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Abstract: 
The principle component analysis is used more frequently as variables reduction technique. 
And recently, an evolving group of studies make use of machine learning regression 
algorithms to improve the estimation of empirical models. One of the most frequently used 
machine learning regression model is support vector regression with various kernel functions. 
However, ensemble of support vector regression and principal component analysis is also 
possible. So, this paper aims to investigate the competence of support vector regression 
techniques after performing principal component analysis to explore the possibility of 
reducing data and having more accurate estimations. Some new proposals are introduced and 
the behavior of two different models 𝜀𝜀-SVR and 𝑣𝑣-SVR are compared through an extensive 
simulation study under four different kernel functions; linear, radial, polynomial, and sigmoid 
kernel functions, with different sample sizes ranges from small, moderate to large. The 
models are compared with their counterparts in terms of coefficient of determination (𝑅𝑅2) and 
root mean squared error (RMSE).The comparative results show that applying SVR after PCA 
models improve the results in terms of SV numbers between 30% and 60% in average and it 
can be applied with real data. In addition, linear kernel function gave the best values rather than 
other kernel functions and the sigmoidkernel gave the worst values. Under 𝜀𝜀-SVR the results 
improved which did not happen with 𝑣𝑣-SVR. It is also drawn that, RMSE valuesdecreased with 
increasing sample size. 

Keywords: 𝜀𝜀-Support Vector Regression, Kernel Functions, Principal Component Analysis,𝑣𝑣 
-Support Vector Regression. 

1. Introduction

The recent trends in collecting huge and diverse datasets,such as documents, videos and 
digital images, financial time series, and gene expressions and DNA copy numbers,have posed a 
great challenge that is brought by the
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high dimensionality and aggravated by the presence of irrelevant dimensions in tasks such as 
predictive modeling[3]. 

PCAhelps in building a predictive model that is simple as it contains the smallest 
number of variables and efficient that accounts for as much of the information “explained 
variation” as possible[11],[6],[7],[12],[13]. 

PCA can be widely applied in all forms of analysis from neuroscience tocomputer 
graphics and in a variety of real-world applications including image segmentation [15], 
climate research [8], genome-wide expression studies [14], and deep learning [2] due to its 
superior properties, such as linear un-correlation, low-dimensionality and visualization in 
multivariate data, over other linear dimension reduction (LDR) methods[10],[13]. 

Support Vector Machine (SVM) is one of the most robust prediction methods, based 
on the statistical learning framework or VC theory proposed by Vapnik and Chervonenkis 
(1974) and Vapnik (1982, 1995).SVM seeks to maximize the predictive accuracy from 
computation of a confidence interval for the importance of a variable in order to describe the 
relationship between inputs and outputs[10]. SVMis a supervisedlearning model, with 
associated learning algorithm that analyze data usedfor classification, known as SV 
classifier, and regression  (function approximation), known as support vector regression 
(SVR) [16]. 

During past few decades, an extension to the SVM classification algorithmhas been 
received a considerable attention, see [1], which is mainly due to VladimirVapnik and co-
workers Harris Drucker, Christopher J. C. Burges, Linda Kaufman and Alexander J. SmolaIn 
1996 for introducingSVM for regression, known as ε-SVR model,that handles regression 
problems [6]. SVR has additional advantages compared to other regression methods, see[16]. 

PCAis a widely applied feature extraction method in the framework of SVR. In the 
literature,[4]proposed an integration of PCA and SVR, or PCA-SVR,toenhance the 
performance of prediction (forecasting) model for financial time series. PCA-SVR produced 
less mean average precision MAP(%), mean absolute error (MAE), root mean square error 
(RMSE) and mean square error (MSE) than single SVR, [16]proposed PCA-SVM stock 
selection model which achieves the entire accuracy of 75.44% in training set and of 61.79% 
in testing set. 
 Two types of procedures have been adopted within the practical aspect. The first procedure is 
applying the PCA within 𝜀𝜀 −SVR. The other is also applying the PCA but within 𝑣𝑣 −SVR. 
The rest of the paper is organized as follows: Section 2 presents themethodology thatused in 
this paper PCA and SVR. Section 3discussed the results and evaluation. Finally, conclusion 
and future work are given in Section 4. 

2. Methodology

The data used in the PCA were recorded from a Monte Carlo simulationtechnique. 
The simulation was designed in the R software using R package. 5000 simulations with 1000 
observations were carried out. The data followingnormal distribution. Eight sample sizes (50, 
100, 250, 500, 1000, 1750, and 2000) were used in this study. The dataset is 9-dimensional 
with 9 variables giving 9 principal components.Several analyses with two, three, and four 

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 6, June - 2021 Page -1700

https://en.wikipedia.org/wiki/VC_theory
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Regression_analysis


features were performed to obtain the effective parameters on the fragmentation; these 
parameters were selectedas input parameters for the predictive models. 
In this study, two main procedures were conducted on the same dataset. The first procedure 
was preceded in two steps: First, PCA was performed on a set of parameters– input (features) 
and output to estimate how far the effect of PCA on several sample sizes by 
calculatingrootmean square error (RMSE). Second, 𝜀𝜀 −SVR was performed to show its 
effect, using a set of mathematical functions known as positive definite kernels– linear, 
polynomial, radial, and sigmoid. The second procedure followed the same steps of the first 
procedure but applying 𝑣𝑣 −SVR instead of 𝜀𝜀 −SVR.The next sections will cover all of these 
methods. 

