
Abstract— Scalability is an important aspect of communication
networks. With the ascent of SIP and associated modern
real-time protocols, IP telephony has become a revolutionary
technology in connecting users through real time voice
communications with enabled video and instant messaging
capabilities. B2BUA is a SIP server that provides call
management and authentication functionality by reformulating
the request and routing the traffic to other user agent in the
network. It comprises of signaling and media entities that
handles all control signaling messages and real time data(media)
information respectively. The signaling and entities run as
different processes in the same container. Such an architecture
encounters a large CPU utilization after a specific number of
maximum calls due to increase traffic flowing within the same
node. Further Packet processing is CPU intensive and there is
need for architecture that scales well with increasing traffic
without hitting the CPU performance. The paper presents the
design of decoupled architecture for Signaling and Media entities
by running both the processes in different containers. With such
an approach, one Signaling entity can communicate with multiple
Media entities or vice versa thereby providing a suitable scalable
solution to deal with the increased traffic and further
maintaining the system efficiency. The paper is concluded by
highlighting the difference between Kubernetes and OpenStack
for the proposed architecture

Index Terms—Back to Back User Agent(B2BUA), Docker,
Kubernetes, OpenStack, Session Initiation Protocol (SIP).

I. INTRODUCTION

oice over Internet Protocol (VoIP) refers to sending voice

and unified communications over an IP-based network. It
differs from PSTN which forms a dedicated circuit connection
for each call. IP telephony is more versatile and enables the
transfer of voice data and video to multiple devices including
smart phones laptops tablets and iPhones at a very low cost.
They use Internet Protocol address (IP addresses) which
defines rules for how computers and devices converse with
each other on the Internet. Apart from making calls, VoIP
service providers handle outgoing and incoming calls routing
through existing telephone networks land lines and cell phones
rely on the public switched telephone network PSTN.

VoIP was founded around 1995 by a company located in Israel
called VocalTec to create a way to save money on long distance

in international telephone charges they developed a product
called Internet phone an application that offered computer to
computer voice calls using a microphone and speaker.

The most common devices and network elements that
participate in VoIP communication is depicted in figure 1. IP
telephony calls can be generated directly by a special VoIP
phone such as SIP phone, VoIP enabled PC or PC with
necessary software which is connected to cable modem that
enables high active internet connection. Other network
elements include proxy to route the traffic to different network
and gateways that connect IP based network to PSTN. Further,
session border controllers that are responsible for authenticated
service are embedded with such devices or present as
independent entity.

Fig. 1. Typical example of VoIP Technology

VoIP replaces the traditional analogue copper lines by

internet connection for the communication. It uses a set of
codecs at both ends to modify or convert into a pattern suitable
for transmission and retrieve original data at receiving end.
Main advantages of VoIP include low cost and easier
accessibility.
SIP is the one of the most celebrated protocol in VoIP
technology. It is primarily involved in handling sessions i.e., by
initiating, managing and tearing down multimedia sessions.
The protocol defines the rules with the set of messages that are
involved in primary signaling before the exchange of actual
audio/video packets. SIP network typically involves User
Agents (endpoints), proxies (to forward all kind of signaling

Dr. Kiran V, IEEE Senior Member, Associate Professor, Rahul Raj D N, Undergraduate Student,
Electronics and Communication Engineering, R V College of Engineering, Bangalore

Segregating Signaling and Media Planes into
Different containers

V

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 6, June - 2021 Page -1373

messages) and different servers to keep track of identity and
location information of user agent.

II. BACKGROUND
A back-to-back user agent is an intermediate network element
in SIP that takes request from on end, reformulates the request
and forwards it to other end. It is similar to proxy server but in
addition to the forwarding functionality it does the
reformulation of request by adding network and media related
information. It can be thought of as a composition of client and
server. It behaves as a server when accepting the request and as
a client when sending out the modified request. B2BUA creates
a dialog state and involves in the entire duration of the dialog.
It also captures the complete state information of calls
throughout the session.
The functions provided by B2BUA include management of
calls with support for transfer and disconnection of calls.
Further it provides abstraction by hiding network topology.
These are present as integral part of PBX and gateways.
Session Border Controller can be considered as one of the most
common B2BUA.

