
INFRASTRUCTURE OPTIMIZATION IN KUBERNETES
CLUSTER

Darshan Haragi Ll, Mahith S², Prof. Sahana B³
1Student, Dept of Electronics and Communication, R.V. College of Engineering,

Bangalore, INDIA -560059
²Student, Dept of Electronics and Communication, R.V. College of Engineering,

Bangalore, INDIA -560059
³Assistant Professor, Dept of Electronics and Communication, R.V. College of

Engineering, Bangalore, INDIA -560059

1darshanharagil.ec16@rvce.edu.in,²mahiths.ec15@rvce.edu.in

³sahanab@rvce.edu.in

Abstract:Kubernetes is a compact, extensible, open-source stage for overseeing
containerized responsibilities and administrations, that works with both decisive setup
and robotization. Kubernetes is like VMs, however having loosened up isolation
properties to share the Operating System (OS) among the applications. The container
conversely with VM, has its own document framework, portion of Central Processing
Unit(CPU), memory, process space and much more. Kubernetes cluster is a bunch of
node machines for running containerized applications. Each cluster contains a control
plane and at least one node. Infrastructure Optimization is the process ofanalyzing and
arranging the portion of cloud resourceswhich power applications and workloads to
augment the presentation and limit squander due to over-provisioning. In the paper, a
“Movie Review System” web application is designed using GoLang for backend
components and HTML, CSS and JS for frontend components. Using AWS, an EC2
instance is created and the web application is deployed onto EC2 and hosted in instance
server. The web application is also deployed on Kubernetes locally using MiniKube tool.
A performance analysis is performed for both the deployments on considering common
performance metrics for both AWS EC2 / Virtual Machine (VM) and Kubernetes.
Keywords: Kubernetes(k8s), Kubernetes Cluster, Virtual Machines (VM),
 Amazon EC2, MiniKube, Web Application.

1. INTRODUCTION
Kubernetes is a compact, extensible, open-source stage for overseeing containerized
responsibilities and administrations, that works with both decisive setup and
robotization.A virtual machine, is essentially a full machine running all the components,
including its own Operating System, on top of the virtualized equipment. In the year 2014
an advancement the Kubernetes which is like VMs, however having loosened up isolation
properties to share the Operating System(OS) among the applications was delivered.
Kubernetes initially built by Google, at present is maintained by the Cloud Native
Computing Foundation(CNCF). Kubernetes furnishes with the structure to run dispersed
frameworks versatilely, considering the scaling and fail over of the application, giving
deployment patterns and much more. Kubernetes gives the load balancing and storage
orchestration, programmed binpacking, computerized rollouts and rollbacks and other
network advancement related services. The Figure 1, shows the design of Kubernetes
comprising of two fundamental parts: Master and Nodes. The master is divided into nodes
which comprise of Pod, Container, Kubelet and Proxy.Kubernetes cluster is a bunch of
node machines for running containerized applications. Each cluster contains a control
plane and at least one node.

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 6, June - 2021 Page -546

mailto:1shubhankarec.ec16@rvce.edu.in
mailto:1shubhankarec.ec16@rvce.edu.in

Figure 1: Kubernetes Cluster

The control plane keeps up the desired condition of cluster (like which applications are
running) and the nodes run the applications and workloads. When the kubernetes is
running it implies that the we are running the cluster. Each cluster comprises of individual
'Namespace' which permits to deal with multiple clusters in a similar physical cluster.
Performance Optimization in the kubernetes is a significant worry recently, as kubernetes
is highly extensible, open-sourceplatform for coordinating containerized workloads in
cloud environment.

