Design and implementation of Dual-Port Memory

Chandrashekar C¹, Dr.Basavaraj I Neelgar²

¹Research Scholar, VTU, Department of Electronics and Communication B.N.M. Institute of Technology, Bangalore, India.

²Professor, Department of Electronics and Communication B.N.M. Institute of Technology, Bangalore, India.

¹chandrashekarc@bnmit.in, ²basavarajineelgar@bnmit.in

Abstract:

Multiport memory cell using a dual-port memory cell provides required access to multi-processorbased applications. Simultaneous access can be provided using two-pass transistors, pair of bit lines, and a word line. Using specific word lines and bit lines of SRAM cell access can be provided by using dual ports memory. The single address of a memory cell can be accessed at a time during each clock pulse using single-port SRAM this drawback can be overcome by using dual-port RAM which supports concurrent read or write access at different addresses. Efficiency is improved by using dual-port RAM. Each processor can be made to operate at different clock frequencies thereby dual-port RAM will not have any limitations of access between the two ports.

Keywords: Dual port memory, power consumption, write/read access, single port memory, Word line, bit line.

1. INTRODUCTION

SRAM memories are the primary element of System-On-Chip (SOC). SRAM systems suffer from the disadvantage that they occupy more area which affects power and the yield. Frequently, the memories are implemented using SRAMs as they are robust, have high speed, and can be readily incorporated into logic circuits. Conceptually memory is an array of storage registers with distinct addresses, which is a number identifying the location. Memory addresses usually start at zero and increases by one for each location up to one less than the number of locations. Power of 2 is the number of locations for most of the memory components. Addresses ranging from 0 to 2^{n-1} requiring an n bit address to represent a memory with 2^n locations. The total no of bits in the memory component is $2^n \times m$, if each location stores m bit of encoded information

2. LITERATURE SURVEY

A new P-MBIST with the aim of merging the FSM and Microcode architecture using macrocommands is proposed. The hybrid P-MBIST utilizes the same macro-commands for selecting the test algorithm and same encoding technique for the MARCH elements but instead of using state machines, it is designed by implementing clusters of microcode to control the read/write operation and test data injection. [1] EDA industry is see-king maintenance methodologies to support its software, and to improve the overall quality of tools as they are affecting customer satisfaction. Monitoring activities of tools and detecting post development software errors cannot be overestimated. The experiments show the ability of the TMB Validator to verify various controller features and demonstrate its versatility to determine reliably when working with a variety of memory fault models. [2]

The Current March Algorithm with 22 N is inefficient in certain cases to make a full diagnosis of SRAM. The proposed scheme is more efficient in terms of circuit size and test data to be applied, and it requires less time to test SRAM chip. [3]

The area occupied by embedded recollections in System-on-Chip (SoC) is over 90%, and expected to elevate up to 94% by 2014. Thus, the performance and yield of embedded recollections will dominate that of SoCs. SRAM is more expensive and less dense than DRAM and is therefore not used for high capacity, low cost applications such as the main memory in personal computers. [4]Programmable BIST approaches, allowing selecting after fabrication a large variety of memory tests, are therefore desirable, but may lead on unacceptable area cost. BIST approaches enabling test algorithm program ability and data background program ability at low area cost have been presented in the past. However, no proposals exist for programming the address sequence used by the test. [5]

3. METHODOLOGY

Single-port memories will be having only one port for reading and writing data. The data connections can be separated into output and input connections, and it will have only one address input. A read or write operation is only possible with reference to single-port memory which can provide only one access at a time. [6]

To overcome the disadvantage associated with single-port memories, we have designed multi-port memories. Multi-port memories will have many address inputs with corresponding data inputs and outputs. Concurrent operation depends on the number of input address line. Dual-port memory is the most common type of multi-port memory. Area consumption of multi-port memory is more compared to single-port memory with same number of bits of storage, the reason for this is multi-port memories consists of separate address decoder and data multiplexers for each access port. [7]

Additional wiring will be required to connect the cells to the access the port, and the internal storage is shared with the memories. Additional cost can be justified for many applications like high-speed network connections and high performance graphics processing. [8]

Figure 1: Dual port RAM

Let us consider a scenario in which we have a subsystem which produces the data for storing the data in memory and another subsystem to access the data to process it. If we implement the above system using single-port memory we have an additional task of multiplexing the data and address of the subsystem with the memory. The arrangements of the control section has to be made in such a way that it has to take turns to access the memory. [9]

Now let us discuss the problems associated with the mentioned technique, the memory becomes a bottle neck when the total rate of moving the data in and out of the subsystem exceed the overall rate. If have more than one subsystems and two systems have a requirement of having access to memory at the same time then there will be loss of data. The solution to the mentioned problem is to incorporate separate access ports for subsystems.