III. RELATED WORK

The unfolding of the Session Initiation Protocol (SIP) promised
a simple and effective way for multimedia session handling
among multiple users. In paper [1], SIP-based VoIP system was
designed to ensure provision for a wide range of services. It
emphasized on the cost savings of VoIP over traditional PSTN
network through which organizations incurred toll charges.
Main contributions of this paper include support for
multi-conferencing along with point-to-point VoIP call. Paper
[2] dealt with Asterisk, which is a unique open source PABX
and the implementation of VoIP on it. It showed the
configuration of Asterisk to implement normal calls, voice
mail, and conferences on a local network with soft phones.
Security aspects and the challenges faced by SIP trunks are
dealt in [3]. Adding PBX and SIP trunking service on top of
exiting network does not provide the SIP packets to pass
through. This is overcome when SBC is introduced at the edge
of the network that allow only authorized calls to enter through
organization. Further by applying real time security policies,
SIP controls VoIP traffic.

Paper [4] presented a detailed survey on detection procedures
for DoS and DDoS attacks in the context of VoIP network. DoS
attack by flooding the SIP server with different SIP-messages,
analysing the performance by SIP server by considering
different performance metrics such as CPU and memory
utilization is highlighted in [5]. Asterisk is used as SIP-server
and the capture of voice packets on both ends is accomplished
by Wireshark tool. It was observed that call initiation failed
after a maximum number which in this case was 1387 calls.
Further quality of VoIP calls is analysed by bombarding the
server with only 2000 packets, 2000 packets with 100
simultaneous calls, 2000 packets with 200 simultaneous calls.

With stress, it is observed that quality goes down in terms of
jitter and delay.

The work in [6] elaborated on SDN to have a decoupled
architecture for control and data planes. Basically, a controller
with a centralised approach exhibits a tuned control over the
underlying hardware/switch (data). This provides a better
abstraction over the underlying hardware with more focus on
scalability and enhanced performance. Several important
aspects of SDWN and its relevance in wireless technology was
presented. In paper, [7], the formal flow of SIP which involves
initialization, registration and authentication, and the
challenges faced with different attacks are discussed.

Authors in [8], presented OpenSIP which used proliferating
technologies, such as software-defined networking (SDN) and
network function virtualization (NFV). One of the main
problems with SIP network is the overload incurred by SIP
proxy. Paper [9] presented a comparative study between
hypervisor and docker. The hypervisor was chosen as Xen;
further the overhead involved in virtualization in HPC and
OLTP were discussed. Platform independent isolated
development with container technology and the way of
incorporating dependent libraries were discussed in paper [10];
further different network architecture in the context of
industrial automation were highlighted.

Developing application cloud using docker, Kubernetes,
google cloud was surveyed in [11]. The specification related to
docker daemon, architecture of Kubernetes and features of
Kubernetes and its relevance in container technology with
regard to health checks were highlighted. Leveraging
Kubernetes for IoT applications has been emphasized in paper
[12], [13]. The authors proposed the KEIDS scheduler that
does two functions namely synchronization and scheduling
that keeps check on desired state of cluster and schedules
accordingly. With such a schedular, energy Utilization saw an
improvement on the desired application by 14.42% with least
interference.

Kubernetes engine scaler was proposed in paper [14] that is
based out on machine learning. Various algorithms compete
within the scaler to direct to a method that best suits for driving
the traffic in situations of continuously varying requests. The
network plugins and different network interface
implementations were highlighted in [15].

IV. SIP CALL FLOWS

SIP is open standard and text based signalling protocol. Its
purpose is to setup, modify and tear down sessions by following
a request-response transaction model. SDP is text based
description protocol that works in association with SIP. It
defines parameters related to media. This is advertised by the
user agents in the session/conference to describe parameters
such as, the name of the owner of the session, the name of the

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 6, June - 2021 Page -1374

session, the coding, the media, protocols, codec formats,
timing, transport information etc.

Depending on the location of SDP message there are 3 types of
call flows. SDP is message to describe media streams in a
format understood by participants. Depending on this
description party decides whether to join the conference or
when or how to join the conference. Description involves
information such as name of owner, name of session, media
protocols, coding, timing, the codec formats.
Early Offer-Early Offer (EO-EO) call-flow: This is the case
where caller sends on codec related information in SDP that is
a embedded within the initial invite message. The callee then
has a privilege to look into this codec and has the provision to
negotiate and to use the codec of choice as shown in figure 2.
This type of scenario in which caller is offering and callee is
answering with codec it is going to use is called as offer- answer
model.

