
Improving Performance of Hardware Adaptive Filter

Ankur
RV college of engineering

ECE Dept.
Bengaluru

Email: ankur.ec17@rvce.edu.in

Dr Veena Devi
RV college of engineering

ECE Dept.
Bengaluru

Email: veenadevi@rvce.edu.in

Abstract—Adaptive Filter (AF) is a digital filter that has a
transfer function that changes based on changes in the surround-
ings. Adaptive filters can adjust their weights using cost functions
similar to a neural network. An implementation of adaptive filter
in hardware allows it to have higher speed (Consumes lesser
number of clock cycles) and hence also saving on power. A regular
Digital Signal Processor (DSP) may also be employed to do the
same but it will never come close to performance of a dedicated
hardware. An improvement in this said hardware will directly
boost the performance of all use-cases.

Simulation of the existing design gives an idea of the cur-
rent data flow and architecture. Exploring different potential
improvements in design and then weighing the outcome gain vs
effort to add the functionality is done. An improvement is chosen
and implemented. Once it does the intended functionality, It is
profiled to see the improvement in performance.

A large Filter task is divided into multiple threads. These are
executed sequentially. In the current design a thread has 3 status
registers to indicate whether it’s in progress, pending, next. A
scenario in which a certain thread needs to be cancelled, it can
only be done if the thread is not already in progress, which will
lead to wasted clock cycles. Hence the ability to stop a thread
executing midway will save those clock cycles.

Index Terms—AF, Audio Device, Universal verification
Methodology (UVM), Register Abstraction layer (RAL), Refer-
ence Model

I. INTRODUCTION

Adaptive filter an important area in digital signal processing
and Digital Signal processing is important on an audio chip. In
many audio devices, this filter has wide array of applications.
[1]All audio devices will never be present in the same environ-
ment for too long given this world filled with mobile hardware.
To provide quality experience regardless of the environment,
Adaptive filters are the Go To approach. An Audio subsystem
requires a lot of resources to perform Adaptive filtering.
Hence it is suitable to offload that burden from the main
Digital signal Processor A hardware accelerator consisting of
specialized blocks for performing adaptive filtering can be
utilized. Improving this will provide a substantial performance
boost.

Using RAL makes it possible to access registers directly by
name and address. This allows manipulation of thread related
registers with ease. Once that option is available, It is then used
to verify whether a potential improvement is already present.
Various avenues can be chosen for improvement.

II. THEORETICAL CONCEPTS

[2]Adaptive filters, because of their ability to operate satis-
factorily in mobile environments, have become an important
part of DSP applications where the characteristics of the
incoming signals are unstable. A few examples use-cases are
echo cancellation, adaptive beam-forming, channel equaliza-
tion. The basic functionality comes down to the adaptive
filter performing a range of use-cases, namely inverse sys-
tem identification, system identification, noise cancellation
and prediction. [3]The fundamental function of a filter is to
get rid of unwanted component of a signal from those of
interest. Obtaining the simplest design usually requires a priori
knowledge of certain statistical parameters (such because the
mean and correlation functions) within the useful signal. With
this information, an optimal filter can be designed which
minimizes the unwanted signals according to some statistical
criterion. One popular measure is known as least mean squared
error minimization, Here the the difference between the actual
and the expected signal’s statistical measure’s difference is
obtained and squared, This value is then minimized by giving
a nudge to the weights in the right direction.

Adaptive Filters are FIR filter with coefficients that are able
to change based on the changes in the environment around it.
These filters are very versatile in applications where statistics
of incoming signals cannot be reliably determined.

An adaptive filters have many use-cases, [4]Some examples
are in channel equalization, echo cancellation or adaptive
beam-forming. The basic function comes down to the adaptive
filter performing a range of different tasks, namely, system
identification, inverse system identification, noise cancellation
and prediction.

Hardware Description Language (HDL)s like verilog, sys-
temverilog are used as a base to synthesize hardware to create
a functioning filter. Multipliers, Dividers, Multiply Accumu-
late (MAC) units are all coded in in HDL. Communication
between different modules are also coded in HDL.

HDLs are also used in implementation of Finite State
Machine (FSM), Which makes up an integral part of most
Register Transfer Logic (RTL) based designs.

[5]UVM is a methodology for the functional verification
of digital hardware, primarily using simulation. The hardware
or system to be verified would typically be described using
Verilog, SystemVerilog, VHDL or SystemC at any appropriate
abstraction level. UVM has versatility to use other featurees

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 6, June - 2021 Page -742



like assertions and RAL to design a testbench, UVM Allows
re-use of testbench by also allowing purchase of standard VIPs
(Verification IP) from vendors like cadence and synopsys In
UVM, there is a mechanism to be followed when a transaction
is to be sent from sequencer to driver. Sequences are sent to the
driver using TLM(Transaction Level Modelling), Individual
signal bit flips are sent in the form of packet.

