
Implementation of a Parallel Fault Simulation System using PODEM
in a Hardware Accelerator using Python

Mahesh Bhat K1, Namita Palecha2
1 Department of Electronics and Communication Engineering, RV College of Engineering,

Bangalore
2 Assistant Professor, Department of Electronics and Communication Engineering, RV College of

Engineering, Bangalore

Abstract: VLSI Testing is one of the essential domains in recent times. With the
channel length of the transistor decreasing continually, the number of transistors in a
chip increases, thus increasing the probability of defects or faults. Automatic Test
Pattern Generator is one way to find such input test vectors to the circuit, which will
help identify the faults if present. PODEM algorithm is one such algorithm used in
this regard. This paper helps in reducing the runtime of this algorithm by the
parallelism approach. Different stuck-at faults in the gate level circuit are simulated
parallelly.

Keywords: ATPG, PODEM, VLSI, VLSI Testing

1. Introduction:

To pass or fail a circuit, appropriate input must be given to reveal all the possible fault
defects. To do this, a test pattern generator is inevitable. A test pattern generation has
the task of putting together a set of patterns so that a high fault coverage. A fault can
either be untestable if it can't be distinguished with any examples or undetectable if it
can't be detected within the given test vectors.

Fig 1.1 : Conceptual view of test generation [1]

Since diagnosing the possible issues in the circuit will help to cut down the testing
cost, the physical defects are modeled. These models are known as Fault models.
Several fault models were generated for various circuit levels. At the gate level, there
are stuck at fault models, multiple stuck at faults, bridging fault models, and delay
fault models (further divided into path delay and transition delay fault models). At the
transistor level, there are models as stuck open and stuck short models. This occurs
when the transistor always remains on and off respectively. Using this fault model,
main testing systems are built. Many testing systems are built using the Automatic

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 6, June - 2021 Page -530

Test Pattern Generator (ATPG). ATPG is mainly divided into random test pattern
generation and Deterministic test pattern generation.

With the random test pattern generation, random test patterns are generated. These
vectors are given to Circuit Under Test (CUT) and simulated. This process is quick
and economical but not an accurate method to capture all faults. Therefore it is done
with a Deterministic test pattern generator. This deterministic Test Pattern Generator
(TPG) is divided into two categories, the algebraic method and the path based method.
Using fault table to find the patterns or the boolean difference method is algebraic
based, while Path sensitization method, D-Algorithm, Path Oriented DEcision Making
(PODEM) are some of path based systems. Understanding these concepts and basics
was possible due to the study of the textbook [1], paper [2].

For more understanding of the different ATPG algorithms, [3] was referred. The
different ATPG algorithm of D-Algorithm, PODEM and FAN algorithm is explained.
This is an old paper that was the basics for all the Automatic test pattern generation
algorithms. It explains the most common terms in Automatic Test Pattern Generation
like backtrace, backtrack, D-Frontier, Implication, and Justification. In the ATPG
algorithms, line justification is an essential part of the generation of test patterns. In
[4], the author puts forward a reconvergence aware testability measure to improve the
process of the ATPG justification. The paper shows experimental results of the
improvement of ATPG runtime by using Sandia Controllability/Observability
Analysis Program (SCOAP) guided Path Oriented DEcision Making (PODEM). It
truncates the runtime by 76%.

As the number of test patterns needed to test a circuit has been increasing due to the
increase in complexity, [5] discusses the power consumption with respect to it. It uses
the Tetramax tool by Synopsys, newly named as TestMax and then using the patterns
to perform the power analysis. The paper uses the benchmark circuit of ISCAS’85 and
ISCAS’89 to run the fault diagnosis. In [6], DFT and ATPG tool flow is explained
and also the different tools given by semiconductor vendors. It shows that the ATPG
is a essential part of the DFT and will help in finding input test patterns to simulate
and to detect any faults in the fault sites. It also states the different fault models like
stuck at fault models, transition faults, Path delay faults, IDDQ faults, Transistor
faults.

With [7], a method to develop the ATPG algorithm from single stuck at faults to
double stuck at faults is explained. It explains all the multiple stuck at faults also
include the combination of single stuck at models. The paper tells that there are 3m -1
combinations possible if there are m-nets in the gate level circuit. This gave the idea
of parallelism for this project and using it; different faults were simulated parallel.