 Fig. 2. Depiction of EO-EO call flow

Delayed offer-Delayed Offer (DO-DO) call flow: Here the
SDP message is sent in the 200 OK response from callee. this is
forwarded by B2BUA 2 caller. Caller then sends and negotiates
codec by sending SDP within acknowledgement to B2BUA as
shown in figure 3.

 Fig. 3. Depiction of DO-DO call flow

Delayed Offer-Early Offer (DO-EO): This is accomplished
by setting a parameter called forced early offer as true in the
configuration file. On one call leg this appears as delayed offer
while on the other leg the B2BUA adds the SDP and hence it
behaves as early offer as shown in figure 4.

 Fig. 4. Depiction of DO-EO call flow

V. DOCKER

Docker is a framework that provides the ability to have isolated
environments to develop and package applications. Its main
purpose is to containerize applications, ship them to different
environments, and run applications on remote hosts without
any requirements/dependencies.
In a scenario where an application stack has to be deployed
with different applications such as MySQL, Redis, MongoDB,
etc., there is a need to explicitly take care of versions of each
application and its compatibility with the underlying OS. Each
service may require libraries or dependencies of different
versions. With docker, each component can be run in separate
containers with its own dependencies and libraries, all on the
same OS but in separate environments. To bring up an
application there is just a need to run a simple docker run
command.

 Fig. 5. Docker vs Virtualization
As shown in the figure 5, docker systems will have underlying
hardware on which operating systems are running. Docker
engine is installed on top of the OS and containers with
necessary libraries and dependencies run on top of the docker
engine. Whereas in virtual machines hypervisors such as
VMware or VirtualBox is installed on the underlying hardware
and virtual machines run on top of them. This overhead causes
higher utilization of underline resources as there are multiple
operating systems and kernels running. Virtual machines
consume high disk space as each of the machines is heavy (in
GB) and also they take minutes to boot up as it needs to boot up
the entire kernel. Docker containers are light and they run in
seconds. Other differences include deployment is easy in the
case of docker and it's easily portable. Whereas in VM since
they are completely isolated and don't rely on the underlying
OS they provide complete isolation and the ability to run
different applications on different OS such as Windows, Mac,
and Linux flavours.

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 6, June - 2021 Page -1375

Docker containers are created using images that are formed
from Dockerfile. Containers are running instances of the
formed images.

Docker networking enables user to link the docker container to
as many networks as desired and provides complete isolation.
The network drivers supported by docker are:

• BRIDGE Network: It is a private default network
created on the host. Docker daemon created virtual
ethernet bridge and performs operation by
automatically delivering packets across network
interfaces.

• HOST Network: It is public network that uses host IP
and TCP port to display services running inside
containers. But this type of networking doesn’t
provide complete isolation and hence multiple
containers cannot be run.

• OVERLAY Network: It is used to create internal
private network particularly in orchestration tools
such as Docker swarm cluster

• MACVLAN Network: This network assigns a MAC
address to the Docker container and routing of traffic
is based on this address.

• None: Total networking functionality is disabled for
container

VI. KUBERNETES

Kubernetes developed by Google is a container orchestration
tool which is open-source. It basically helps in managing
containerized applications that are made of a large number of
containers and helps us manage in different environments like
physical machines, virtual machines, cloud, and also the hybrid
environment. Kubernetes comes to action after the
containerized application has been deployed and takes care of
automating scheduling and managing the deployed container.
The rise of microservices has increased the usage of container
technologies because containers actually offer the perfect post
for small independent applications like microservices. This
surge in usage of microservices or containers has resulted in
applications now comprised of hundreds or thousands of
containers and managing those containers across multiple
environments using scripts and self-made tools is really
complex so there is a need for orchestration tools such as
Kubernetes.

Features of an orchestration tool include high availability
which means there would not be downtime for application our
application is always accessible by users. Secondly, high
scalability and hence high performance mean applications load
faster with higher response time. In scenarios when used
demand increases the traffic can be load-balanced across
different nodes by simply replicating the pod instances.