In asynchronous dual-port memory simultaneous access results in delayed response. If the operation is write and if the two subsystems try's to perform it simultaneously then it will result in unpredictable results getting stored in memories. Multi-port memories manufactured in the form of packaging components can avoid this issues by using additional circuits to indicate the time at which contention take places.

4. **RESULTS**

The Dual-port memory design is performed using cadence software. 64k dual-port memory of capacity 8bits is designed. It consists of 12 address lines and 8 data lines. The operation of the circuits can be explained considering the following cases, we have to demonstrate the usage of dual-port memories. When the wr_en is high it signifies the write operation and when wr_en is low it signifies read operation. We have configure one of the port to have both write and read access and the other port is provided only with read access. Port_en is used to activate the two ports.

Applications - Places - Waveform 1 -	SimVision 👻										N	/ed 13:18	□ 4, C	5 -
			Waveform	1 - Sim	/ision								- 0	ж
Eile Edit View Explore Format Windows Belp													cāde	nce
10 8 8 8 8 8 0 A X 0 B >	())))) (()n- 💷-							1	🖗 - 🔶 🤅	iend To: 🏷	. 22 B	82 BU I		-
Search Names; Signal - * * * * Search	Times: Value -	n. n.												
1 Timel * = 84 * no * 84										Time:	57 p : :	112ns _	I	= 17
11 L. L.														
Design Drowser 🛛 🔀	Baseline = 0		Baseline :	6										
Scope: 🚳 All Available Data 💌 📾 🔞	Nuse Or	Direct 07	0	lione	20ne	lisone	140ns	150ne	lisone	170ms	20ms	NeR = 84ns	hoone	
⊟ @⊒ ran	- 4 addr_in_0[11:0]	'd 6	0	P	P75	1	2	3	4	5	6	7	0	9.4
Ð	[] S ddr_in_1[11:0]	° 8 °	0											
	Clk	1												
8	H 444a,in(710)	'd 7	0				1.8		10 Vis	10		10	Ya Ya	
	[] D data out 1[7:0]	'd z	1											140
· · · · · · · · · · · · · · · · · · ·	10 · 10 1	*d 7	x		1	2	3	4	(5	6	7	8	(9	(ac
Find: String*	- port_en_0	1												
	- 🐵 port_en_1	0												-
show contents: In the selector below	wr_en	1												
addr_in_0[11:0] and i														
Cik port_en_1														
1 data_out_0[7:0]														
12 data_out_1[7:0]														
Click and add to waveform area			KU.		. µ0.0	10	po,	.000	P	0,000		140,000	50.000ns	
0 2 -			al estate and										1 object sel	ected

Figure 2: Simulation of Dual-port memory to show write operation at port 0 address.

We can see from figure 2, write operation is performed at the initial address by having a value of wr_en high, the value of the input available at the data_in is available at the data_out after the application of the clock pulse. This shows the proper read operation of the dual-port memory.

Applications - Places	1 - 5	ilmVision 👻																W	/ed 13	3:22		0-
			W	/avefo	m 1 -	SimV	ision														- :	a x
Eile Edit View Explore Format Windows Help																					c	ädence
🚋 🖻 😼 🐄 📬 🎥 🛷 🚿 🗅	in ×	39C A											*	- 💠	Send	t To: 1	1. ž	÷ 🖻	86			
Search Names: Signal V 🗶 🏙	Search	Times: Value -	I.M. M.																			
Pt TimeR * = 40,968 * ns * #**	N.															Tine	: 5%	40,8	09no 1	41.0 *		+ - = =
🔤 🐛 👢																						
Design Browser	× ()	Baseline▼=0																				
Scope: 🚳 All Available Data 🔄 📾 🧔	3 34	MCursor-Baseline▼±40,968n	a Di senenininingen		140.000		LA DA	20	140.000-		140.000-						tes que	220	lus or	TineA =	40,968	
🗉 📦 ran	alli	10 addr.in.0[11:0]	'd 4094	4079	4080	4081	4062	4083	4084	4085	4086	087	4088	4089	4090	4091	4092	4093	4094	4095	101000	15
B LI th	3.	🕀 🎭 addr_in_1[11:0]	'd 0	0																		1
	-	🚭 clk	0									Ш										
		(B) (ata_in[7:0]	'd 255	240	241	242	243	244	245	245	247	48	249	250	251	252	253	254	255	0	-	
	H	E data out 1[7:0]	1 200 1 d z	1240	Yser	Views.	Ysea	Ysee	Y249 Y	240	Yaar Y	ten Y-	(43 J	200)	251	1500	Ysoa	254	¥500	1° 1	1	Y2
	-	0 • • • •	'd 4095	4000	4061	4082	4003	4084	4005	4086	4007	000	1089	4090	4091	4092	4093	4094	4095	4096	1	2
Find: String*		- 🐵 port_en_0	1																			
Show contents: In the selector below*	-11	port_en_1	0																			
addr_in_0[11:0]	1																					
addr_in_1[11:0] port_en_0 clk port_en_1																						
data_in[7:0] Sur_en																						
<pre>data_out_1[7:0]</pre>																						
N	7																					
400 000 000 00 000 000 000 Filter: 2	š																					
Click and add to waveform area								10.00	0		120	000			130.1	000			14 10	00	50.0	00004
a 2 -		1.2	a lateral la	Prod P															-00	ł	object	t selecte
	1			_	_					_	_		_	_	_			_	_	-	1	14 6

