
Automation in Testing with Jenkins for 
Software Development 

Shridhar Prabhu1, Manoj Naik2, Firdosh A D3, Sohan S A4, Neeta B Malvi5

1,2,3,4Student, Dept of Electronics and Communication, R.V. College of Engineering, 
Bangalore, INDIA 

5Assistant Professor, Dept of Electronics and Communication, R.V. College of Engineering, 
Bangalore, INDIA 

1prabhushridhar14@gmail.com, 2manoj.naik281998@gmail.com, 
3firdosh9825@gmail.com,4sohansa.ec17@rvce.edu.in, 5neetabm@rvce.edu.in 

Abstract:Continuous Integration (CI) is a practice in software program development process where software program

builders combine code into a shared repository frequently, more than one instances through the day. Jenkins is a continuous 
integration tool which assist developer and testers by using automating the entire test, on the way to reduce their work with 
the aid of tracking the development at each and every stage in software development, each integration push is then tested by 
means of automated test cases, and an easy way to make CI quicker and accelerate. CI procedure is to automate the testing of 
recent build. In this paper a real scenario is taken into consideration, how the software program trying out is performed in 
corporate sectors and how Jenkins can save developers/testers important valuable hours by automating the whole software 

development system. 

Keywords: Jenkins, Python, Automated Testing, Cloud Integration, Software Development. 

1.0 Introduction 

In software development the developers working in a team have a shared repository to which 

continuous integration new features or build that is developed will be integrated frequently. , 

each and every push can then be checked with aid of an automated testing. Quality assurance 

team can go through the latest build merged and detect faults. The faults can be the build not 

satisfying the requirements, the build cannot be adaptable, build can affect the earlier 

functionalities. Recent survey shows that companies are using continuous integration in their 

software development routine because of its highlighting features and testing through 

automation. Continuous deployment and continuous delivery is found to be the best practices 

for keeping application ready at any point of time and also making new changes available to 

production at the earliest possible. This helps team to be quick and make company to be 

engaged with the customers by providing them the high-quality standards that can be 

automatically tested. Jenkins is an open-source tool written in java programming language 

with built in plugins for continuous integration. Jenkins is widely used in software 

development life cycle, 

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 6, June - 2021 Page -746

mailto:1prabhushridhar14@gmail.com
mailto:1prabhushridhar14@gmail.com
mailto:2manoj.naik281998@gmail.com
mailto:2manoj.naik281998@gmail.com
mailto:5neetabm@rvce.edu.in
mailto:5neetabm@rvce.edu.in


in building and testing projects, helping new changes to be integrated into main code base 

thus providing customers with the fresh build. 

 
1.1 Jenkins Single Server Architecture 

 

Fig 1. Jenkins Single server Architecture 
 

Jenkins single server architecture is shown inFig 1. Jenkins Single server 

Architecture. This architecture is best suited for smaller applications dedicated  to 

single platforms but fails when the project build is huge and to be run on multiple platforms, 

since server cannot handle the entire load. These drawbacks are overcome by the new 

master- slave architecture. 

 
 

1.2 Jenkins Master-Slave architecture 
 

Fig 2. Jenkins Master-Slave Architecture 
 

Jenkins Master-Slave architecture is used to manage distributed build. Communication 

between master and slave is through standard CP/IP protocol. The above Fig 2 shows the 

Jenkins Master-Slave architecture. Jenkins main server is the master, and it performs the 

below mentioned tasks: 

• Executing builds over slaves. 

• Maintaining slaves (software packages). 

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 6, June - 2021 Page -747



• Providing a stable build for production. 

• Scheduling jobs. 

Jenkins slaves are the remote machine that are tagged in the respective master. Main 

functionalities of Jenkins slaves are: 

• Get the requests sent from master. 

• Slaves are able to be run on various operating systems. 

• Slaves provide a flexibility to run specific tasks on them periodically. 

• These slaves are usually Virtual machines deployed on Vmware. 

 
 

1.3 Proposed Approach 

This paper proposes the need for automation and its implementation in the Jenkins tool and 

also master/slave architecture is proposed where a Jenkins server is able to execute certain jobs 

parallel on multiple clients. Implementation of Jenkins for automating test execution to 

handle day by day integration venture, is proposed in this paper. The remaining section are 

section 2 abut the software testing techniques and advantage of automated testing. Section 3 is 

discussion of the proposed work. Section 4 shows the final testing reports in Jenkins. Finally 

section 5 gives the conclusion of this paper. 