Fig. 1. Simplified Block Diagram

III. DESIGN METHODOLOGY AND
IMPLEMENTATION

A. Current Block Design

Fig. 1 shows a simplified block diagram of the current
design. The block consists of a system wide DDR, Slave
interface, NoC, Internal RAM, DMA and core. The core is
a processor on which software/firmware is supposed to run.

1) Once Software invokes Hardware Adaptive Filter (HW-
AF) functionality, Data transfer between core and DDR
takes place.

2) Once Data transfer is complete Core sends and interrupt
signal to slave interface.

3) Slave will start transferring data from DDR to its own
internal memory.

4) Processing begins in the filter core, once done, slave will
send interrupt to master.

5) Master retrieves the processed data from the DDR
1) Features:
• Current design consists of debug registers
• One such debug register’s thread is to count the clock

cycles taken per thread.
• The core is allowed to submit 4 threads at a time
• Once a thread is submitted it can either be in pending,

progress or done state
• Once 4 threads are submitted, The order of execution in

thread1 −→ thread2 −→ thread3 −→ thread4
• A thread can be cancelled only if it is in pending state
• Start the Actual thread by writing to GO/GO thread2/GO

thread3/GO thread4
• threads can be submitted into queue if it is not In pending

or progress state
The Fig. 2 shows a diagrammatic representation of design

procedure followed in this project. Running all test cases gives

a good idea about the design and how data flows during one
thread cycle. Once the patterns are analyzed, It is necessary to
see what parts of the design are not up to the mark, or have
a potential to be improved. If said improvement requires less
amount of changes in RTL that potential can be taken up for
improvement. Once said improvement has been implemented
through changes in RTL, A testbench is to be prepared to
check the functional correctness of the applied change, Also
one can again run the testcases to see if changes have not
caused anything to break in the entire design.

Fig. 2. Design Methodology Flow

B. Possible avenues to explore for improvement

• Make it possible to interrupt thread midway
• Possibility of running 2 threads simultaneously
• Possible compression of filter coefficients
• Check clock gating(By using power analysis tools)
If so, then a new possibility of improvement can be chosen.

When Improvements are once performed, It can also be again
verified by changing these registers appropriately. Once the
design has been changed, New scenarios must be coded
onto the reference design. However careful consideration must
given to performance enhancement to implement, because if
the enhancement requires alot of RTL changes, drastic changes
must also be made to the reference model. Then the UVM
monitor and scoreboard must also be modified accordingly.
Hence a performance enhancement must be considered only
if it is giving drastic improvement for small RTL changes.
Which in turn lead to less changes to reference model.

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 6, June - 2021 Page -743



Example, thread2 is in pending state (ie. It will be exercised
soon after thread already in progress completes)Then new
thread cannot be put onto thread2 buffer

C. UVM Register Model

UVM register model, also known as RAL(Register Abstrac-
tion Layer) The UVM RAL offers a standard base class from
which users can inherit the functions that are able to access
DUT registers and memories. RAL is not a necessity, however
it makes testbench design a lot less cumbersome and more
easily re-usable

Fig. 3. Register Abstraction Layer

The advantages of UVM RAL Model are
• Provides high-level access to registers in the DUT by

name, address or reference.
• UVM provides a sequence library to perform initial

tests on the registers to verify that the correct registers
are being read and written. A backdoor access is also
provided with these classes. This can allow to corrupt
the data in the DUT and see how it is handled.

• Read and write methods can be called on design registers,
regardless of Bus interface state.

• Multiple threads are allowed to access the register model.
• A simple change in the blk file can allow a verification

engineer to re use register model in next iteration of a
project. Using RAL has become an industry standard, it
has allowed for re-use of this model for almost all the
commonly found IP cores like AHB-Bridge, AXI slave
etc.

• Generation of a register model is simple because of the
standardized approach, Open source scripts are readily
available to help in aiding generation of a RAL model.

D. Reference Model

Reference Model as the name suggests is a standard to be
set against which the DUT reesponse will be matched. The
UVM testbench response is compared with the output of the
reference model.

[6] The problem is that when designing a UVM environment
for complex designs as the wireless baseband digital systems.
The implementation of the reference model would be a bot-
tleneck since it is complicated.

Fig. 4. thread cancelled successfully for Use case

A reference model is supposed to be the golden standard
for the application and hence it’s accuracy is of utmost
importance. It is becomes very difficult to code a reference
model with a HDL for systems of higher level of complexity. A
high level language’s help may be used for such applications.
A language like MATLAB or C/C++ can be used for coding
a reference model. Different languages have different benefits
like speed, ease of use etc. Applications like signal processing
can benefit from using MATLAB because of it’s tools.

Fig. 5. Cancellation Signal Received

E. Implementation

[7]Using RAL, It becomes possible to access registers
directly by name and address. This allows manipulation of
thread related registers with ease. Stopping or starting a thread
just becomes a matter of assigning a few registers. Once that
option is available, It is then used to verify whether a potential
improvement is already present. If so, then a new possibility
of improvement can be chosen. When Improvements are once
performed, It can also be again verified by changing these
registers appropriately. Once the design has been changed,
New scenarios must be coded onto the C model or reference
design. This involves deep understanding in the design and
mathematical aspects of the system.

