
Automation of Data Consumption by Pluggable 
ModuleSoftware 

Vinay Balamuraliand Prof. Venkatesh S 

Department of Electronics and Instrumentation Engineering, 
RV College of Engineering, Bangalore 

vinaybalamurali.ei17@rvce.edu.in, venkateshs@rvce.edu.in 

Abstract. Servers are required to monitor the health of the 
various I/O cards connected to it to alert the required personnel 
to service these cards. The Data Collection Unit (DCU) is 
responsible for detecting the I/O cards, sending their inventory 
as well as monitoring their health. Currently the keys required to 
detect these I/O cards are manually coded into the source code. 
Such a task is highly laborious and time consuming. To eliminate 
this manual work, a Software Pluggable Module was devised 
which would read the I/O card related information from the I/O 
component list. This software design aims at using Data Science 
and OOPS concepts to automate certain tasks on server systems. 
The proposed methodology is implemented on a Linux system. 
The software design is modular in nature and extensible to 
accommodate future requirements. Such an automation 
framework can be used to track information maintained in Excel 
Spreadsheets and access them using an Application 
Programming Interface (API). 

Keywords: Data Collection Unit, Pluggable Module, I/O Matrix 
Module 

1 Introduction 

In today’s ever-changing world, automating manual work has become the 
need of the hour. This not only saves corporations billions of dollars in wages 
but also makes mundane tasks more efficient. It can also drive employees to 
pursue tasks which are productive and helpful for the corporation. According 
to a McKinsey report, 45% of current paid activities can be automated by 

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 6, June - 2021 Page -1672



today’s technology, an equivalent of $ trillion in annual wages. Automation 
can only be accelerated by latest technologies like data analytics and machine 
learning. 65% of workers view Artificial Intelligence (AI) as something that 
would free employees from menial tasks. 

The Data Collection Unit (DCU) is an OS-level service that gathers 
inventory of Operating System (OS) - visible hardware components on server 
systems. The hardware components include I/O cards such as Graphics 
Processing Unit (GPU), Network Interface Card (NIC), Non-Volatile Memory 
Express Controllers (NVMe), etc. It also proactively monitors the health of 
those components and reports this information to the Rack Management 
Controller (RMC) via the in-band Intelligent Platform Management 
Interface (IPMI) system interface. It is an agentless service that gathers health 
status of the various I/O cards connected to the server and is essential in 
providing Mission Critical capabilities to these servers. DCU then reports 
these errors to the firmware. These errors are projected onto a Graphical User 
Interface (GUI) and could show potentially crucial information. This can 
include data such as when a card has failed and when it requires replacement. 

Currently, enablement of DCU to monitor health of new IO cards on 
server platforms is a repetitive and tedious task. In the current 
implementation, we need to carefully examine and investigate the supported 
I/O Component list to transform the same into C++ header files. A key is 
required to uniquely identify an IO card from the I/O list, which could be a 
combination of PCI-ID’s (vendor Id, sub vendor Id, device Id, sub device Id) 
or Model Number, Vendor Number. Each I/O subsystem maintains different 
key, hence separate header files must be maintained per subsystem. Current 
approach has the following shortcomings: 

(a) DCU needs to manually collate, correlate the data from various sources 
(IO Component list, https://pci-ids.ucw.cz/v2.2/pci.ids, inputs from 
partners) to generate the complete I/O Component list. 

(b) For each IO update on the platform, we need to parse the entire I/O list, 
fetch the key required attributes, and update the header files. This amounts 
to significant development and test effort. 

(c) Due to manual parsing, the code is prone to human errors. 
(d) Lastly, it doesn’t align with C++ code reusability objectives. 

DCU supplements attributes like Model Name, Spare Part Number, etc. 
which are significant for monitoring the I/O cards on server platforms and 
enabling faster troubleshooting for client applications. This is done through 
the RMC which exposes health events for client applications (GUI). These 
tools receive service events from the RMC, which are actionable events and 

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 6, June - 2021 Page -1673



are automatically forwarded to Support Personnel, enabling the quick service 
response. 