2. Literature Review
In research paper [1] the creators Nguyen Dinh Nguyen and Taehong Kim portray the
Kubernetes design and the pioneer based system for keeping up predictable information
stockpiling among reproductions of a stateful application in the Kubernetes group. The creators
propose a pioneer political race calculation that not just works with the utilization of pioneer
political decision in Kubernetes yet in addition equitably disperses the pioneers all through every
one of the hubs in the group. The assessment results showed that the proposed BLD calculation
can adequately adjust the quantity of pioneers among all hubs in the cluster. The viability of the
BLD calculation was demonstrated through an exhibition assessment with various applications,
showing that the throughput can be altogether improved by disseminating the quantity of
pioneers equitably all through the hubs.
In research [2] by Ionut-Catalin Donca and group, the proposed arrangement was set off by the
requirement for measure computerization, setup, execution of programming and the assembly of
frameworks. Robotization of frameworks diminishes the expense of developing rehash capable
science measure foundations and adds to the reproducibility of examination contemplates. The
whole logical work process life cycle was rearranged by a framework introduced: programming
setup, establishment and work process the board. The best technique for the inevitable
arrangement of this framework is to handle the Autoscaler Cluster, which scales the cases
dependent on various boundaries (CPU usage, memory use).
The creators Mulugeta Ayalew Tamiru, Johan Tordsson, Erik Elmroth and group in paper [3],
express that 'Kubernetes has arisen as the accepted compartment arrangement stage in the cloud'.
In the paper the creators presume that default design (CA) the autoscaler arrangements hubs at
the hour of scale-out from just a single hub pool, while when arranged with hub auto-
provisioning (CA-NAP) it arrangements hubs from numerous hub pools. We look at these two
designs utilizing SPEC's auto-scaling execution measurements and financial expense of running
the clusters.the effect of various arrangements and applications on the autoscaling execution and
cost of running of a Kubernetes bunch. As the Kubernetes group autoscaler is profoundly
configurable, it is fascinating to contemplate the effect of tuning extra boundaries on auto-
scaling execution and cost saving.

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 6, June - 2021 Page -547

In the paper [4] by Maria A. Rodriguez and Rajkumar Buyya, the creators have proposed the
incorporated utilization of schedulers, autoscalers, and reschedulers as a component to make
compartment coordination frameworks cloud-mindful. In this, the scheduler enhances the
underlying arrangement of holders, the autoscaler empowers the current interest for assets to be
met and underutilized or inactive hubs to be closure improve the framework's use and
consequently lessen cost, lastly the rescheduler takes into account the underlying position of
compartments to be updated at runtime to diminish discontinuity and combine burdens to
energize better asset usage. Different rescheduling and auto-scaling system were proposed,
carried out, and assessed.
 Inpaper [5] by Junzo Watada, Arunava Roy and team, containerization provides many
promising features like super lightweight, faster spin-up/down, efficient energy and resource
utilization, impressive workload distribution capabilities, achieving server con- solidation, and
many more, but at the same time it has few major problems such as weaker isolation, higher
chance of container sprawl, lack of capable tools for container orchestration and cross-platform
supports and container portability limitations. Uniker- nels provide VM-like isolation with
significantly small footprints along with extremely fast booting. the recent technological
developments in both VMs and lightweight virtu- alization, the increasing industrial acceptance
of containerization will soon be challenged as the need of the day has shifted to the advantages.

In research [6] by Emiliano Casalicchio, propose and assess the presentation of KHPAA an
improved variant of the KHPA auto-scaling calculation. The proposed arrangement influence, in
a straightforward way, total utilization estimates rather then family member. KHPAA can be
connected any current framework coordinated with Kubernetes without the need to change the
framework arrangement. The presentation examination shows that the utilization of total
measurements permits to appropriately control the application reaction time and to keep it
beneath edges presented by administration level targets.

In paper [7] by Isam Mashhour Al Jawarneh and group, have examined compartment
orchestration structure contrasting highlights and administrations offered by holder
orchestrators. We have likewise planned a strong arrangement of measurements to think about
their exhibitions at scheduling and administration the executives layers and we accept those
measurements are reusable for a wide range of holder orchestrators. At last, we picked four
agent holder orchestrators, specifically, Docker Swarm, Kubernetes, and Apache Mesos.

The authors Victor Medel, Omer Rana and team in paper [8], have outlined performance model
for Kubernetes based deployment. The authors use a benchmark-based approach to better
characterize behavior of a Kubernetes system (using Containers).
Theproposedreferencemodelcanbeusedasupportfor:capacityplanningandresource management is
outlined and applicationdesign.

3. Architectures and Models

3.1 Architecture of Web Application

Web application is a framework which outlines the key internal and external components, the
cooperation of components like UIs, databases, CSV files and middleware systems. The web
application architecture approaches and associates dissimilar components to improve web
insight. The web application architecture comprises of segments which are categorized into two
primary classes: user interface app and structural components. The Figure 2depicts the
fundamental architecture of a web application.

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 6, June - 2021 Page -548

Figure 2: Basic Architecture of Web Application

User Interface Components
 UserInterfaceComponentsarerelatedtosettings,configurationsanddisplayofweb
applications. These components are responsible for creating and improving the experience
and interfaces of the web application. These contain a number of components for instance,
dashboards, configuration settings, statistical data, layouts,etc.