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 6, June - 2021 Page -744



However careful consideration must given to performance
enhancement to implement, because if the enhancement re-
quires alot of RTL changes, drastic changes must also be made
to the reference model. Then the UVM monitor and scoreboard
must also be modified accordingly. Hence a performance
enhancement must be considered only if it is giving drastic
improvement for small RTL changes. Which in turn lead to
less changes to reference model.

Fig. 6. thread Cancelled successfully

IV. RESULTS AND DISCUSSION

This section contains all simulation waveforms and their
detailed explanations respectively. Cancellation of thread mid
duration was successfully achieved. Which will be followed
by a tabular representation of effects of said changes imple-
mented. In terms of clock cycles saved.

A. Simulation results

1) Cancellation Signal through UVM Virtual Sequencer:
The Fig. 5 shows go1, go2, go3 signals being triggered which
then sets of thread1, thread2 and thread3 to sequentially
execute.

Once thread1 starts running, It can be seen thread2 and
thread3 are in pending state. A cancellation pulse is sent
midway during thread execution. Which in this case doesn’t
affect thread1’s progress, because RTL has not been changed
and this functionality is currently not present.

TABLE I
THREAD CANCELLATION IMPROVEMENT

Before After Performance Jump
Clock Cycles
per thread

2000000 2000000 0%

Clock Cycles
Wasted

1000000 10 50%

2) thread Midway Cancel Successful: In the Fig. 6, it can
be observed that once the go signal is given, thread goes into
progress state. Once the cancel Pulse is given, the thread that
was in progress is disabled.

3) thread Cancellation Successful for Use-case: The RTL
change done to implement the feature should’ve propagated
and broken the whole system, however it didn’t happen and
now feature must be tested for a use-case, Hence it was then
simulated on an existing use-case with appropriate modifica-
tions. This Fig. 4 shows a use case being cancelled midway
during it’s processing.

B. Performance Impact

The Table I shows the amount of jump in performance. It
can be seen that If a thread is not cancelled midway, this
doesn’t offer any improvement, However if software chooses
to preempt the thread for any reasons, Example Higher priority
task. On an average it assumed thread is stopped right in
middle, in this case it will save 50% of the clock cycles that
the thread would’ve taken to finish itself.

V. CONCLUSION

It can be inferred that this improvement is very dependent
on how frequently it is utilized, however the amount RTL that
was needed to change was minimal, and hence the amount
of changes in UVM testbench and reference design remained
less. This improvement has the potential to save 1000’s of
clock cycles, which matters quite alot for a low power and
high speed application. Even marginal gains are quite useful
if the amount of RTL to be changed is less.

REFERENCES

[1] D.-S. Chen, P.-Y. Chen, and Y.-W. Wang, “Hard-
ware/software co-design of nlms adaptive filters on fpga,”
in 2011 IEEE 15th International Symposium on Con-
sumer Electronics (ISCE), Jun. 2011, pp. 442–445. DOI:
10.1109/ISCE.2011.5973866.

[2] P. S. R. Diniz, Adaptive Filtering: Algorithms and Prac-
tical Implementation. Springer Publications, 2008, ISBN:
ISBN 978-0-387-68606-6.

[3] Y. Mollaei, “Hardware implementation of adaptive fil-
ters,” in 2009 IEEE Student Conference on Research and
Development (SCOReD), Nov. 2009, pp. 45–48. DOI: 10.
1109/SCORED.2009.5443365.

[4] F. Nekouei, N. Z. Talebi, Y. S. Kavian, and A. Mahani,
“Fpga implementation of lms self correcting adaptive
filter (scaf) and hardware analysis,” in 2012 8th Interna-
tional Symposium on Communication Systems, Networks
Digital Signal Processing (CSNDSP), Jul. 2012, pp. 1–5.
DOI: 10.1109/CSNDSP.2012.6292753.

[5] A. Moursi, R. Samhoud, Y. Kamal, S. El-Ashry, and
A. Shalaby, “Different reference models for uvm envi-
ronment to speed up the verification time,” Dec. 2018,
pp. 67–72. DOI: 10.1109/MTV.2018.00023.

[6] W. Ni and J. Zhang, “Research of reusability based
on uvm verification,” in 2015 IEEE 11th International
Conference on ASIC (ASICON), Nov. 2015, pp. 1–4. DOI:
10.1109/ASICON.2015.7517189.

[7] A. Jain and R. Gupta, “Scaling the
uvmregmodeltowardsautomationandsimplicityofuse,”
in 2015 28th International Conference on VLSI Design,
Jan. 2015, pp. 164–169. DOI: 10.1109/VLSID.2015.33.

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 6, June - 2021 Page -745