Thus, there is a need to automate the identification of each modification to 
the server I/O Sub-system components. The intent of this paper is to provide a 
pluggable module to enable DCU or any other application to integrate the IO 
subsystem components data seamlessly. This helps to improve the overall 
supportability of the server platform. Figure 1 shows a typical server in a 
datacentre. 

2 Literature Survey 

Most of the work done so far has been related to monitoring of networks or 
IoT devices. Hassan Jamil Syed et al. [1] proposes a system to monitor data 
through the host Operating System without interfering with its functioning. 
This is done by linking the data with the cloud controller. The data was gotten 
through the Proofs file in Linux and this was relayed to a dashboard on the 
node of the cloud controller. Therefore, an elegant, efficient, and light-weight 
framework for monitoring was devised. This is scalable and has almost 
negligible overhead involved. 

Rivadulla Campello et al. [2] discusses Internet of Things platforms 
needing to deploy a Wireless Sensor Network’s (WSN). To ensure smooth 
functioning of this 

Fig.1. Server Room 

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 6, June - 2021 Page -1674



paradigm, debugging, and monitoring tools are required. Monitoring 
Platforms gather about the working of WSN thereby detecting errors and 
evaluating its performance. This monitoring can be implemented via software 
or through hardware. Using Hybrid Platforms has many more advantages than 
limitations. Many tools used today have synchronization issues. A monitoring 
platform called HMP is presented through the means of this paper. It 
combines hardware, software, passive as well as active approaches. This 
enables the HMP to gather data from the sensor nodes directly (active) or 
through the WSN (passive). This type of system is reusable and causes very 
less interference to the network. It also contains an effective trace 
synchronization mechanism. 

S. V. Sugared et al. [3] discusses the pros and cons of using a database for 
monitoring intellectual software and hardware in lingering objects. Certain 
pipeline related parameters are stored in the data base and this is the key 
component of the monitoring software. Status data of the pipeline such as 
pumping modes, technical documentation data, diagnostic logs, electrometric 
survey logs, etc., are present. This data is utilized to carry out the control and 
monitoring of the pipeline. The database contains structures for processing 
these data and helps limit mechanical deformation, corrosion, and damages. 

Data Science methodologies were also studied to gain knowledge about 
the best practices in the industry. Pandas was found to be the most relevant 
and simplified method to read data from Excel sheets. Igor Stannic et al. [4] 
reviews various data mining and big data analysis libraries present in Python. 
All the advantages and disadvantages are discussed in detail. There are six 
groups to which they can be classified: core libraries, data preparation, 
visualization, machine learning, deep learning, and big data. Pandas was 
recommended as the best method for data preparation. 

3 Methodology 

Our proposal comprises of defining a nightly Jenkins job to download the 
latest IO list and picids file, combine various data sources and process them 
using Data Science libraries – pandas and NumPy. Data processing is 
required: 

(a) To accommodate different IO subsystems with different keys 
(b) To accommodate multi-platform support for a particular IO card 
(c) To filter out the relevant attributes needed by pluggable module 
(d) To transform the data frames into a ‘CSV’ format 

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 6, June - 2021 Page -1675



The CSV file is ready to be consumed by the C++ Pluggable Module, 
which can then be integrated to the DCU or any other client application on the 
server systems. Thus, enabling client applications to fetch the IO card details 
based on keys as per the required specification. IO Component list 
continuously goes through changes, with either new subsystems are added, or 
existing card details are modified. Our approach will be able to handle all 
these modifications and eliminate the need for C++ code changes in the client 
application. 