Structural Components
 The structural components are responsible for fabricating the performance of web
application. These components allow users to coordinate with the application. The
structural components include:

The Client or Web Browser
The users can collaborate and communicate with web applications using this platform.
HTML,CSS,andJavaScriptaretheprogramminglanguagesthatarevaluabletoshapethis
component.
CSV Files or Database
The CSV offers relevant data or business logic that is overseen and stored by web
application server. The database stores, retrieves, and delivers the data.
Web Application Server
Thewebservermanagesthefundamentalhubthatupholdsmulti-layerapplications
andbusinesslogic.TheserverisusuallybuiltusingPHP,GoLang,Python,.NET,Java and
Node.js. In the project the web server is designed using the ‘GoLanguage’.

3.2 Kubernetes Architecture
Kubernetes follows the customer worker design where we have ace introduced on one
machine and the hub on discrete Linux machines.It uses a master to manage Docker
containers across multiple Kubernetes nodes. A master and its controlled nodes
constituteaKubernetescluster.Theusercandeployanapplicationindockercontainers via the
Kubernetes master. The Figure 3 is the Kubernetes architect consisting on Master and
Workernodes.

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 6, June - 2021 Page -549

Figure 3: Kubernetes Architecture

Kubernetes Master Components
 Kubernetes master is responsible for managing the cluster, coordinating activities
inside cluster and communication with worker nodes to keep the application and
Kubernetes running. The Master node is the entry point of all administrative tasks. The
components of Kubernetes Master:

API Server
The users can interact and communicate with web applications via this platform.
HTML,CSS,andJavaScriptaretheprogramminglanguagesthatarevaluabletobuildthis
component.Programming Interface (API)serveristhesectionpointforalltheREST components
usedtocontrolthecluster. All the regulatory tasks are carried outby Programming Interface
(API)server within the master node. To make, erase, update or show in Kubernetes object it
needs to go through this Programming Interface (API) server.Programming Interface (API)
server approves and configures the Programming Interface (API) objects like ports,

administrations, replication, regulators and arrangements and it is responsible for
exposing Programming Interface for every operation, ‘kubectl’ is utilized to
communicate with APItools. (API)

Scheduler
Scheduler is a service responsible for distributing the workload. Scheduler is liable for
tracking the work load utilized at each worker node and placing the workload on which
the resources are accessible. The scheduler is responsible for scheduling pods
acrossavailablenodesdependingontherequirements
referencedinconfigurationdocument.The scheduler is liable for workload utilization and
allocating pod to a newnode.
Controller Manager
Controller Manager, also know as controllers, it is a daemon that runs in non- terminating
loop and collects and sends the information to API server. The key regulators are
replication regulator, endpoint regulator, namespace regulator, and administration account
regulator.
etcd
etcd is a distributed key-value lightweight database. In Kubernetes, it is a central
databaseforstoringthecurrentclusterstateatanypointoftimeandalsousedtostore the
configuration details such as subnets, etc. The etcd is written inGoLang.
 Kubernetes Worker Components
 Kubernetes Workercontainsallnecessaryservicestomanagethenetworkingbetween
containers,communicationwiththemasterandassignresourcestoscheduledcontainers. The
components of Kubernetes Worker:

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 6, June - 2021 Page -550

Kublet
Kublet is a primary node that communicates with the master and executes worker nodes
inside the cluster. Kublet gets the pod specifications through the Application
ProgrammingInterface(API)serverandexecutethecontainerassociatedwithpodsand
ensurethecontainersarerunningandhealthy.
Kube-Proxy
Kube Proxy is the core networking component inside the kubernetes cluster. Kube
Proxyisresponsibleformaintainingtheentirenetworkconfiguration.Kube-
Proxymaintainsthedistributednetworkacrossallthenodes,
podsandthecontainersandalsoexposes theservicesacrossoutsideworld.Kube-
Proxyactsasanetworkproxyandloadbalancer
foraserviceonasingleworkernodeandmanagesthenetworkroutingforTransmission Control
Protocol(TCP) and User Datagram Protocol(UDP)packets.
Pods
 Pod is a gathering of containers that are deployed together on a similar host.The pods
can deploy multiple dependent containers together so it acts as a wrapper around these
containers so we can interact and manage the containers primarily through pods.