 Fig. 6. Kubernetes Architecture (referenced from [11])

Four processes run on master node as shown in figure 6:
To deploy any new application or to schedule a pod on the
remote cluster one needs to interact with API server with some
client. API server acts cluster gateway or gatekeeper for
authentication. Scheduler is one which schedules new pod;
request is forwarded from API server to scheduler in order to
start pod in one of node. It has intelligence to decide on which
node to deploy the pod by checking the resources available or
by checking which is least busy. Next important process is the
controller manager which detects cluster changes such as pod
crashing.
Worker node is there note that actually does the work it
involves 3 tools or processes. Application pods have container
running in it. So, container runtime has to be installed in every
node. But the process that actually schedules those containers is
kubelet. It interacts with both container and nodes. It gets
request from scheduler to start the pod with containers which
then start the node and assign resources to it.
Etcd is one more process that is responsible for storing the data.
Every change in cluster such as new pod coming or any board
crashing will be logged in etcd. it will store all the data in the
form of key value store.

Deployment: Pods are the smallest deployable unit in
Kubernetes. They provide abstractions over containers end
enables the user to interact with only Kubernetes and its layers.
Usually pods run one application within it sometimes it is also
possible to run helper application within the same pod.

Deployments are the frameworks to define blueprint for pods.
They are similar to replica sets. It can create multiple replicas
of pods. The deployment provides us with capabilities to
upgrade the underlying instances seamlessly using rolling
updates, undo changes, and pause and resume changes to
deployments as shown in figure 7.

 Fig. 7. Kubernetes Deployment

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 6, June - 2021 Page -1376

Services: Deploying pods over cluster gives them their own IP
addresses but pods are ephemeral i.e., they are destroyed
frequently. When a pod dies and a new pod comes up, it gets a
new IP address. This is not desired and hence there is a need to
have some service that provides stable or permanent IP
addresses. Services provide load balancing across multiple
replicas of pods and also provide good abstraction for loose
coupling or communication within and outside cluster. 3 kinds
of service are possible:
Cluster IP services is only accessible within the cluster. No
external traffic can directly access cluster service. Whereas
node port service creates service that is accessible on static port
on each node port. Load balancing service becomes accessible
externally through external cloud proxy servers such as Google
cloud proxy Azure services etc.

VII. GRPC AND PROTOCOL BUFFERS

Today's trend is to build microservices and these microservices
are in different languages and involves functions for user
needs. For microservices to exchange information they must
agree on API to exchange data, data format, error pattern, load
balancing. One popular choice for building API is
REST(HTTP-JSON. GRPC is one such framework that does all
these in the backend. It is a free and open-source RPC
framework that can run on any environment. It allows us to
define requests and responses for RPC and handles all the rest
by itself. It is modern, fast, efficient, and built on top of HTTP
2. Other features include low latency, supports streaming, and
language independence.
Use of GRPC as a communication framework for 2 remote
hosts is illustrated in figure 8. GRPC is basically used to
efficiently connect services in and across data centers.

 Fig. 8. GRPC client-server Paradigm

At the core GRPC uses protocol buffers to define messages and
services. GRPC generates the skeleton code for us which
defines classes and the implementation of server and client has
to be done using those classes. Protocol buffers are the core
stone of GRPC, where messages and services are defined to
model the API endpoints.

Protocol buffers allow data to be compressed automatically and
they are 3-10 times smaller and 20 -100 times faster than XML.
The message is for the protocol buffers are defined in the
profile and go generated code involves classes for

implementation of the interfaces in many languages such as
Java, C++, Go, Python, etc. Data serialization simply means
transforming data from one format to another and
deserialization is bringing back to original form.

Protocol buffers offer a very easy method to write message
definition. The definition of API is independent of the
implementation. Protocol buffers are used by GRPC and which
is built on HTTP2. GRPC leverages HTTP 2 for backbone
communications. It addresses some common pitfalls of HTTP
1.1. JSON also has a schema to transport data from client to
server. But here it is sent over HTTP.

 Fig. 9. HTTP1.1 vs HTTP2

A new TCP connection is opened by HTTP1.1 for every request
to an endpoint as shown in figure 9. It does not compress
headers. It is based on request and response mechanisms. This
inefficiency adds latency and increases network packet size.
HTTP 1.1 makes it easy for debugging but it is not efficient for
transport over the network. Whereas HTTP2 supports
multiplexing that is server and client can push messages in
parallel over the same TCP correction. Latency is thus minimal
and supports multiple messages streaming for one request. It
also supports header compression and since it's binary it is
more secure than the previous topologies.

GRPC supports 4 types of API or RPC calls. Unary streaming is
the basic one which is similar to traditional request-response
service server streaming is one in which the client is expecting
a streamed response from the server. A stream of continuous
requests is sent from client end to server in client streaming.
Finally, bidirectional streaming is the most advanced in which
the client and server are involved in streamed requests and
responses. GRPC serves as asynchronous by default which
means they do not block threads on requests. Whereas GRPC
clients can be implemented as either asynchronous or
synchronous; this is decided by the client upon implementation
of the respective architecture.