Fig.2. Workflow of Implementation 

4 Implementation 
The proposed methodology is implemented on a Linux system as the support 
is extensive and it is open source. The Pluggable module was converted to a 
Shared Library, that is, a Shared Object (SO). This allows dynamic linking of 
DCU code with the Pluggable Module during run-time. It also ensures that the 
Pluggable Module code remains hidden and only the essential objects are 
seen. The Data Collection Unit retrieves the IO card data in the form of a map 
structure where the key is unique. The values are later used to identify the I/O 
cards through interaction with the firmware. Shared Libraries creates a 
dependency between the DCU and Pluggable Module. Every time DCU needs 
to identify an I/O card; the Pluggable Module .so file must be included. 

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 6, June - 2021 Page -1676



Figure 2 depicts the overall workflow to implement the proposed 
methodology. 

4.1 IO Matrix Module 
The IO Matrix module is essentially involved in reading the IO component 
list which is present in an Excel spreadsheet and processing the data 
appropriately. It is developed using popular Data Science libraries, that is, 
NumPy and Pandas. The module was designed in a modular structure so that 
future versions of the IO component list wouldn’t require much code changes. 
The IO component list to be processed by the IO Matrix module was 
uploaded onto the web-based interface of Jupyter. 

4.2 Pluggable Module 
This module is developed using the C++ 14 standard. It is tasked with reading 
the IO Matrix csv file using file pointers. The Pluggable Module can be 
integrated with DCU using a library file - ‘.dll’ or a shared object. The class 
declarations were coded in header files. The class definitions were coded in 
their respective ‘.cop’. files. 

Visual Studio provided a simplified experience to build the design. The 
debugger helped set breakpoints to debug errors. The project file contained 
the entire solution and could be exported with the necessary source files. The 
program I/O was through a console. 

5 Results 
The results or outputs obtained from the execution of the programs, developed 
in the previous sections, are discussed here. Both outputs of the Pluggable 
Module and IO Matrix Module are discussed. Some test scripts were written 
to generate these as no console output is really obtained in the 
implementation. 

5.1 Testing IO Matrix Module 
The IO Matrix Module output was printed onto the screen before the 
generation to CSV file was conducted. This output had to be manually 
verified for randomly chosen rows to ensure data integrity. This output is 
shown in Figure 3. It can be noted that the PCIID’s field is empty for SSD 
and HDD. A unique combination of Model Number and Vendor Number is 
used to retrieve the value from the map. 

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 6, June - 2021 Page -1677



Fig.3. Pandas Data-frame Output 

5.2 Testing Pluggable Module 
The information in the Pluggable Module is stored in a Map structure. The unique key 
combination for different types of cards maybe different. Also, the value to be 
retrieved for these cards may vary. This can be seen in Figure 4. The key is 
queried from ’main’ function to print the values. The Figure 4 shows the 
command prompt output on Windows when the executable file of the 
Pluggable Module is run. 

6 Interpretation of Results 
(a) The primary objective of the design was to provide a Pluggable Module 

which can be integrated with DCU. This Pluggable Module would remove 
the necessity to hard code or manually code certain data into the header 
files of DCU source code. This data includes PCI-ID’s, Model Number 
etc. The other objectives included reading the IO component list and 
providing support for all three OS. 

(b) The IO Matrix Module was designed to process the IO component list. 
Directly reading the IO component list through C++ code was impractical 
as the data was vast. Therefore, the data had to be processed first. The 
Pluggable Module was then designed to consume this CSV file using 

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 6, June - 2021 Page -1678



OOPS paradigms as it ensures code reusability and modularity. To start of 
providing support for all three OS, Linux OS support was provided first. 

7 Conclusion 
The software design of Pluggable Module aimed to solve the problem of 
manually coding the information related to I/O cards into DCU and it was 
achieved by using automation. A Pluggable module which is modular in 
nature and reusable was designedto consume the CSV output of the IO 
component list. An intricate combination of Data Science using pandas library 
and OOPS concepts achieved the processing and organization of data into a 
CSV file, and its later consumption by the Pluggable Module. Hence, this 
design uses the complete software automation loop and requires no human 
intervention, whatsoever. 

