
Information processing for Similar Source code using LSH Algorithm

*Mrs Vani Dave1,Mr Sanjeev Kumar shukla2

1M.Tech Research Scholar, Department of Computer Science and Engineering, Kanpur Institute of Technology ,

Kanpur, India

2Assistant professor and Head of Department, Department of Computer Applications, Kanpur Institute of

Technology , Kanpur, India

1vani_dave@rediffmail.com , 2sas@kit.ac.in

Abstract
In this study, we propose a method to quickly search for similar source files for a given source file as

a method to examine the origin of reused code. By outputting not only the same contents but also

similar contents, it corresponds to the source file that has been changed during reuse. In addition,

locality-sensitive hashing is used to search from a large number of source files, enabling fast search

.By this method, it is possible to know the origin of the reused code .A case study was conducted on a

library that is being reused written in C language. Some of the changes were unique to the project, and

some were no longer consistent with the source files. As a result, it was possible to detect the source

files that were reused from among the 200 projects with 92% accuracy. In addition, when we

measured the execution time of the search using 4 files, the search was completed within 1 second for

each file.

Keywords: LSH, n-gram and Jaccard coefficients, MinHash Value, TF-IDF

1. Introduction:

In software development, software developed by other projects is frequently reused .If you

need project-specific changes or want to simplify the compilation process, reuse is done by

copying and importing the source code of the source project. While there are advantages to

such reuse, there is a risk that defects contained in the reused code will be captured .In order

to manage the reused code, information about which project and version of the reused code is

needed. However, it has been found that not all projects record such information. [20]

If there is a match in another project for the reused source file, it can be said that the source

file may be derived from that project. However, code changes may be made during reuse, and

in that case it is not enough to simply determine whether the source files match. Inoue et al.

[8] proposed a system called the Ichi Tracker. This system queries code fragments and

searches using a code search engine. Also, in our group, we target the source code in the

repository, the version In this paper, we propose a new method to detect the presence of an

ion. [12]This approach requires that you have a repo to reuse from In this study, we propose a

fast search method for similar source code for a given source file. locality-sensitive hashing

[7] is used to speed up search. In the proposed method, the source files to be searched are first

registered in the database. In this case, in order to use the LSH algorithm, the source file is

converted to a vector consisting of MinHash[2]values. When performing a search, the target

source file is converted to a vector as well, and the search is performed using the vector .

In order to evaluate the method, the validity of the method was evaluated using 2 cases. In

addition, as a case study, we applied the method to the code that was actually reused, and

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 7, July - 2021 Page -23

evaluated whether the recorded source of reuse can be detected. The time required for the

method was also evaluated.

In chapter 2, related research is described. Chapter 3 describes the proposed method in this

research, and chapter 4 describes the implementation in this research. Chapter 5 describes the

case studies conducted, and Chapter 6 describes threats to validity. Finally, Chapter 7 is a

summary of this research.

2. Related research:

2.1 Reuse of Source Code: When developers develop software, they reuse software

developed in other projects. Heinemann et al. [6] surveyed open-source Java projects and

found that black-box is a binary reuse. It was reported that reuse was dominant over the

source code reuse, which is the white-box reuse. Rubin et al. [18] also reported that

companies are reusing developed software for use in the development of new products.

It is possible to develop software efficiently by reducing the cost of development by

reusing it. It has been reported by Mohagheghi et al. that reused components are less

defective than those that are not. [15]

If a developer needs to make changes to the project's own when reusing it, it may be

possible to incorporate the source code into the project under development. For example,

v8monkey*1 adds modifications to the libpng * 2 library to support the APNG (Animated

Portable Network Graphics)format.

While reusing source code is useful, developers should be careful not to use those that

have bugs or security vulnerabilities. Xia et al. [20] investigated whether the library being

used is a potentially vulnerable version of a project that reuses code from an open source

library. As a result, 31.1% of projects using zlib, 85.7% of projects using libcurl, and 92%

of projects using libpng were found to use potentially vulnerable versions. In addition,

18.7% of projects did not have any information about which version of the library they

used. In addition, 4.9% of projects have changed directory names or mixed source code

with reused source code, making it difficult to manage. It is considered useful to identify

the source of reuse for such unmanaged projects.