4. Methodology
The web application is the integral part of the project. ‘Movie Review System’, a web
application based on reviewing is designed and built. The web application consists
ofaLoginpage,SignUppage,HomepageandaReviewpage. Auserisfirstdirectedto the Login page
where he/she can directly login to their account using the user specific username and password if
he/she has already created an account else the user can click on the SignUp button on the top left
corner of the Login page and create an account. On successful creation of account and signing to
the account, the user gets a
setofmoviestochoose from,forwhichhe/shehastoreviewandtypecommentsandclickon
Submit. After submitting review, the user needs to scroll to the bottom of the page and
LogOut of his account, which he/sheis redirected to the LogInpage.
TheFigure4isaflowchartshowingthecomplete methodology.

 Figure 4: Complete Methodology

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 6, June - 2021 Page -551

4.1 Deployment of Web Application on Amazon EC2

To launch a web application on Amazon EC2 instance, user needs to first create an
accountinAmazonWebServicesinordertoSignIntoAWSManagementConsole.The user needs to
perform followingsteps:

1. Choose EC2 from AWS Console and select Amazon Linux 2 Amazon
MachineImage(AMI) as operatingsystem.

2. Selecting the instance type: ‘t2.micro’(Free tier) from the available set
ofinstances.

3. Assigning a Public IP address, adding Storage, Configuring Security
groupswhich are unique to eachinstance.

4. Onassigningalltheabovementionedcomponents,Launchingtheinstance.
5.Creating an Keypair which is unique to eachinstance.

5. Connecting to the instance, installing and connecting to the Apache
webserver.

6. After getting connected to the server, launching the web application on the
AWS server.

4.2 Deployment of Web Application on Kubernetes

To deploy a web application on Kubernetes locally, user needs to use MiniKube and Katacoda.
Katacoda is used as it provides free and in-browser Kubernetesenvironment. While deploying
the web application on kubernetes the user needs to follow thesteps:

1. Creating a MiniKube Cluster (locally): by opening Kubernetes dashboard in the
browser in minikube. Then a Katacoda environment is selected the port
as30000.

2. CreatingaDeployment:usingKubectl,creatingdeploymentthatmanagesthepods
and checking and setting the kubectl configurations. Deployment of application
checks the health of Pod and restarts the Pod’s if they get terminated whenbeing
used.

3. Creating a Service: Initially the Pod is accessible only by its internal IP address,
so Kubernetes service is performed to make the Pod accessible from outside the
kubernetes virtual network.The application codes only listens to client requests
from ‘TCP port 8080’. The Katacoda environment automatically allots a 5-digit
unique port number for every kubernetes service.

4. Oncompletionofabovementionedtasks,theapplicationopensonbrowserandits
response, which isnoted.

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 6, June - 2021 Page -552

5. Results and Discussion

Performance Analysis

The web application is deployed on Amazon EC2, a Cloud Compute Service provided by

Amazon Web Services (AWS) and on Kubernetes using MiniKube. On hosting the application
in EC2 server and locally on Kubernetes, the performance analysis is carried out using the
Prometheus and Grafanna tools. The performance metrics considered are: CPU Utilization,
Memory Footprints, Network Traffic, Time Synchronization and Entropy.
The Figures 5.1 depicts the basic CPU utilization graphs and the Figure 5.2 shows the exact
usage percentage of CPU by user, system and when at idle state.

 Figure 5.1: Basic CPU Utilization Figure 5.2: Detailed CPU Usage

The Figure 5.3 shows the exact memory consumed when the user accesses the application and
the Figure 5.4 shows the memory consumed when user switched between pages.

Figure 5.3: Memory Usage Status Figure 5.4: Memory used for Pages Accessed

The Figures 5.5 and 5.6 shows the time synchronized/elapsed between one LogIn and LogOut
by the user to his/her account in the web application.

Figure 5.5: Time Synchronization Figure 5.6: Time Usage Status

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 6, June - 2021 Page -553

The Figure 5.7 depicts the Entropy of the web application i.e, the number of remote users
accessing the web application at a given time.

Figure 5.7: Entropy of web application

The Figure 5.8 shows Network traffic i.e, the amount of data which is moving across the web
application/computer network. The Network traffic is analyzed in terms of data packets.

Figure 5.8: Network Traffic in terms of Data Packets

6.

Conclusion

 A ‘Movie Review System’, a web application based reviewing is designed and built.
TheapplicationusesGoLangforbackendandHTML,CSSandJSforfrontend.Theweb
applicationconsistsofaLoginpage,SignUppage,HomepageandaReviewpage.Auser has to LogIn to
his/her account, select a movie, review and submit and then LogOutof his/heraccount.

