
Performance Comparison of SSH Libraries

Sonali Karki1 , Dr. Kiran V2

Electronics and Communication
Dept.1,2 ,R.V College of

Engineering , Bangalore, India

kiranv@rvce.edu.in1, sonaliajitkarki.ec17@vce.edu.in2

Abstract: The business industry is evolving. Enterprises have begun a digital
transformation path, adopting innovative technologies that enable them to move quickly
and change how they cooperate, lowering costs and improving productivity. However, as
a result of these technologies, the conventional perimeter has evaporated, and
identification has become the new line of defense. New security concerns necessitate
modern security measures. Passwords are no longer appropriate for authenticating
privileged access to mission-critical assets. Passwords are notorious for being insecure,
causing weariness and giving the user a false sense of security. Enterprises must use
password-less solutions, which is where SSH key-based authentication comes in.
The Python language's numerous applications are the consequence of a mixture of traits
that offer this language an advantage over others. Some of the advantages of
programming with Python are as follows: To enable easy communication between Python
and other systems, Python Package Index (PyPI) is used. The package consists of a
variety of modules developed by third party developers. It also has the benefit of being an
Open Source and Community Development language, as well as having substantial
Support Libraries.
There are multiple SSH libraries in python and this paper focuses on each of their pros
and cons as well as the time taken for each of them to perform.

 Keywords: SSH, Python, Netmiko, Paramiko, SSH2-Python

1. INTRODUCTION

 To enable clients to safely establish a connection to a server present in a remote location, a
network protocol named SSH (Secure Shell or Secure Socket Shell) was developed. As well as
giving secure organization administrations, SSH represents a bunch of devices that execute the
SSH convention. Secure Shell gives solid passwords and public key verification and moves
scrambled information between two PCs that interface over an open organization like the
Internet. As well as giving solid encryption, network overseers use SSH widely to distantly
control frameworks and applications, permitting them to sign in to different PCs over the
organization, run orders, and move records starting with one PC then onto the next. simulation.
Few other notable examples of the use of ssh are to connect to a network device situated in a
remote location while connected to a server or remotely executing a graphic session on a
Windows XP server. Windows X system graphics session. The SSH server listens on standard
port 22 of the Transmission Management Protocol (TCP) by default.

 The authors of [1] demonstrates several new techniques for configuring network devices
using automation, reducing the time required for equipment setup and making maintenance
simpler. It also enhances network security by detecting and repairing security flaws, as well as
network reliability.

 In [2], for system administrators and end users interested in using this highly common
TCP/IP-based approach, this revised book extensively discusses the new SSH-2 protocol. SSH,
The Secure Shell: The Definitive Guide, written for a broad technical audience, includes many
SSH solutions for various operating systems and programming environments.

 The authors of [3] reviews development in SSH main management to date, identifies ongoing
issues, and outlines the conditions for a long-term solution. Proposals from the science

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 6, June - 2021 Page -868

mailto:kiranv@rvce.edu.in1

community are being sought to solve the problem.

 The network protocol which has cryptography has a major concept and the tools required to
execute this protocol together make up SSH. A client server model is the heart of the SSH. The
concept is that a client can safely connect to a server present in a remote location during and
after the session. Few application which yield good results when SSH is applied is during file
transfer from one workstation to another and during terminal

2. FUNDAMENTAL THEORY

2.1 SSH

 The main motivation to develop Secure Shell was to ensure an alternate method to the
existing login applications such as remote shell and remote login. These applications had a
numerous security flaws and hence could not be trusted after a certain point. While TelNet is
still being used today, it too has a lot of security issues. To counter the lack of security features
in the aforementioned application SSH was developed. It contains enhanced security while
retaining the easy-to-use login and logout feature, initializing and disconnecting sessions which
need to run on remote servers. Due to its easy-to-use and user-friendly interface, SSH was able
to replace RCP and FTP (File Transfer Protocol).

 A client-server based protocol is a protocol where one system, the client, can seeks
information from another system which is usual termed as a server. When an SSH connection
is established between system A (client) and system B (server), system A is able to control
system B like a local computer. As the server receives client requests in bulk, to manage all the
requests, the server listens to a specify port which is allocated solely for this purpose. A client
is able to initialize the connection using only this port. SSH focuses on authentication to enable
a safe connection hence the client must have the required permissions after which it can send
SSH commands as shown in Figure 1.