The detection of software reuse is based on binary or source code. For binary

applications, Davies et al. [4] and [5]proposed a method for using signatures in a class

from Java binaries. S. bj rnsen et al. [19]proposed a method for detecting code clones

from executable binaries. Qiu et al. [17] proposed a method for identifying library

functions from binaries.

Inoue et al. [8] proposed a system called Ichi Tracker. It queries code fragments, etc., and

searches the source code including clones of the code fragments using a code search

engine. Along with the clones found as the output of the system, for each clone the last

modified date of that clone It provides information such as the code of the project, the

content of the query, and so on.

In our research group [12], we proposed a method to estimate the version of the source

code contained in the repository. We used the similarity[11]based on the longest common

subsequence as the source code similarity, and presented a version based on the

assumption that the source code with the highest similarity is the reuse source. This

method requires the repo that was reused as input and the repo from which it was reused,

so it cannot be used if the repo source is unknown.

2.2 Search by Locality-sensitive hashes: In this study, we consider the problem of detecting

reuse of source files as a kind of problem of finding source files that are similar to the

files given as a query. locality-sensitive hashing (also referred to as LSH) is used to speed

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 7, July - 2021 Page -24

up the search for a large number of objects.LSH is an algorithm used for approximate

nearest neighbour search and clustering. [7]

There are several applications for LSH. Manku et al. [14] proposed a method for

detecting Web pages with almost overlapping contents in Web crawling.Das et al. [3]

proposed a method for recommending articles based on user behaviour using cooperative

filtering for Google News. Brinza et al. [1] used for clustering of loci in genome-wide

association analysis. Jing et al. [10] use LSH for image retrieval.

LSH is also used in source code. Jiang et al., [9] et al. use a fast detection method for

similar subtrees in the source code to detect clones, and use LSH to perform clustering on

feature vectors of subtrees. Yamanaka et al. [21] proposed a method of type 4 function

clone detection by clustering using TF-IDF method as features, but LSH is used for

feature vector clustering to perform fast detection.

3.Proposed method:

In this study, we propose a method to search a source file given as a search query for a

large number of source files whose content of source code is similar to a query. By using

LSH, fast retrieval is possible.

In this method, we also present an estimate of similarity to the retrieved results. This

estimate can be efficiently obtained, and for each source file included in the search

results, it is possible to know the degree of similarity with the query individually,

although it is an estimate.

First, the similarity between the source files used in this method is defined, and LSH is

explained, then the proposed method and details are explained.

3.1 Definition of Similarity between Source Files:

The similarity between the source files used in this study is the similarity using n-gram

and Jaccard coefficients. The advantage of using this similarity is that it is not overly

influenced by sorting of function units. In addition, as with TF-IDF method, similarity is

not affected except for 2 files for which similarity is obtained. The specific calculation

method consists of the following steps.

1) Lexical splitting of source files: Remove the comment from the source file s, split it

into lexical columns, and get Ts. By removing comments, it is possible to prevent the

size of comments and the difference in comments from affecting the similarity .Do a

similar operation on the source file t to obtain a lexical string Tt.

2) (2) Extracting n-grams from Lexical sequences: Convert a substring of length n from

a lexical sequence Ts to a multiplex set Ms of n-grams.

For example, if n = 3, the n-gram obtained for the element sequence e1; e2; e3; :::; em

is ff($;$; e1), ($; e1; e2), (e1; e2; e3), (e2; e3; e4),..., (em

3) (3) Conversion of n-grams from multiple sets to sets: Convert Ss to a set by

appending a number to each element of the multiple set Ms. The number to be added

to each element is a value from 1 to k for a given element e, if k elements are

included in the multiplex before conversion, each element is appended with a value

from 1 to k. For example, if a multiplex ffa ,a,b,b,b, cgg consisting of elements a; b; c

is converted to a set using this technique, the resulting set is f(1; a), (2; a), (1; b), (2;

b), (3; b), and (1; c)G.

In the same way, we obtain the set St from the multiplex set Mt. However, the

number to be added does not depend on Ms, and even if Ms and Mt contain the same

elements, the number to be added in the process of converting from Mt to St is given

in order from 1.