GRPC uses protocol buffers that are smaller and faster and it is
built on top of HTTP to offers the least latency. Whereas rest
interface is based on JSON which is text-based and hence
slower and occupies large space. JSON is based on HTTP1.1
and supports the client to server requests only that is it supports
only request-response services. GRPC on the other hand
supports streaming which is referred to as server push. And
also it is API oriented which basically means it has very few
constraints and it only thinks of what has to be implemented.
Whereas REST is CRUD (create- retrieve- update) oriented
using POST, GET, PUT and DELETE respectively. These are

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 6, June - 2021 Page -1377

the action verbs that are used while accessing the URL or the
desired service.

VIII. METHODOLOGY

The methodology followed to meet the design objectives of

the project is shown in figure 10 Any communication between
Signaling and media happens via Unix Socket which is present
as a library. The project implementation involves the design for
decoupled architecture for signaling and media entities and
communication between them via GRPC. The Unix socket
interface for the communication between different processes
within the same VM/container is to be replaced with GRPC.

 Fig. 10. Design Methodology

Unix Socket doesn’t provide the ability for communication
between two separate hosts/containers. With GRPC,
communication between different containers/VMs is possible
because of the client server paradigm.

 Fig. 11. Decoupled architecture for B2BUA

As shown in figure 11(a), the first goal of the project is to

bring about the communication between two processes running
on the same container via GRPC. Later decoupled architecture
as proposed in figure 11(b) is to be implemented for signaling
and media processes in different containers. The design will be
implemented on Kubernetes platform as communication
between separate pods since it provides a framework that can be
easily portable in many public data centers.

IX. DESIGN

Design of Deployment and Service

In the case of deployment, the replicas, the metadata with labels
are specified. This is important as any request coming from the
outside or the ones that the service directs has to match those
labels to direct the traffic. Next, to have deployment as an
abstraction overpowered, the template is defined that specifies
the regular pod specification with the images and the port at
which the application has to be exposed. The DNS server
monitors the Kubernetes API server and when a new service is
created its name becomes available for easy resolution for
requesting application. Kubernetes Ingress exposes HTTP and
HTTPS roots from outside the cluster to services within the
cluster. Traffic routing is controlled by rules defined on the
ingress resource. An ingress controller is responsible for
fulfilling the ingress. It is basically a daemon deployed as a
Kubernetes pod that watches is the API server for updates to the
ingress resource.

Design of GRPC Communication

For GRPC the design of communication between two processes
was started by simple implementation of a client-server
program. The GRPC library along with necessary 3rd party
tools was installed in the container which is based out on GCC.
Similar steps are followed in another GCC container. The
communication between the 2 processes running in different
containers was brought about by calling the API on GRPC
which triggers the message. The messages are defined in a
proto file which generates skeleton code where structures and
protobuf messages are defined. The implementation code was
written using these messages.

Next, the implementation of a similar case was done in a
bidirectional way where the GRPC client sends an argument to
the method on a server end server acknowledges the request by
sending the response to the client with the result. This was
implemented in 2 different containers and shows the
interactive way of communication between them.

Further, the actual goal of communicating between 2 pods was
done by GRPC. This was achieved by creating an API service
to serve REST API response to the client route the request. This
was done by container rising the actual application and also the
service to deploy in the Kubernetes cluster. The images were
pushed to the remote docker hub repository further the objects
were configured in Kubernetes for deployment and service to
manage the desired status of the pod and to drive traffic.
Services provide the fixed addresses to access those pods. note
port services were used since it is accessible from outside of the
Kubernetes cluster.

Next dealing with the communication between signaling and
media entities, the first integration was done by replacing an
API that is responsible for clearing the active streams on media
entities. This basically dealt with a message sent from
signaling to media process whenever the B2BUA suffers a
crash and restarts as shown in figure 12. This may result in

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 6, June - 2021 Page -1378

some active sessions still running on the media entity. So, the
goal here is to make sure that signaling will notify the media
entity to remove all the sessions whenever the process starts.