Figure 1. SSH Client-Server

The first step in connecting to a remote host using SSH is to use the following command:

ssh username@remoteserver.com

In this example, remoteserver.com is a server which can be connected to by a client to gain
information. The Client can connect to this server using SSH, assuming that SSH has been
enabled on the server. If this is so then the client needs a username to be able to successfully
connect to the server. This is the authentication mechanism added to ensure only authorized
personnel have access to the server. The SSH at the begin of the command-line-interface
command informs the client, username, to bind to the server, remoteserver.com . The user will
be prompted with the remote host's public key fingerprint. If the client has not connected to this
server in the past, ie it’s the first time then the client then there is a smooth connection
established as the username is used to authenticate the client.

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 6, June - 2021 Page -869

2.2 timeit() Library

Python timeit() is a method in the Python library that calculates the length of time it takes
for a given code snippet to execute. The Python library iterates over the code statement a
million times and returns the shortest time from the collection of code snippets. Python's
timeit() method is useful for testing the output of a programme. Instead of this method, a
simple time package is used, which subtracts the resources required pre and post code
execution. This methodology, however, is inaccurate since a background process may be
executing at the moment of code execution, resulting in significant changes in the processing
time of short source code. timeit runs the source code hundreds of thousands of times to
provide the highest statistically meaningful assessment of code processing time.

3. PERFORMANCE FEATURES FOR SSH LIBRARY
 The SSH libraries' specifications included good consistency, scalability, Python 3 support,
and support for the standard authentication and connection models used by the majority of
organisations to connect to network devices

3.1 Asynchronous
Asynchronous processing is well suited to network operation. Asynchronous programming

became simple in Python 3, particularly starting with Python 3.5. The readability and ease of use
of the async mode only improved in subsequent updates, all the way up to Python 3.7, and
several new libraries sprung up that did asynchronous versions of popular use cases including
REST and SSH. Concurrency can be useful even with a single core, while parallel execution is
necessarily dependent on multiple cores, according to a simple model. To put it another way,
every task's execution is divided into two parts: CPU and I/O.

When a task performs I/O, it usually waits a long time for the IO to complete and the results
to be returned. Waiting for I/O can be exemplified by disc reads or network communication.
Other tasks may be scheduled to run while the task is pending. Concurrency is described as any
application that can take advantage of this waiting time to work on other tasks. When a task is
split into several individual pieces for parallel execution, each piece runs on multiple cores at the
same time. Performing a typical operation on multiple elements in a list is an example of a task
that lends itself to parallelization.

3.2 Authentication and Connection Method Support

Connecting to network devices in enterprises and most organizations (except hyperscalars
who have the ability to put together a good public key infrastructure to use certificate-based
authentication), requires support for at least the following features:

1. Excluding Host Key Files
2. Supporting Private Key Files rather than passwords, as well as a private key filewith a

password.
3. Compatibility with jump host
4. Compatibility with ssh configuration files.
5. Compatibility with ssh-agent

3.3 SSH and Network Devices

 When using SSH to bind to networking devices, they are infamous for not functioning like
proper shells. The main issue is how configuration commands interact with network devices.
Shells for network devices are context-sensitive, particularly when it comes to configuration. To
assign an IP address to an interface one must first run the command "configure," then "interface
Ethernet 1/1." As a result, an SSH library designed to facilitate interacting with network
devices would be extremely beneficial in this regard.

4. TYPES OF SSH LIBRARIES

 There are a multitude of ssh supporting libraries. These 4 libraries were chosen based on

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 6, June - 2021 Page -870

their timely update, timely bug and a large community support.

4.1 Paramiko

 “Paramiko is a Python (2.7, 3.4+) implementation of the SSHv2 protocol that provides both
client and server functionality.”

Paramiko is a python library for interacting with SSH. The paramiko model provides both
client(the system which requests for pages from a remote server, AKA user) and server(the
system which holds information needed by a user. Usually placed in a remote location hosting
multiple websites in one machine) features. It is an example of a library in Python which
provides a conception of the SSHv2 protocol. As a client, you can log in with a password or a
key, and as a server, you can monitor which users have access and which platforms they can use.

Figure 2. Paramiko

4.2 Netmiko

Netmiko is a common alternative to Paramiko, but there are a few key differences: device
support and performance. You'll come across a variety of device types while operating on real-
world networks. As a result, you'll need a dependable tool to assist you in automating the
process. Paramiko supports a small range of devices which results in failure in connection. In
addition, it is much slower than Netmiko.