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 7, July - 2021 Page -25

(4) Calculation of Jaccard coefficients for Sets: The similarity of the source file s; t is

calculated by the following equation using the set Ss and St

Jaccard(Ss; St) =
⃓𝑆𝑠∩𝑆𝑡⃓⃓

⃓𝑆𝑠∪𝑆𝑡⃓⃓

3.2 Locality-Sensitive Hashing:

locality-sensitive hashing is one of the methods used for similarity search. [7]In this

study, LSH is constructed by using a family of hash functions F in which the

following equation holds. [16]

PrhЄF[h(x) =h(y)] =sin(x; y)

where sin(x; y)is the degree of similarity between x and y, and 0 sin (x; y) is the

degree of similarity between x and y.

Figure 1. Probability of entering the same bucket

MinHash is a method for fast estimation of similarity between sets. Find the hash value for each

element in the set and find the minimum value in it. When a similar operation is performed on another

set, the probability that these 2 minimums coincide is equal to the Jaccard coefficient for the 2 sets.

LSH is constructed using the method described in literature[13].2 Think about sets. We prepare r b

hash functions and find b vectors of MinHash values of r dimension for each set.2 Compare the

vectors corresponding to each hash function between sets. At this time, the probability that MinHash

values match between 2 sets, i.e., if the Jaccard coefficient is p, the probability that 1 or more vectors

among the b vectors match is 1. If MinHash values match between two sets, the probability that

MinHash values match between two sets is 1. If MinHash values match between two sets, MinHash

values match between two sets, MinHash values match between two sets, MinHash values match

between two sets, MinHash values match between two sets, MinHash values match between two sets

In Figure 1, when the value of the parameter is actually given 1-(1-pr)b Show the graph of. The

parameters are b= 120, and for r, r= 4; r= 8; r= 16 3 ways .As shown in the figure, you can adjust the

probability of entering the same bucket by adjusting the parameters.

3.3 Searching for Source Files using LSH:

The proposed method performs a search using LSH on the database. By using a database, it

corresponds to a case where the number of files to be searched is large and all necessary data cannot

be stored in main memory.

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 7, July - 2021 Page -26

The method consists of 2 steps .In the registration step, multiple source files are entered and registered

in the database .In the search step, a source file q is given as a query, and a set of similar files as

search results, and an estimate of the similarity between each result file and the source file q is output.

3.3.1 Registering to the Database to be searched

In this step, the source file to be searched is input and registered in the database.

First, prepare R B hash functions to be used in MinHash, which constitutes LSH.R; B is the upper

bound of the LSH search parameter r; b. The hash function to be prepared is a function from n-gram

with a number attached to the hash value, and they are called hi. However, 1 i R B is. Next, the source

file to be searched is registered in the database, and the MinHash value obtained from each hash

function is also registered in the database for 1 source file. The function that obtains the value of

MinHash from the source file using hi is called mi .For a source file f, let g be the numbered n-grams

and G be the function from the source file to the set of numbered n-grams, then mi(f) =

ming2g(f)hi(g).Using mi,m1(f), m2(f),... Register mr B (f) at the same time.

LSH is configured using the MinHash value registered, and an index is created to speed up the search

.An index is created for each B-tuple with R MinHash values as a pair. That is, (m1 (f),m2 (f),... 1 set

of indices I1, (mr+1(f), mr+2(f),... In this case, mR 2(f))is set to 1 and the index I2 is set, and the total

B-set index is set.

3.3.2 Searching for Similar Source Files:

In this step, a source file similar to a given source file is searched from the database. To search, in

addition to the source file to be queried, parameters 1 r R and 1 b B of LSH are given. Find the value

of MinHash for a given source file, and perform a search based on that value.1 For i b, using index

Ii，

Si(q)={f⃓∀𝑗 ∈ [1, 𝑟].𝑚j+R X (i-1) (q)=m j+R X (i-1)(f)}

Find the Si that will be. The union of this set Si, i.e. U1≤i≤bSi(q) , is the result of the search, that is, the

set of source files similar to the query.

In addition, for each source file included in the search results, an estimate of the similarity with the

query is output. The similarity is estimated using maximum likelihood estimation.

Suppose that a similar source file in the search results is contained in the set S1; S2; :::; Sb of x sets.

When similarity is expressed by p, x vectors for vectors of r dimension match, and b

L(p)=(pr)x(1-pr)b-x(
𝑏
𝑥
)

It is represented by. Therefore, given that the maximum likelihood estimator^p for similarity p is 0 p

1,，

P=√
𝑥 ÷ 𝑏𝑟

This is the first time I've ever seen this. As shown here, the possible values for the similarity estimate

are limited to b in the case of x 1.In the case of r = 1, the interval of possible values as an estimate is

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 7, July - 2021 Page -27

equal, and it is a method itself to estimate the Jaccard coefficient using MinHash. On the other hand,

for r > 1, the interval between possible values of the estimate becomes narrower as it approaches 1,

finer as it approaches 1, and coarser as it approaches 0.