Fig. 12. Clear Request message between the entities

X. IMPLEMENTATION

The calls discussed earlier are implemented by testing the SIPp
calls. Each of the call scenarios can be independently tested by
writing a separate set of XML files on the client and server
sides. The general flow of signaling and the corresponding
messages are specified in XML files. Each of the dynamic
entries such as IP addresses and ports is present as placeholders
in XML files. These placeholders are filled with the suitable
values of the passed command line arguments. The XML files
of the client and server are run as separate independent threads.
Further, the server and client ports to be used for
communication are passed as arguments while running SIPp
calls. The number of calls can also be scaled by using -m option
while running the calls. This makes the SIPp an amazing tool
for SIP traffic generation and then to validate the flow of
messages as specified in SIP XML scenarios.

To run a normal SIPp calls (assuming EO-EO call), the
command is as follows:
sipp_64 -sf uas.xml -i 172.200.1.10 -p 7979 -t u1 -nr
sipp_64 -sf uac.xml -s 345 -i 172.200.1.10 -p 6012
172.200.1.20:5060 -t u1 -nr -m 50

Here IP address 172.200.1.20:5060 specifies the address of
intermediary B2BUA that is present at the middle and form a
separate call legs on either side. IP address 172.200.1.10:7979
is the specification for server(callee) while 172.200.1.10:6012
is the specification of the client(caller).

Implementation of Kubernetes Service:

 Fig. 13. Kubernetes NodePort service

As shown in the figure 13, the nodePort service creates a
ClusterIP Port by default where the application can be accessed
directly at a particular targetPort. Therefore the the traffic from
outside world is directed first to clusterIP and then to the
deployed application. To create any new deployment, it only
needs an YAML file with suitable configuration and kubectl
command to bring up such entities.

Implementation of GRPC

 Fig.14. GRPC workflow
GRPC communication between the containers was achieved by
simply installing all the GRPC libraries and third party tools in
a container that is based on GCC and python. With these
containers, the client running on GCC container was made to
communicate by GRPC to the server running in python
container. The basic workflow of GRPC is show in the figure
14.

Implementation of GRPC on B2BUA
The communication between signaling and media entities is
challenging and hence requires a careful design procedure.
This necessarily involves the replacement of UnixSocket's way
of communication. Further, the GRPC as a library has to
integrate into the B2BUA. An open-source RPM of GRPC that
was compatible with CentOS 7 with all required dependencies
was unavailable. So, one of the goals was to have GRPC RPM
(that was custom build) to be integrated with all necessary
dynamic and static libraries and not causing any conflict to the
existing topology of B2BUA.

 Fig.15. Flow for implementation of GRPC

With this done the clearmediaRequest message to be
communicated between signaling and media entities followed
the flow as in figure 15. The GRPC client is run on the

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 6, June - 2021 Page -1379

signaling side which sends the clearmediaRequest message to
the GRPC server. This GRPC server runs in the form of a
thread on the media process. On receiving this request the
server calls to a suitable function to clear the active streams on
both the bridges.

XI. RESULTS AND DISCUSSION

Analysis of all the designs mentioned and implemented in
previous sections are discussed. Further detailed outputs for
each of the case scenarios are illustrated. Most of the programs
are compiled using GCC and CMake and their respective
outputs are observed in the terminal. For Kubernetes-based
deployments, outputs are shown in the web browser.

Simulation Results of Call flows

As observed from the results obtained in the log file after
running the EO-EO calls from XML files as shown in figure
16, the codec negotiation happens on the second leg as the
caller initially sends the timing and media-related information
in the SDP message within INVITE.

 Fig.16. Simulation Result for EO-EO case

The second party after analysing the SDP within INVITE does
codec negotiation sends the codec-related details it is going to
use in the 200 OK response to the B2BUA. The B2BUA then
forwards this parameters within the 200 OK response it sends
to the first party. The above outputs and the direction of
messages are with respect to B2BUA.

Unlike EO-EO as shown in figure 17, here the sender waits for
codec related information from other party and hence does not
send SDP in the INVITE. The callee party sends the codec
related and media type information through SDP in the 200 OK
response to the intermediate agent which is then forwarded to
the intermediate agent.

 Fig.17. Simulation Result for DO-DO case

 Fig.18. Simulation Result for DO-EO case

In DO-EO case, the first sender does not send the SDP
parameters in the initial INVITE. But the B2BUA adds the
media and codec related information to be used for the session
in the second leg. The callee party analses the parameters and
sends its SDP parameters in 200 OK response to B2BUA as
shown in figure 18 which is then forwarded to caller end. The
caller analyses these parameters and responds with SDP
message in ACK.