Figure 3. Netmiko

4.3 SSH2-Python

SSH2-python is a Python binding for libssh2 and is a super fast SSH2 protocol library. The
library is designed to be a thin wrapper of libssh2, implemented in Cython, with as little
overhead as possible and, conversely, as high performance as possible. It has no dependencies
and includes libssh2 in the Linux, OSX, and Windows binary wheels.

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 6, June - 2021 Page -871

Figure 4. SSH2-Python

4.4 Scrapli

Scrapli is a wrapper for the paramiko, asyncssh, and ssh2 SSH modules, rather than an SSH
library in and of itself. It connects to network devices using both a synchronous and
asynchronous SSH connections. Scrapli, on the other hand, aims to make it easy to connect to
network devices and issue configuration commands, unlike asyncssh, which doesn't have any
additional support for network devices. Scrapli, on the other hand, lacks support for connecting
to Linux-based systems such as Cumulus and SONIC, as well as servers, and it supports even
fewer devices than Netmiko.

Figure 5. Scrapli

5. Results

 The libraries were tested for 2 scenarios. The first scenario has only one device in a server
whereas the second one has multiple device per server which is usually the case. The time of
execution was mapped for each of the libraries with Netmiko performing the fastest in both
cases.

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 6, June - 2021 Page -872

Figure 6. Results

Scrapli was dismissed as it not only performed the slowlest, it does not support
asynchronous polling. While Paramiko and ssh2-python came in close to Netmiko, 2 errors
were encountered.

 SSh2-python supported only 9 of the devices. If a library does not support a device,
connection to this device is not possible. This issue was faced in many servers as each server
has a variety of devices.

An important feature of the library is being able to configure the router. The Management IP
is one such important configuration.

The interface which is a primary line for the controller is the Mgmt interface aka
management interface. This is the go-to interface for all activities such as accessing networks
connected to businesses. A common example of this is the AAAA servers. Control and
Provisioning of Wireless Access Points aka CAPWAP is also accessed using the Mgmt
interface. The interface also finds itself being used in controller_to_access_point
communications. Traffic Tunnelling and intercontroller mobility signalling are also
applications of Mgmt interface.

A common method of accessing the graphical user interface for the controller is to use the
browser. The Uniform Resource Locator bar on the browser is key. The Mgmt console Internet
Protocol can be inserted into the search bar.A default support found on the Mgmt GUI is
management of the AP. Every controller needs 2 essential components. One is the interface for
the Mgmt to control communications related to inter-controller activities and a manger for the
AP.

REFERENCES

10.1 Journal Articles

[1] P. Mih ̆ail ̆a, T. Balan, R. Curpen, and F. Sandu, “Network automation andabstraction using python

programming methods,”MACRo 2015, vol. 2,10 2017.
[2] D. Barrett, R. Silverman, and R. Byrnes, “Ssh, the secure shell: Thedefinitive guide,” 01 2005.
[3] T. Ylonen, “Ssh key management challenges and requirements,” in201910th IFIP International Conference on

New Technologies, Mobility andSecurity (NTMS), 2019, pp. 1–5.
[4] T. Yl ̈onen. (1995). “Ssh protocol,” [Online]. Available:https://ssh.com
[5] J. Forcier. (2009). “Welcome to paramiko’s documentation!” [Online]. Available:

http://docs.paramiko.org/en/stable/index.html.
[6] K. Byers. (2014). “Module netmiko,” [Online]. Available: https : / / ktbyers .

github.io/netmiko/docs/netmiko/index.html.
[7] Panos. (2009). “Ssh2-python documentation,” [Online]. Available: https://ssh2- python.readthedocs.io/en/latest/
[8] C. Montanari. (2018). “Scrapli,” [Online]. Available: https : / / carlmontanari . github.io/scrapli

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 6, June - 2021 Page -873

	Performance Comparison of SSH Libraries
	Sonali Karki1 , Dr. Kiran V2
	Electronics and Communication Dept.1,2 ,R.V College of Engineering , Bangalore, India
	SSH
	Authentication and Connection Method Support
	4.1 Paramiko
	“Paramiko is a Python (2.7, 3.4+) implementation of the SSHv2 protocol that provides both client and server functionality.”
	Paramiko is a python library for interacting with SSH. The paramiko model provides both client(the system which requests for pages from a remote server, AKA user) and server(the system which holds information needed by a user. Usually placed in a remo...
	/
	REFERENCES