We can see from figure 3, write operation is performed at the last address by having a value of wr_en high, the value of the input is available at the data_in are available at the data_out after the clock.

Applications * Places * analyer of m 1 - Sim Vision *				Wed 13:2.	,
	Waveform 1 - SimVision				- • ×
Eile Edit View Explore Format Windows Help					cădenco
<u>⊡ 8 % % € % < % 0 6 × 30 % (n- ≣-</u>			🍲 🛖 Send To	: 🗽 🎘 🔍 🏭 🖾	
Search Names: Signal 🔻 🔳 🖍 🎁 Search Times: Value 🔻 💻 🏥					
No. TimeR = 41,104			1	ine: S= 40,929ns : 41.:	
esign browser × 0 a Baseline*=0					
Scope: 🚳 All Available Data 💌 🛞 🖏 🔤				TimeA = 41,	104ns
Curso	0 0ns 40,940ns 40,960n	1 40,980ns 41,000ns	41,020ns 41,040ns	41,060ns 41,060ns	41.100ns •
B-O th	0 Venar Venas Venae V	11	2 (3	4 (5	Y6 Y7
in the second se					
🛄 🖽 🗫 data_in(7:0) 'd 0	262 263 254 265				
🐨 🖽 data_out_0(7:0) 'd z	252 253 254 255				1000
🕅 🖽 data_out_1[7:0] 'd 7	E	<u>(1)2</u>)(3)(4	(5)(6	(7)(8)
	14092 14093 14094 14095 1	096 1 12)3 (4	χ5 χε	<u> </u>
Find; ptring*					
Show contents: In the selector below V					
4 addr_in_0[11:0] 1 i					
addr_in_1[11:0] port_en_0 clk port_en_1					
to data_in[7:0] wr_en					
12 data_out_0[7:0]					
41 100 100 10 10 10 10 10 10 10 10 10 10					
Click and add to waveform area		a ana 🛛 🗖 a ana	120.000	11 1000	50.000
		20100	30,000	6.90	
					a object serected

Figure 4: Simulation of Dual-port memory to show read operation at port 1 initial address.

We can see from figure 4, read operation is performed at the initial address by having a value of wr_en low, the value of the data available in the memory is outputted to data_out after the application of the clock.

Applications * Places * JMaveform 1 - SimVision *						Wed 13:	27 🗖 📢 🔿 🕶
	Waveform 1	- SimVision					- 0 ×
Eile Edit View Explore Format Windows Help							cādence
					💕 - 👍 Sen	d To: 🗽 🔅 🔍 🎎 🛙	X 💷 📰 📰 📧
Search Names: Signal * * * * Search Times: Value * *							
P. Timel - 122,873 1 m - B						Time: Se 122,813ns ; ;	122
Denign Browner X (0) Raseline #:0							
Scope: All Available Data	ino c	100m - H 100		22 00/10	meA = 122,873ns	100.000-	1172-020
E 🔁 ran All Control 4005	4095	444,		44,000115	446,00010	444,00010	1222702010
B-O tb B addr_in_1[11:0] 'd 4094	4091 4092	405	3)(A	4094	4095		
👝 🗌 – 🕾 clk 1							
🕂 🕀 🦠 data_in[7:0] 'd O	0						
🙂 (8 🙅 data_out_0[7:0] 'd z	-						
🐹 🖽 🎭 data_out_1[7:0] *d 255	252 253	254		255	10	7	
Tinds Photons will db. All	4032 4035	1409	•	4095	1 4036	14097	
Tanks der angen in the section of th							
Show contents: In the selector below							
Image: State State Image: State State State Image: State State State Image: State State Image: State State State Image: State State Image: State State Image: State Image: State Image: S							
Click and add to waveform area	*	1100.		200,000	1300	,000 M00,00	0 500,000ns
0 2 -							1 object selected
Cadence@cadence153ammemory 2 Waveform 1 - SimVision							1/4 🔕

Figure 5: Simulation of Dual-port memory to show read operation at port 1 final address.