To understand the concepts of parallel technique in ATPG, [8] was referred. The
paper mainly explained two things; one is the use of genetic algorithms and how
parallelism can be used in ATPG. It defines a new four valued logic. It represents two
bits together i.e., 00 has 0, 11 has 1, 01 has V and 10 has N. Therefore using the
parallel fault simulation accelerates the generation process. Since this project is
software based and there is the availability of multiple processors to process the
parallelism. Finally, Google Colab [9] was used to run the project on the Hardware
Accelerator of GPU and TPU. Colab is Jupiter notebook hosted and runs on the cloud.

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 6, June - 2021 Page -531

2. Methodology

The following are the steps taken up in the paper:
1. Inputs files of Netlist and Fault List.
2. From the netlist, generate a list of all the gates, including the net numbers of its
respective inputs and outputs.
3. Ready the Parallel Processing system and call the function for the process to begin.
4. Perform the PODEM to the respective target of fault in the net, and it’s stuck at
value.
5. Output the test pattern to be used to detect each of the faults.

Fig 2.1 : Methodology and the flow of the implementation of PODEM

3. Path Oriented DEcision Making (PODEM)

To improve the D-Algorithm, Path Oriented DEcision Making (PODEM) came into
being. In PODEM, D-Frontier is kept as in D-Algorithm. Since the decision or the
choices is done only at the primary inputs, J-Frontier is not necessary.

Fig 3.1 : Pseudo Code of PODEM [1]

Fig 3.1.1

Fig 3.1.3

Fig 3.1.2

Fig 3.1.4

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 6, June - 2021 Page -532

The basic flow of PODEM is illustrated in Figures 3.1.1 and 3.1.2. It is based on a
branch and bound search, but the decisions are restricted to the primary inputs. All
internal nets within the circuit obtain their value of logic high or low from logic
simulation from the decision points.

As per the PODEM algorithm, it starts with an objective as a target, and it backtraces
from the goal to a primary input with the help of the best way. If the target fault
becomes unexcited or there are no more D-frontier gates, then a substandard decision
had been taken beforehand, and a inversion of portion of the past choices is required.

Three fundamental functions in PODEM-Recursion() are getObjective(), backtrace()
and logicSimulate and imply(). The getObjective() function repeats the following
ob�jective ATPG should endeavor to legitimize. Before the target fault is energized,
the objective is to set the net on which the target fault resides to the value
contradicting the stuck-up value given by the fault list. Once the fault is excited, the
getObjective() function selects the best fault from the D-frontier to propagate to the
following stage. The pseudo-code for getObjective() is shown in Fig 3.1.3.

The backtrace() function returns to the recursion function a input assignment from
where there is a way of unjustified gates to the current objective as shown in Fig 3.1.4.
Thus, backtrace() won’t ever cross through a path containing atleast one justified
gates. Finally, the logicSimu�late and imply() function can simply be a regular logic
simulation routine.

4. Implementation of the Parallel Fault Simulation of PODEM

As discussed in previous section, the Path Oriented DEcision Making (PODEM)
algorithm is implemented. A slight modification is done in the algorithm so that
multiple fault sites are run parallelly. Before running the algorithm, a list of the
different types of Gates such as INVERTER, AND, OR, NAND, NOR, XOR,
BUFFER gates.Normally in the PODEM algorithm, a fault is taken and evaluation is
done. Here, using the concept of parallel processing the fault list is divided into two
and two fault evaluation is run parallelly. This speeds up the time and thereby
decreasing the runtime. Figure 4.1 shows the steps involved in parallel processing.

Fig 4.1 : Parallel Processing of the Faults

Fault Process is a function that encloses all the functions involved in the PODEM.
These include the evaluation logic function, PODEM function which includes D-
frontier, objective, backtrace function as discussed in the pseudo code. Figure 4.2

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 6, June - 2021 Page -533

shows the fault process and the function within it. Finally, after the algorithm is run
the output is seen on the console.