The bias of the estimator B(^p), variance V ar(^p), mean squared error M SE(^p)are

Equations2

In an example, the mean square error of the estimator when the parameter is b = 120 and r = 2, r = 4,

and r = 8, while changing the value of p. The horizontal axis is the value of p, and the vertical axis is

the mean squared error .It is shown that the mean squared error approaches 0 when the value of p

approaches 1.

4.Implementation

4.1 About Similarity

The target of the method is the source file of C language, and n= 3 is the value of n of n-gram used for

similarity .

Similarity between different files and different bars of the same file

Table 1Dataset

Package Version 1 Version 2

original-awk 2012-12-20 2011-08-10

mgcv 1.8-4 1.7-12

seaview 4.3.1 4.5.3.1

fglrx-installer 8.96. 15.200

fglrx-installer-updates 1502.. 8.960

Foreign 0.8.62 0.8.48

libhdhomerun 20140604 20120128

r-cran-eco 3.1-4 3.1-6

r-cran-xml 3.6-2 3.98-1.1

rt-tests 0.89 0.83

The difference in similarity between the two versions was investigated. The survey focused on the

source code, 10 packages, and 505 files available in Ubuntu's apt. Table 1 shows 2 versions of orig for

each package.tar.The source code obtained from gz was used.

The result of obtaining similarity among all the combinations of the target file is shown as the

frequency for similarity in Figure 3.The figure on the left shows the similarity between files with

different packages and different file names, and the figure on the right shows the similarity between

files with different tar files, that is, different versions, with the same package, the same path, and the

same file name. The left figure contains 1,13735 similarities, and the right figure contains 245

similarities. However, for 101 cases in the right figure, the similarity was 1.0.From this result, the

similarity using 3-gram is considered to be effective in determining whether two files are different

versions of the same file.

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 7, July - 2021 Page -28

In the proposed method, it is necessary to prepare multiple hash functions for n-grams with added

numbers. This time, we implemented the following as a simple method.

The hash value by the hash function hi for the numbered 3-gram(num; t1; t2; t3)is

(((num X 65537)+t1) X 65537+t2) X 65537+t3) X ai + bi

Ask by. where num is the number appended to the 3-gram.

Where t1; t2; t3 are the values of Java's hash Code method for n-gram elements, that is, lexical, ai; bi

are constants for each hash function. The operation is performed in 64bit, and the lower 64bit is left

for the overflow during the operation.ai uses a 64-bit random number and a bit or of 1, and bi uses a

64-bit random number.

5.Case Study

5.1 Evaluating Search Results and Similarity Estimates:

We tested libpng and libcurl to confirm that high similarity to the query appears in the results of the

search and low similarity does not appear in the results of the actual search.

5.1.1libpng of png.c

The experiment was carried out using all revisions of c and h files contained in libpng repository*3 as

data sets. Specifically, from the list obtained by git rev-list --all --objects,.c files and.h targeted files.

The target file count is 20977.A commit file png that is included in libpng and tagged with v1.6.0.I

did a search with c as a query. The parameters of the search are r= 8; b= 120.

The number of files displayed in the search results is 716, which is 3.4% of the total data set .Among

those that did not appear in the search results, the highest similarity value was 0.482.Also, the lowest

similarity among those found in the search is 0.598.Figure 4 shows the relationship between the

estimated value and the actual value of the similarity between the file and the query in the search

results. The x-axis represents an estimate of the similarity, and the y-axis represents the actual

similarity.

5.1.2 libcurl of url.c

Experiments were carried out using all the revisions of c and h files in libcurl's repository*4 as data

sets. The target file count is 23273.The url of the commit that is included in libcurl and tagged with

curl-7470.I did a search with c as a query.

The number of files displayed in the search results is 374 files, which is 1.6% of the total data set

.Among those that did not appear in the search results, the highest similarity value was 0.578.The

lowest similarity in the search results is 0.572.