 Amazon Web Services, an open-source platform for a variety of cloud computing operations
is used to host the web application on the server. The web application is deployed on the
Amazon EC2 instance(Virtual Machine) and the instance is hosted on Amazon server. Using
Minikube, the web application is deployed on Kuberneteslocally. The performance metrics
considered in common are noted for both the VirtualMachine and Kubernetesdeployments.

The performance analysis is performed to conclude which among the Virtual Machine and
Kubernetes performs better. The performance analysis is carried out considering the

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 6, June - 2021 Page -554

performance metrics in common to both the VM and Kubernetes. Based on the results obtained
after performance analysis, we conclude the Kubernetes performs better in terms of CPU
utilization, Network traffic and Memory usage. Hence, from this study we conclude that the
Kubernetes is better when compared to regular Virtual Machine when it comes to Load
Balancing the Cloud Environments.

7. References

1. N.D.NguyenandT.Kim,“Balancedleaderdistributionalgorithminkubernetes
clusters,”Sensors,vol.21,no.3,2021,ISSN:1424-8220.DOI:10.3390/s21030869.
[Online].Available:https://www.mdpi.com/1424-8220/21/3/869.Sahoo, Doyen Liu,
Chenghao Hoi, Steven. (2017). Malicious URL Detection using Machine Learning: A
Survey.

2. C.Donca,C.Corches,O.Stan,andL.Miclea,“Autoscaledrabbitmqkubernetes
clusteronsingle-boardcomputers,”in2020IEEEInternationalConferenceonAu-
tomation,QualityandTesting,Robotics(AQTR),2020,pp.1–
6.DOI:10.1109/AQTR49680.2020.9129886.

3.]M.A.Tamiru,J.Tordsson,E.Elmroth,andG.Pierre,“Anexperimentalevaluation
ofthekubernetesclusterautoscalerinthecloud,”in2020IEEEInternationalCon-
ferenceonCloudComputingTechnologyandScience(CloudCom),2020,pp.17–24.
DOI:10.1109/CloudCom49646.2020.00002.V.M. Patro, M.R. Patra, Augmenting
Weighted Average with Confusion matrix to Enhance classification accuracy. Trans.
Mach,. Learn. Artif Intell. 2(4),77-91(2019)

4. M. A. Rodriguez and R. Buyya, “Containers orchestration with cost-efficient au-
toscaling in cloud computing environments,” ArXiv, vol. abs/1812.00300, 2018.

5. J.Watada,A.Roy,R.Kadikar,H.Pham,andB.Xu,“Emergingtrends,techniques
andopenissuesofcontainerization:Areview,”IEEEAccess,vol.7,pp.152443–
152472,2019.DOI:10.1109/ACCESS.2019.2945930.

6. E.Casalicchio,“Astudyonperformancemeasuresforauto-scalingcpu-intensive
containerizedapplications,”ClusterComputing,vol.22,Sep.2019.DOI:10.1007/s10586-018-
02890-1.

7. A.PereiraFerreiraandR.Sinnott,“Aperformanceevaluationofcontainersrunning
onmanagedkubernetesservices,”in2019IEEEInternationalConferenceonCloud
ComputingTechnologyandScience(CloudCom),2019,pp.199–
208.DOI:10.1109/CloudCom.2019.00038.

8. I.M.A.Jawarneh,P.Bellavista,F.Bosi,L.Foschini,G.Martuscelli,R.Monta-
nari,andA.Palopoli,“Containerorchestrationengines:Athoroughfunctionaland
performancecomparison,”inICC2019-2019IEEEInternationalConferenceon
Communications(ICC),2019,pp.1–6.DOI:10.1109/ICC.2019.8762053.

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 6, June - 2021 Page -555

https://doi.org/10.3390/s21030869
https://www.mdpi.com/1424-8220/21/3/869
https://doi.org/10.1109/AQTR49680.2020.9129886
https://doi.org/10.1109/AQTR49680.2020.9129886
https://doi.org/10.1109/CloudCom49646.2020.00002
https://doi.org/10.1109/ACCESS.2019.2945930
https://doi.org/10.1007/s10586-018-02890-1
https://doi.org/10.1007/s10586-018-02890-1
https://doi.org/10.1109/CloudCom.2019.00038
https://doi.org/10.1109/CloudCom.2019.00038
https://doi.org/10.1109/CloudCom.2019.00038
https://doi.org/10.1109/ICC.2019.8762053