Fig.4. Output of Pluggable Module 

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 6, June - 2021 Page -1679



8 Future Scope 

Automating the consumption of IO Component list has eased the need of 
adding support for new IO cards. This technique of reading information from 
excel sheets can automate processes were only parameters have to be 
changed. The change of parameters can trigger an automatic build and hence 
produce the new executable code. 

References 

1. H. J. Syed, A. Gani, F. H. Nasaruddin, A. Naveed, A. I. A. Ahmed and M.
Khurram Khan,”CloudProcMon: A Non-Intrusive Cloud Monitoring
Framework,” in IEEE Access, vol. 6, pp. 44591-44606, 2018, doi:
10.1109/ACCESS.2018.2864573.

2. M. N. Mendoza, J. C. Campelo Rivadulla, A. M. Bonastre Pina, J. V. Capella
Hernandez and´ R. Ors Carot, ”HMP: A Hybrid Monitoring Platform for
Wireless Sensor Networks Evaluation,” in IEEE Access, vol. 7, pp. 87027-
87041, 2019, doi: 10.1109/ACCESS.2019.2925299.

3. S. V. Susarev, N. G. Gubanov, D. A. Melnikova, Y. V. Sarbitova and A. A.
Odintsova,”Use of the database during the operation of the intelligent hardware
and software monitoring complex of lingering objects in real-time mode,” 2017
XX IEEE International Conference on Soft Computing and Measurements
(SCM), 2017, pp. 509-511, doi: 10.1109/SCM.2017.7970632.

4. I. Stancin and A. Joviˇ c, ”An overview and comparison of free Python libraries
for data min-´ ing and big data analysis,” 2019 42nd International Convention on
Information and Communication Technology, Electronics and Microelectronics
(MIPRO), 2019, pp. 977-982, doi: 10.23919/MIPRO.2019.8757088.

5. N. M. Babu and G. Murali, ”Malware detection for multi cloud servers using
intermediate monitoring server,” 2017 International Conference on Energy,
Communication, Data Analytics and Soft Computing (ICECDS), 2017, pp. 3609-
3612, doi: 10.1109/ICECDS.2017.8390135.

6. M. Seo and R. Lysecky,” Work-in-Progress: Runtime Requirements Monitoring
for Statebased Hardware,” 2018 International Conference on Hardware/Software
Codesign and System Synthesis (CODES+ISSS), 2018, pp. 1-3, doi:
10.1109/CODESISSS.2018.8525882.

7. C. Guo, X. Li and J. Zhu,” A Generic Model for Software Monitoring
Techniques and Tools,”2010 Second International Conference on Networks
Security, Wireless Communications and Trusted Computing, 2010, pp. 61-64,
doe: 10.1109/NSWCTC.2010.22.

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 6, June - 2021 Page -1680



8. M. Beastrom and P. Morreale,” Scalable Agentless Cloud Network Monitoring,”
2017 IEEE4th International Conference on Cyber Security and Cloud Computing
(CSCloud), 2017, pp.

171-176, doe: 10.1109/CSCloud.2017.11. 
9. D. K. Peters and D. L. Parnas,” Requirements-based monitors for real-time

systems,” inIEEE Transactions on Software Engineering, vol. 28, no. 2, pp. 146-
158, Feb. 2002, doi: 10.1109/32.988496.

10. Liu Yanbin, Zhu Xiaodong, Wang Yigang, Feng Jing, and Qu Changzheng,”
Model and implementation for runtime software monitoring system,” 2010 The
2nd International Conference on Computer and Automation Engineering
(ICCAE), 2010, pp. 761-765, doi:

10.1109/ICCAE.2010.5451251. 

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 6, June - 2021 Page -1681


	Introduction
	Literature Survey
	Methodology
	Implementation
	Results
	Interpretation of Results
	Conclusion
	Future Scope
	References