5.2 Evaluating the Ability to Search for a File's Origin

A case study was conducted to identify the project, file, and version of the reuse source using an

estimate of similarity. The subject of the case study is v8monkey*5

This is the source code of libpng included in the libpng.v8monkey records which version of libpng

was updated in multiple commit messages, and changes have been made in multiple source code to

support the Animated Portable Network Graphics format.

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 7, July - 2021 Page -29

4.2 About Hash Functions

We prepared a repository of 200 projects including the libpng project as the target of the search.

These projects were searched on GitHub in 2016/1/31 using the query "lib language:c", and the top

200 repositories of the search results were obtained on 2/1 the same year.

As an experimental procedure, first of all, in the project to be searched, all included in the history.c

files and.I registered the h file in the database. The number of registered cases is 567113.Next, we list

the v8monkey commits that indicate which version of libpng they have updated. A total of 14

commits were found to meet this requirement. The query was performed to find the files in

modules/libimg / png among the files newly added or modified in those commits. However, the

following files were excluded from the evaluation target.

• Source file consisting only of comments.

• mozpngconf.h．This file does not exist in libpng, and seems to have been added by the

developers of v8monkey.

The target file is 18 files, a total of 197.The contents of 57 of them matched the source file,

and the contents of the other 140 did not match the source file. The search parameters are: r=

8; b= 120

Table 2:Categorized results

BenchMark 1 Total

Meet Not Satisfied

Meet Criteria 2 177 10 187

Not Meeting Standard

2

5 5 10

Total 182 15 197

As a result of the search, the corresponding version of the file that was reused for all the

results appeared in the search results. For 197 queries, the total number of files in the search

results was 120001.The minimum number of files in search results for each query was 167,

the maximum was 1031, and the average was 609.In addition to libpng files, the search results

included a total of 3 projects using libpng (97 projects).

In addition, we investigated whether the estimate of similarity is the highest among the

estimates of similarity in search results for each query. In order to understand the results, we

classified the results into 2 categories from 4 criteria.

Criterion 1 Find an estimate of the similarity of the reuse source version

Criteria that will be the highest value of similarity estimates in the results 2 In the files in the

search results, the version from which to reuse.

The true value of the similarity of the version is the highest value of the true value of the

similarity that appears in the search results.

Criterion 2 is limited to files that appear in search results because it is not possible to obtain

the true value of similarity with 197 queries for all files in the database due to time

constraints. The results of this classification are shown in Table 2.

Of the 197 queries, 182 met criterion 1, meaning that the estimate of similarity between the

query and the recorded source of reuse was equal to the highest estimate of similarity in the

search results .For queries that satisfy criterion 1, the number of files with the highest

similarity estimate in the search results for each query was at least 1, 56, and 11 on average

.In addition, we obtained the number of files with the highest similarity estimate in each

search result of a query that satisfies criterion 1, and the number of duplicates removed by

ignoring the differences in comments and formats. However, an md5 checksum was used to

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 7, July - 2021 Page -30

detect duplicates. As a result, the number of files that were removed from duplicates was at

least 1, the maximum 18, and the average 2.3.

For 15 queries that did not meet criteria 1, if the similarity estimates were arranged in

descending order for each search result, the recorded version ranking was from 2nd to 14th,

with an average of 5.3.

There were 197 queries that met criteria 2 out of 187.In the remaining 10 cases, the similarity

between the source version and the query is not the highest value even if it is true.

Therefore，

Table 3Source les as search queries

ID File name Vector

Number of

matches

Search

results

Number of

cases

LOC Size

[B]

0 mozpngconf.h 0 0 525 27513

1 pngwrite.c 14842 503 1590 51254

2 pngwtran.c 26355 453 572 17279

3 pngrtran.c 41179 818 4296 147369

Of the 187 queries that meet criteria 2, 10 that do not meet criteria 1, 5.3% are likely to be

affected by the use of an estimate instead of a true value for similarity.

5.3 Performance Evaluation

The performance of the proposed method is evaluated .The CPU of the execution

environment is an Intel(R) Xeon(R) CPU E5-2620 with 2 processors, 64GB of memory, and

Windows(R) 7 Professional. Also, all database and search query files are stored on the SSD.

The database used for evaluation is the same as 5.2

5.3.1 Evaluation of Registrations

The database contains 200 projects with a total of 567113 files. For registration, I took all the

files from the Git repository once, saved them in a directory, and then registered them in the

database. The time it took to register all the retrieved files from the directory was 230

minutes.