Fig 4.2 : Fault Process in PODEM

5. RESULTS

The following circuit, as shown below in Fig 5.1, is tested for the algorithm. It is a
combinational circuit with fan outs and multiples primary inputs and primary outputs.
Fig 5.2 is the netlist for the same circuit.

Fig 5.1 : The Combinational Circuit testing the algorithm

Fig 5.2 : Netlist of the circuit

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 6, June - 2021 Page -534

Fig 5.3 is the fault list. Here two faults have been given as an example and have been
simulated. For user-friendly purposes, the input and output pins are enlisted. For each
of the fault cases, the values obtained at the primary outputs for the input test vectors
are listed. Finally, the output of the PODEM algorithm is written on the console, as
shown in Fig 5.4.

Fig 5.3 : Fault list

Fig 5.4 : Output of the PODEM Algorithm

The Table 5.1 shows the runtime of the algorithm. The algorithm is run twice and
then averaged to find the reduced runtime. The percentage of reduction is found to be
67.54% normally. With respect to GPU, TPU based running in Google Colab
Notebook it is about 77.52% and 75.19%.

 Normal Runtime

(in sec)
Reduced Runtime
(in sec)

Reduced Runtime
in GPU (in sec)

Reduced Runtime in
TPU (in sec)

Trail No 1 0.1129 0.0332 0.0292 0.0285
Trail No 2 0.1185 0.0419 0.0228 0.0289
Average 0.1157 0.03755 0.026 0.0287

Table 5.1 : Runtime of the Algorithm in Various Situation

6. Conclusion

The PODEM algorithms have been implemented successfully. Modification has been
done to PODEM to speed up the process. As a result, the run time of the process has
been reduced by about 67.54%, which may vary depending on the size of the circuit
and the netlist. If it is run on hardware accelerators such as GPU and TPU, the
reduction is more.

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 6, June - 2021 Page -535

7. References:

1. Laung-Terng Wang, Cheng-Wen Wu, and Xiaoqing Wen. 2006. VLSI Test
Principles and Architectures: Design for Testability (Systems on Silicon). Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA.
2. S. A. Al-Arian, "Functional level ATPG and fault coverage," IEEE Proceedings of
the SOUTHEASTCON '91, 1991, pp. 104-108 vol.1, doi:
10.1109/SECON.1991.147714.
3. T. Kirkland and M. R. Mercer, "Algorithms for automatic test-pattern generation,"
in IEEE Design & Test of Computers, vol. 5, no. 3, pp. 43-55, June 1988, doi:
10.1109/54.7962.
4. K. Chen, C. Chen and J. Huang, "Testability Measures Considering Circuit
Reconvergence to Reduce ATPG Runtime," 2019 IEEE 22nd International
Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS),
2019, pp. 1-2, doi: 10.1109/DDECS.2019.8724660.
5. C. N. Kumar, A. Madhumitha, N. S. Preetam, P. V. Gupta and J. P. Anita, "Fault
Diagnosis Using Automatic Test Pattern Generation and Test Power Reduction
Technique for VLSI Circuits," 2019 3rd International Conference on Trends in
Electronics and Informatics (ICOEI), 2019, pp. 412-417, doi:
10.1109/ICOEI.2019.8862751.
6. J. Chauhan, C. Panchal and H. Suthar, "Scan methodology and ATPG DFT
techniques at lower technology node," 2017 International Conference on Computing
Methodologies and Communication (ICCMC), 2017, pp. 508-514, doi:
10.1109/ICCMC.2017.8282741.
7. P. Wang, C. J. Moore, A. M. Gharehbaghi and M. Fujita, "An ATPG Method for
Double Stuck-At Faults by Analyzing Propagation Paths of Single Faults," in IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 65, no. 3, pp. 1063-1074,
March 2018, doi: 10.1109/TCSI.2017.2765721.
8. M. Sabry, A. Wahba and H. Mahdi, "A parallel technique for ATPG using genetic
algorithms," Proceedings of the Tenth International Conference on Microelectronics
(Cat. No.98EX186), 1998, pp. 71-73, doi: 10.1109/ICM.1998.825571.
9. Colaboratory – Google. [Online]. Available: https : / / research . google . com /
colaboratory/faq.html.

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 6, June - 2021 Page -536