 
 
 

2.0 Software Testing 

Software testing is an activity to verify the functionalities of the software are working as per 

the requirements and to guarantee the software is free of imperfections so that it can be 

delivered to next stages say production. Software testing is very important in order to figure 

out the defects and errors that were made during the development phases. Software testing 

ensures that quality item is provided to the customer, Fig 3. Software testing flow shows the 

flow of software testing. There are 2 major software testing types: 

1. Manual Testing: 

Manual testing is a testing technique to test the product in presence of a dedicated skilled 

testing team. Testing team should have the view point of the end user, and they should 

assure that all the functionalities of the software product are working same as mentioned  

in the requirements document. 

2. Automated Testing: 

Automation testing is the way of testing software with the help of test cases. Test cases are 

the code that is been written in specific programming language, where the expected and 

actual results are compared and this test cases can be preserved to run in the next stages. 

Any new feature when added this test cases are made to run so that it will assure that new 

feature is not affecting the existing one. This kind of testing requires initial investment in 

the early stages. 

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 6, June - 2021 Page -748



 
 

Fig 3. Software testing flow 
 

Maintenance of a software is an activity which includes frequent development, error 

corrections, optimization and deletion of existing feature, these changes may affect the system 

corrupted, working not properly so regression testing becomes necessary. Regression testing 

can be defined as the software testing technique that guarantees that recent updates made to 

the code is not affecting the earlier features. There can be full or partial selection of existing 

and executed test cases which are run repeatedly to assure the software stability. 

In the considered scenario the test cases are written in the python language, unit test cases are 

written for execution purpose. The main purpose of software testing is to find out the faults 

and defects so that they can be covered before reaching it to customers. Software reliability 

matters in case of continuous integration, it is the probability of the being fault-free operating 

as desired for specific period of time under a specified environment. 

 

2.1 Difficulties in software testing 

1. Testing team is responsible for communicating with customers in order to 

understand the requirements. Lack of communication, and improper 

documentation results in inefficient testing. 

2. Deadline for testing makes the testers to complete testing without covering most of 

the functionalities, so testers should be enough skilled to increase test coverage and 

quality of work in specified time. 

3. All the features may not be possible to test, so a detailed report to be made before 

testing including the test scenarios and functionalities that to tested and this report 

should be shared with the development team to ensure the test coverage. 

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 6, June - 2021 Page -749



 

 

3.0 Testing using Jenkins 

The Jenkins master is installed on a windows machine and slaves are the virtual machines 

deployed with the help of vm ware. The testing software is a multiplatform software, therefore 

different platform (OS) resources are deployed say windows and ubuntu. The slaves are added 

under the master using manage nodes option. The below Error! Reference source not found., 

shows the master-slaves status, here the master is in idle state present, Jenkins-Automation 

Slave-02 , Jenkins-CTBridge-Build01 are the slave nodes deployed over vm ware and 

Workspace_cleanup are the last builds made by master. 
 

Fig 4. Jenkins master-slave status 
 

Fig 5. New Project creation 

 
 

In order to create new project, Jenkins provide various plugin options for project as shown in 

Fig 5. New Project creation, among which free style technique is used in this project execution, 

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 6, June - 2021 Page -750



the advantage of free-style over others is it enables customization like adding mail recipients 

for receiving test report, build report etc. 

After creating a project the test cases to be run on the slave nodes are fetched from theremote 

repository, the remote repository here holds the test suites, which include test casesvalidating 

the functionalities of the product. The packages to be installed on the slave nodes prior to 

execution of the test suite are entered in requirements list ,so that Jenkins take care of 

installing all these packages, a image file is created for this, Fig 6. Jenkins testing flow shows 

the flow of testing process in Jenkins. After creating the build the testing team can verify the 

run, in the build status widget shown in Fig 7. Build status, the color of the icon represent the 

build stability, blue denotes the stable build while red denotes the unstable, ex: #494 is one of 

the stable build and #74 build is the unstable build. 
 

Fig 6. Jenkins testing flow 

 

Fig 7. Build status 
 

For the testing purpose test cases are written in the test suite. These test cases mainly include 

python script using the pytest and selenium packages, to verify the GUI and functionality of 

the software. Only the stable builds are added for regression, where any new features added go 

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 6, June - 2021 Page -751



through this testing everytime, this is to certify that the existing features are not affected due 

to the recent updations. Testing team will trigger this build i.e., rebuild this periodically to 

verify the reliability of the software. 

 
 
 

4.0 Results 

The time consumption for test run shown in Fig 8. Test run duration can be reduced by 

optimizing the script length and less usage of loops, with specialized coding techniques. 
 
 

 

 

Fig 8. Test run duration 

 
 

 

Fig 9. Test report 

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 6, June - 2021 Page -752



 

The Fig 9. Test reportshows the test case report, where it can be seen test cases are passed and 

some test case is failing, the console output gives the detailed log during execution as show in 

Fig 8, which helps in debugging the errors. 