5.3.2 Evaluation of Searches

As a query for the search, v8monkey commit 3a04be0690dff135ec42784557fedbf6c572cd22

mod-ules/libimg/png I used 4 files contained below. Table 3 shows about them. Since it is

expected that the longer the number of matching vectors in the database to be used for the

search, the longer the execution time will be, so we selected from the queries used in 5.2 so

that the number of matching vectors does not solidify.In addition, the number of matches in

the vector is the largest among the queries used in 5.2.

Since the OS caches some of the database contents in memory when performing a search, the

speed of subsequent queries is affected by the search of the preceding query. With this in

mind, the order of searching for 4 files is all the way, i.e. 4! = 24 searches were performed in

the same order, and the execution time was measured .The cache of the OS was cleared

between each of the 24 searches, so that searches for the same file were not affected by the

cache.

First, the time it takes to read the source file as a search query from disk and convert it to

MinHash vector is summarized. As a result, the median values from ID0 to 3 were 47ms,

94ms, 63ms and 219ms, respectively.

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 7, July - 2021 Page -31

It's a good idea. The horizontal axis represents the ID and the vertical axis represents the execution

time in milliseconds. Where ID is the value divided by 4, the ID shown in Table 3, and the remainder

indicates how many times the query was searched. For example, if the ID is a multiple of 4, it shows

the result of the first search after clearing the cache, and if the remainder is 3, it shows the result of

searching for the corresponding query after searching for other 3 queries.

6.Threat to validity

The implementation of this study uses a hash length of 64bit and assumes that the behaviour

of the hash function behaves completely random, and does not consider the effect of the

collision as the probability of collision of the hash value is very low. However, we have not

verified whether the collision actually occurred or the effect on the result if the collision

occurred .In addition, the bias of the hash function may have influenced the result of the case

study.

Only 1 project was used as a query for the search in the case study. For this reason, the

effectiveness of applying this method to other projects or projects that use other languages

may differ from the effectiveness confirmed in this case study.

5. In Criterion 2, which was established for classifying results in 2, due to time constraints,

the target of obtaining similarity was limited to only files that appeared in the search results.

However, there is a possibility that some files that do not appear in the search results have a

similar degree to the query than the files that appear in the search results.

7.Conclusion

In this study, a large number of source code files were obtained for source code files given as

search queries.In this paper, we propose a method to search for those whose source code

content is similar to a query. By using locality-sensitive hashing, a fast search was realized. In

the case study, we searched for a total of 197 files including the files included in another

commit, and for all 197 of them, we were able to search for the reuse source recorded in the

commit message .Among them, the recorded estimate of the similarity of the reuse source for

182 cases was the highest estimate in the search results .In addition, the search was completed

within 1 second per 1 search time.

In the proposed method, it is necessary to perform a search by specifying 1 source file for the

search .The future challenge is to give the source code of the entire project and identify reuse

and non-reuse from among them .In addition, the proposed method uses only information

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 7, July - 2021 Page -32

about 1 file, but it can be expected to improve the accuracy of the method by giving multiple

files as input and using those information together.

References:

[1]Brinza, D., Schultz, M., Tesler, G. and Bafna, V.:RAPID detection of gene-gene

interactions in genome-wide association studies,Bioinformatics, Vol. 26, No. 22,pp.

2856{2862 (2010).

[2]Broder, A. Z.: On the resemblance and containment ofdocuments,Compression and

Complexity of Sequences1997. Proceedings, pp. 21{29 (1997).

[3]Das, A. S., Datar, M., Garg, A. and Rajaram, S.: GoogleNews Personalization: Scalable

Online Collaborative Fil-tering,Proceedings of the 16th International Conferenceon World

Wide Web, WWW '07, New York, NY, USA,ACM, pp. 271{280 (2007).

[4]Davies, J., German, D. M., Godfrey, M. W. and Hindle,A.: Software Bertillonage: Finding

the Provenance of anEntity,Proceedings of the 8th Working Conference onMining Software

Repositories, pp. 183{192 (2011).

[5]Davies, J., German, D. M., Godfrey, M. W. and Hindle,A.: Software Bertillonage:

Determining the provenanceof software development artifacts,Empirical

SoftwareEngineering, Vol. 18, pp. 1195{1237 (2013).