We can see from figure 4, read operation is performed at the final address by having a value of wr_en low, the value of the data available in the memory is outputted to data_out after the application of the clock. The design is synthesized and the RTL of the dual-port memory is shown in figure 6. The area, power and timing of the dual-port memory is provided.

Figure 6: RTL of Dual-port memory

Pin		Туре	Fanout	Load (fF)	Slew (ps)	Delay (ps)	Arrival (ps)	
ram_reg[15][0]/clk	()	upmapped d flop	 2	20	0	1Q		R
mux_ram[addr_in_1]_	_44_4	5/in_15[0]	2	2.0	0	+310	210	1.
g8/z	(u)	unmapped_bmux20	1	1.0	0	+484	803	R
g297/in_0	_44_4;	5/2[0]				+0	803	
g297/z data out 1[0]	(u)	unmapped_bufif1	1	0.0	0	+17	820 820	R
ddta_0dt_1[0]		out port			0	+0	820	R

Figure 7: Timing report of Dual-port memory

Instance	Cells	Leakage Power(nW)	Dynamic Power(nW)	Total Power(nW)
dual_port_ram	213	20.888	5588.220	5609.109
mux_ram[addr_in_1]_44_45	8	3.675	397.925	401.600
mux_ram[addr_in_0]_42_45	8	3.675	382.886	386.561

Figure 8: Power report of Dual-port memory

Instance	Module	Cells	Cell Area	Net Area	Total Area	Wireload
dual_port_ram		213	2079	Θ	2079	<none> (D)</none>
mux_ram[addr_in_0]_42_45	bmux	8	342	Θ	342	<none> (D)</none>
mux_ram[addr_in_1]_44_45	bmux	8	342	Θ	342	<none> (D)</none>

Figure 9: Area report of Dual-port memory

5. CONCLUSION

The implementation of dual-port memories provides simultaneous access to read and write operation concurrently and the only drawback is the increased amount of area required for implementation of dual-port memory. The dual-port memories is successfully implemented and tested using cadence software.

References

- [1]. PhondPhunchongharn, DusitNiyato, Member, Ieee, Ekram Hossain, Senior Member, IEEE, And Sergio Camorlinga, "An Emi-Aware Prioritized Wireless Access Scheme For E-Health Applications In Hospital Environments", In IEEE Transactions On Information Technology In Biomedicine, Vol. 14, No. 5, September 2010, Pp.1247-1258.
- [2]. M. Radha Rani, Vijetha Institute of Technology, G. Rajesh Kumar, G. PrasannaKumar, and Sciences, Vishnu Institute of Technology, "Implementation of March Algorithm Based MBISTArchitecture for SRAM" in International Journal of Advanced Research in Computer Engineering & Technology Volume 1, Issue 3, May2012 2015,pp.250-253.

- [3]. T.V.Sirisha, II year, M.Tech VLSI system design, T. Vasu Deva Reddy, B.E, M.Tech(Ph.D.), Department of ECE, AssociateProfessor, B V Raju Institute of Technology, Hyderabad, "DESIGN AND ANALAYSIS OF MARCH C ALGORITHM FORCOUNTER BASED MBIST CONTROLLER", International Journal For Technological Research In Engineering Volume 3, Issue 3, November-2015, pp.376-380.
- [4]. DarsiKoteswaramma, K.MuraliKrishna, Sr.Assistant, Dr. M.Sailaja, U.Yedukondalu., "Memory Testing and Repairing Using MBIST with Complete Programmability" IOSR Journal of Electronics and Communication Engineering (IOSR-JECE), Volume 9, Issue 2, PP 80-83.
- [5]. D. C. Huang, W. B. Jone, S. Et Das "VLSI design and Comparative Analysis of Memory BIST controllers" First International Conference on Computational Systems and Communications (ICCSC) / 17-18 December 2014 / Trivandrum.
- [6]. P.Basker&A.Arulmurugan, "Survey of Low Power Testing of VLSI Circuits", International Conference on Computer Communication and Informatics (ICCCI -2012), Jan. 10 – 12, 2012, Coimbatore, INDIA
- [7]. V.Kirthil, Dr. G .Mamatha Samson, "Design of BIST with Low Power Test Pattern Generator", IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) Volume 4, Issue 5, Ver. II (Sep-Oct. 2014).
- [8]. Annie Chandra. D1, Thatchayani. K," Power Reduction in TPG Based Built- in Self-Test(BIST) using LP/BS-LFSR on FPGA", International Journal of Engineering Research & Technology (IJERT), ISSN: 2278-0181, Vol. 3 Issue 4, April – 2014.
- [9]. MehrdadNourani, Mohammad Tehranipoor, "Low-Transition Test Pattern Generation for BIST-Based Applications", IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 3, MARCH 2008.