Simulation Results of Kubernetes with Ingress

The implementation of Kubernetes ingress is implemented
which does the path routing and drives the traffic to two
different services. The ingress controller serves this request as
defined in the ingress resource. Depending on the path of the
external request the traffic is routed to correct service which in
turn will be matched to correct application based on match
labels.

Fig.19. Path Routing using Kubernetes Ingress

As shown in the figure 19, depending on the paths, the
application accessed is different in both cases. This is based on
path routing as implemented by ingress controller.

For GRPC programs, the communication between two different
containers is brought about by utilizing the custom build GRPC
RPMs. This is accomplished by creating a container that is

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 6, June - 2021 Page -1380

based on python and GCC. That is the language-agnostic
property of GRPC is leveraged and demonstrated here between
python and C++ programs as shown in figure 20.

Fig.20. GRPC communication (Unary)

Bidirectional streaming in which a sequence of requests and
responses are enabled is implemented. The results of such an
implementation is shown in figure 20.

Fig.21. GRPC communication (Bidirectional)

Here the client-server model involves the client sending a
string and the server greets the client with Hello prefix. Further
the client side implementation receives responses continuously.

Simulation Results of GRPC on B2BUA

 Fig 22. GRPC results for B2BUA

The above outputs as in figure 22, the clearmediaRequest
message being sent when the processes start off to clear any
active sessions on the media entity side to make sure both the
processes are in line with the new set of connections.

XII. CONCLUSION

The main motive of the project was to have a communication
between signaling and media processes in the decoupled
architecture. Scalability is an important aspect in the domain of
networking. The existing topology used Unix Socket which is
maintained as a library to bring about communication. But with
the decoupled approach, UnixSocket is not a good candidate as
Unix Socket is only applicable for communication within the
same VM or container.

The goal of the project was to run signaling and media entity

in separate VMs or containers. GRPC can run on different
Inter-Process Communication such as by Unix Socket, shared
memory, etc., But the goal is to have HTTP/1.0 way of
communication. The sample application of Deployment,
service are simulated over Kubernetes. Further the

communication between the two containers using different IPs
and ports. Later the GRPC communication between signaling
and media entities was accomplished in the context of
clearmediaRequest. This was the first integration of GRPC
over the existing UnixSocket. The ultimate agenda of
deploying signaling and media in different containers/VMs is
to have a scalable framework where one signaling entity talks
to many other media entities or vice versa. This way it can
handle more calls without having to concern about CPU
utilization.

XIII. FUTURE SCOPE

With the integration of GRPC over the B2BUA node, the
processes within it can communicate with each other via
GRPC. Decoupled architecture gives the ability to handle
multiple calls without risking the CPU. Further, all this
deployment is presently undertaken over docker containers
running over the Openstack platform. Such a platform restricts
our deployments to Webex data centers and hence does not
provide the ability to be deployed in public data centers such as
GCP, AWS. While Kubernetes is one such platform that allows
having a framework to directly port to other platforms as it is
supported by many other platforms. Deploying applications
over Kubernetes and communicating between the pods via
GRPC is challenging and requires a careful design procedure.

Although OpenStack is agile in build cloud infrastructure, it
does not support portability and it restricts our deployments
only to Webex data centers. Due to a very dynamic range of
attributes, it lacks organized support. Since Kubernetes is
widely accepted, our deployed application can be easily ported
to public data centers such as AWS, Google Cloud, etc. Further
having a decoupled architecture and communication by
running the application as separate pods is feasible in
Kubernetes. Also, down the line, the Open Stack and
Kubernetes features can be complemented and run one over the
other to achieve significant advantages.

REFERENCES
[1] S. Zeadally and F. Siddiqui, “Design and implementation of a sip-based

VoIP architecture,” in18th International Conference on Advanced
Information Networking and Applications, 2004. AINA 2004., vol. 2,
2004, 187–190 Vol.2.doi:10.1109/AINA.2004.1283783.

[2] L. Tian, N. Dailly, Q. Qiao, J. Lu, J. Zhang, J. Guo, and J. Zhang,
“Study of sip protocol through VoIP solution of “asterisk”,” in2011 Global
Mobile Congress,2011, pp. 1–5.doi:10.1109/GMC.2011.6103925..