[6]Heinemann, L., Deissenboeck, F., Gleirscher, M., Hum-mel, B. and Irlbeck, M.: On the

Extent and Nature ofSoftware Reuse in Open Source Java Projects,Proceed-ings of the 12th

International Conference on SoftwareReuse, Lecture Notes in Computer Science, Vol.

6727,pp. 207{222 (2011).

[7]Indyk, P. and Motwani, R.: Approximate Nearest Neigh-bors: Towards Removing the

Curse of Dimensionality,Proceedings of the Thirtieth Annual ACM Symposiumon Theory of

Computing, STOC '98, New York, NY,USA, ACM, pp. 604{613 (1998).

[8]Inoue, K., Sasaki, Y., Xia, P. and Manabe, Y.: Wheredoes this code come from and where

does it go? { In-tegrated code history tracker for open source systems{,Proceedings of the

34th International Conference onSoftware Engineering, pp. 331{341 (2012).

[9]Jiang, L., Misherghi, G., Su, Z. and Glondu, S.:DECKARD: Scalable and Accurate Tree-

Based Detec-tion of Code Clones,Proceedings of the 29th Interna-tional Conference on

Software Engineering, ICSE '07,Washington, DC, USA, IEEE Computer Society, pp. 96{105

(2007).

[10]Jing, Y. and Baluja, S.: VisualRank: Applying PageR-ank to Large-Scale Image

Search,Pattern Analysis andMachine Intelligence, IEEE Transactions on, Vol. 30,No. 11, pp.

1877{1890 (2008).

[11]Kanda, T., Ishio, T. and Inoue, K.: Extraction of prod-uct evolution tree from source code

of product variants,Proceedings of the 17th International Software Prod-uct Line Conference,

Tokyo, Japan, ACM, pp. 141{150(2013).

[12]Kawamitsu, N., Ishio, T., Kanda, T., Kula, R. G., DeRoover, C. and Inoue, K.:

Identifying Source Code Reuseacross Repositories using LCS-based Source Code Sim-

ilarity,Proceedings of the 14th International WorkingConference on Source Code Analysis

and Manipulation,pp. 305{314 (2014).

[13]Leskovec, J., Rajaraman, A. and Ullman, J. D.:Miningof Massive Datasets, chapter 3,

Cambridge UniversityPress (2014).

[14]Manku, G. S., Jain, A. and Das Sarma, A.: DetectingNear-duplicates for Web

Crawling,Proceedings of the16th International Conference on World Wide Web,WWW '07,

New York, NY, USA, ACM, pp. 141{150(2007).

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 7, July - 2021 Page -33

[15]Mohagheghi, P., Conradi, R., Killi, O. M. and Schwarz,H.: An empirical study of

software reuse vs. defect-density and stability,Proceedings of the 26th Interna-tional

Conference on Software Engineering, pp. 282{291(2004).

[16]Moses S., C.: Similarity Estimation Techniques fromRounding Algorithms,Proceedings

of the Thiry-fourthAnnual ACM Symposium on Theory of Computing,STOC '02, New York,

NY, USA, ACM, pp. 380{388(2002).

[17]Qiu, J., Su, X. and Ma, P.: Library Functions Identi ca-tion in Binary Code by Using

Graph Isomorphism Test-ings,Proceedings of the 22nd IEEE International Con-ference on

Software Analysis, Evolution, and Reengi-neering, pp. 261{270 (2015).

[18]Rubin, J., Czarnecki, K. and Chechik, M.: ManagingCloned Variants: A Framework and

Experience,Pro-ceedings of the 17th International Software ProductLine Conference, pp.

101{110 (2013).

[19]Sbjrnsen, A., Willcock, J., Panas, T., Quinlan, D. andSu, Z.: Detecting Code Clones in

Binary Executables,Proceedings of the 18th ACM International Symposiumon Software

Testing and Analysis, ACM, pp. 117{128(2009).

[20]Xia, P., Matsushita, M., Yoshida, N. and Inoue, K.:Studying Reuse of Out-dated Third-

party Code in OpenSource Projects,JSSST Computer Software, Vol. 30,No. 4, pp. 98{104

(2013).

[21] Hiroki Yamanaka, On-ro Choi, Norihiro Yoshida, Katsuo Inoue: Fast Functional Clone

Detection based on Information Retrieval Technology, IPSJ, Vol. 55, No. 10, pp. 2245{2255

(2014)

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 7, July - 2021 Page -34

