝑈𝑢]) = ([0.603, 5.86] [0.159, 19]) is the rough optimal range,

- The solutions (0.23, 0.038)𝑡𝑎𝑛𝑑 (0, 3.5)𝑡 are two of the rather satisfactory solutions,

- The solutions (0.727, 0.090)𝑡𝑎𝑛𝑑 (0, 1)𝑡 are two of the completely satisfactory

solutions. 

7. Conclusion

In this paper,  Basic concepts of rough intervals are studied. Rough intervals are valuable and

novel tools to process the uncertainty in decision making problems with fractional

programming. A new assumption of MOLFP problems is presented in which all of the

coefficients. In order to solve these types of problems, we presented that each one of them can

be transformed into two MOLFP problems with interval coefficients. A numerical example is

given to illustrate our motivation for considering MOLFP problems with rough intervals. That

algorithm as a methodology for this problem has solved it successfully after converted the

MOLFP problem into a single objective linear programming problem. Studying more

properties of the presented models can be a subject for further research.
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