 

 
5.0 Conclusion 

Continuous integration is of much importance in software development process. Automation 

of the integrated tasks is of high priority since these task are made to execute periodically. The 

stable build is pipelined into regression, this is to assure that recent changes is not affecting the 

existing features. Jenkins is a better solution for continuous integration in software 

development. This paper gives the overview of how to automate the test cases in Jenkins, how 

to trigger regression and how to add test cases in to pipeline. The detailed discussion and 

review of Jenkins and challenges in automation is done in this paper. 

 

ACKNOWLEDGEMENT 
 

We would like to express our  gratitude to our  guide Neeta  B  Malvi  for  guiding us  in each step  
of project. 

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 6, June - 2021 Page -753



 

6.0 References 

 
[1] G. Eason, B. Noble, and I. N. Sneddon, “On certain integrals of Lipschitz-Hankel type 

involving products of Bessel functions,” Phil. Trans. Roy. Soc. London, vol. A247, pp. 

529–551, April 1955. 

[2] N. Seth and R. Khare, "ACI (automated Continuous Integration) using Jenkins: Key 

for successful embedded Software development," 2015 2nd International Conference 

on Recent Advances in Engineering & Computational Sciences (RAECS), Chandigarh, 

2015, pp. 1-6. 

[3] S. Sivanandan and Yogeesha C. B, "Agile development cycle: Approach to design an 

effective Model Based Testing with Behaviour driven automation framework," 20th 

Annual International Conference on Advanced Computing and Communications 

(ADCOM), Bangalore, 2014, pp. 22-25. 

[4] L. Crispin, J. Gregory, Agile Testing: A Practical Guide for Testers and Agile Teams, 

Addison-Wesley, 2011. 

[5] A. Askarunisa, K. A. J. Punitha, A. M. Abirami, "Black Box Test Case Prioritization 

Techniques for Semantic Based Composite Web Services Using OWL-S", Proceedings 

of the IEEE-International Conference on Recent Trends in Information Technology 

ICRTIT, 2011. 

[6] Y. Liu, Y. Lu, Y. Li, An Android-Based Approach for automatic unit test, 2015. 

[7] Online Resource, [online] Available: h ttps://jenkins-ci.org/. 

[8] Online Resource, [online] Available: 

 ci.org/display/JENKINS/Home. 

h ttps://wiki.jenkins-  

[9] E. M. A. Rauf, E. M. Reddy, "Software Test Automation: An Algorithm for Solving 

System Management Automation Problems", Proceedings of the International 

Conference on Information and Communication Technologies ICICT, 2014. 

[10] D. Jenkins, J. Arnaud, S. Thompson, M. Yau, J. Wright, Version Control and 

Patch Management of Protection and Automation Systems, 2013. 

[11] IEEE Draft International Standard for Software and Systems Engineering-- 

Software testing--Part 4: Test Techniques," in ISO/IEC/IEEE P29119-4-DISMay2013 

, vol., no., pp.1-132, 21 Feb. 2014. 

[12] K. Jambunatha, "Design and implement Automated Procedure to upgrade 

remote network devices using Python," 2015 IEEE International Advance Computing 

Conference (IACC), Banglore, 2015, pp. 217-221. 

[13] Victor E. L. Valenzuela, Vicente F. Lucena, Nasser Jazdi, Peter Göhner, 

"Reusable hardware and software model for remote supervision of Industrial 

Automation Systems using Web technologies" in , IEEE, ISBN 978-1-4799-0864- 

6/13/\$31.00 ©2013. 

[14] Fernando Pianegiani, David Macii, "An open distributed measurement system 

based on abstract Client-Server Architecture", IEEE transactions on instrumentation 

and measurement, vol. 52, no. 3, JUNE 2003. 

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 6, June - 2021 Page -754



 
 

 
 

SW 

ACRONYMS LIST 

 
Software 

OS Operating System 

CI Continuous Integration 

MID Model-Implementation Description 

MISTRA Model Based Integration and System Test Automation 

RST Regression Test Selection 

SD Software Development 
 

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 6, June - 2021 Page -755


	Shridhar Prabhu1, Manoj Naik2, Firdosh A D3, Sohan S A4, Neeta B Malvi5
	1.0 Introduction
	1.1 Jenkins Single Server Architecture
	1.2 Jenkins Master-Slave architecture
	1.3 Proposed Approach
	2.0 Software Testing
	1. Manual Testing:
	2. Automated Testing:
	2.1 Difficulties in software testing
	3.0 Testing using Jenkins
	4.0 Results
	5.0 Conclusion
	ACKNOWLEDGEMENT
	6.0 References