[3] A. N. Jabel, S. Manickam, and S. Ramdas, “A study of sip trunk
security and challenges,” in2012 IEEE International Conference on
Electronics Design, Systems and Applications (ICEDSA), 2012, pp.
239–243.doi:10.1109/ICEDSA.2012.6507806.

[4] W. Nazih, W. Elkilani, H. Dhahri, and T. Abdelkader, “Survey of
counteringdos/ddos attacks on sip based VoIP networks,” Electronics,
vol. 9, p. 1827, Nov.2020.doi:10.3390/electronics9111827..

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 6, June - 2021 Page -1381

[5] A. Bansal, P. Kulkarni, and A. R. Pais, “Effectiveness of sip messages
on sip server,” in 2013 IEEE Conference on Information Communication
Technologies, 2013, pp. 616–621.doi:10.1109/CICT.2013.6558168.

[6] M. Feng, S. Mao, and T. Jiang, “Enhancing the performance of future
wireless net-works with software defined networking,” Springer Frontiers of
Information Technology and Electronic Engineering Journal, vol. 17, pp.
606–619, Jul. 2016.doi:10.1631/FITEE.1500336.

[7] P. Dhillon and S. Kalra, “Secure and efficient ecc based sip authentication
scheme for VoIP communications in internet of things,” Multimedia Tools
and Applications, vol. 78, pp. 22 199–22 222, Aug.
2019.doi:10.1007/s11042-019-7466-y.

[8] A. Montazerolghaem, M. H. Y. Moghaddam, and A. Leon-Garcia,
“OpenSIP: To-ward software-defined sip networking,” IEEE Transactions
on Network and Service Management, vol. 15, no. 1, pp. 184–199,
2018.doi:10.1109/TNSM.2017.2741258.49

[9] B. Wang, Y. Song, X. Cui, and J. Cao, “Performance comparison between
hypervisor-and container-based virtualizations for cloud users,” in2017 4th
International Conference on Systems and Informatics (ICSAI), 2017, pp.
684–689.doi:10.1109/ICSAI.2017.8248375..

[10] M. Sollfrank, F. Loch, S. Denteneer, and B. Vogel-Heuser, “Evaluating
docker for light weight virtualization of distributed and time-sensitive
applications in industrial automation,” IEEE Transactions on Industrial
Informatics, vol. 17, no. 5, pp. 3566–3576,
2021.doi:10.1109/TII.2020.3022843

[11] J. Shah and D. Dubaria, “Building modern clouds: Using docker, kubernetes
google cloud platform,” in2019 IEEE 9th Annual Computing and
Communication Work-shop and Conference (CCWC), 2019, pp.
0184–0189.doi:10.1109/CCWC.2019.8666479.

[12] K. Kaur, S. Garg, G. Kaddoum, S. H. Ahmed, and M. Atiquzzaman,
“Keids: Kubernetes based energy and interference driven scheduler for
industrial IoT in edge-cloud ecosystem,” IEEE Internet of Things Journal,
vol. 7, no. 5, pp. 4228–4237,2020.doi:10.1109/JIOT.2019.2939534.

[13] L. Toka, G. Dobreff, B. Fodor, and B. Sonkoly, “Machine
learning-based scaling management for Kubernetes edge clusters,” IEEE
Transactions on Network and Service Management, vol. 18, no. 1, pp.
958–972, 2021.doi:10.1109/TNSM.2021.3052837.

[14] S. Qi, S. G. Kulkarni, and K. K. Ramakrishnan, “Assessing container
network interface plugins: Functionality, performance, and scalability,”
IEEE Transactions on Network and Service Management, vol. 18, no. 1,
pp. 656–671, 2021.doi:10.1109/TNSM.2020.3047545.

[15] A. Jeffery, H. Howard, and R. Mortier, “Rearchitecting Kubernetes for the
edge,” in Proceedings of the 4th International Workshop on Edge Systems,
Analytics and Networking, ser. EdgeSys ’21, Online, United Kingdom:
Association for Computing Machinery, 2021, pp. 7–12,isbn:
9781450382915.doi:10.1145/3434770.3459730

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 6, June - 2021 Page -1382

	INTRODUCTION
	BACKGROUND
	RELATED WORK
	SIP CaLL Flows
	Docker
	Kubernetes
	GRPC and PROTOCOL BUFFERS
	METHODOLOGY
	DESIGN
	IMPLEMENTATION
	RESULTS aNd Discussion
	CONCLUSION
	FUTURE SCOPE
	References