2.1. Principal Component Analysis (PCA) 

Many raw data sets have a high-dimension space, and are accordingly difficult to 
interpret. In addressing this issue, PCA finds smaller number of uncorrelated components 
from high dimensional original inputs by calculating the eigenvectors of the covariance 
matrix. Given a set of 𝑚𝑚 dimensional input vectors 𝑥𝑥𝑖𝑖 = (𝑥𝑥𝑖𝑖(1), 𝑥𝑥𝑖𝑖(2), … , 𝑥𝑥𝑖𝑖(𝑚𝑚))𝑇𝑇where 
𝑖𝑖 = 1,2, … , 𝑛𝑛. PCA is a transformation of 𝑥𝑥𝑖𝑖  into a new vector 𝑦𝑦𝑖𝑖  by: 

𝑦𝑦𝑖𝑖 = 𝑈𝑈𝑇𝑇𝑥𝑥𝑖𝑖  (1) 
where𝑈𝑈is the m × morthogonal matrix whose𝑗𝑗th column 𝑢𝑢𝑗𝑗  is the 𝑗𝑗th eigenvector of 

the sample covariance matrix 𝐶𝐶 = 1
𝑛𝑛
∑ 𝑥𝑥𝑖𝑖𝑥𝑥𝑖𝑖𝑇𝑇𝑛𝑛
𝑖𝑖=1  . In other words, PCA solves the following 

eigenvalue problem: 
𝜆𝜆𝑗𝑗𝑢𝑢𝑗𝑗 = 𝐶𝐶𝑢𝑢𝑗𝑗  ,𝑗𝑗 = 1,2, … ,𝑚𝑚   (2) 

where𝜆𝜆𝑗𝑗  is one of the eigenvalues of 𝐶𝐶and𝑢𝑢𝑗𝑗  is the corresponding eigenvector. 
Based on the estimated 𝑢𝑢𝑗𝑗 , the components of 𝑦𝑦𝑖𝑖  are calculated as the orthogonal 
transformation of 𝑥𝑥𝑖𝑖 .That is, 

𝑦𝑦𝑖𝑖(𝑗𝑗) = 𝑢𝑢𝑗𝑗𝑇𝑇𝑥𝑥𝑖𝑖 ,𝑗𝑗 = 1,2, … ,𝑚𝑚 (3) 
The new components are called principal components. By using only the first several 
eigenvectors sorted in adescending order of eigenvalues, the number of principal components 
in 𝑦𝑦𝑖𝑖  can be reduced [11]. Thus, PCA can be used to reduce dimensions where the principal 
components are uncorrelated and have sequentially maximum variances. 

2.2. Support Vector Regression (SVR) 

The SVR extends the basic principles of SVM for classification [5] by measuring the error of 
approximation instead of the margin used in classification. SVR estimates a continuous-
valued function that encodes the fundamental interrelation between a given input and its 
corresponding output in the training data. This function then can be used to predict outputs for 
given inputs that were not included in the training set. This is similar to a neural network. 
However, a neural network’s solution is based on empirical risk minimization. In contrast, 
SVR introduces structural risk minimization into the regression and thereby achieves a global 
optimization, while a neural network achieves only a local minimum. Brief descriptions of 
two types of SVR which have been considered in the paper are given. 
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2.2.1. 𝜺𝜺-SVR Model 

𝜀𝜀-SVR maps the input vectors 𝑥𝑥𝑖𝑖 ∈ 𝑅𝑅𝑚𝑚 into a high dimensional feature space. Given a training 
set (𝑥𝑥𝑖𝑖 , 𝑦𝑦𝑖𝑖), 𝑖𝑖 = 1,2, … , 𝑛𝑛, where 𝑥𝑥𝑖𝑖 ∈ 𝑅𝑅𝑚𝑚  is the 𝑚𝑚-dimensional input vector and 𝑦𝑦𝑖𝑖 ∈ 𝑅𝑅is the 
response variable. SVR generates the linear regression function in the form of generic cost 
estimation model that can be written as 
𝑦𝑦 = 𝑓𝑓(𝑥𝑥) = 𝑤𝑤, 𝑥𝑥 + 𝑏𝑏 = 𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏 (4) 
where𝑤𝑤 is the weight vector corresponding to 𝑥𝑥 and 𝑏𝑏 isthe bias. The Vapnik’s linear𝜀𝜀 -
Insensitivity loss (error) function is also given as 

𝐿𝐿(𝑦𝑦, 𝑓𝑓(𝑥𝑥)) = � 0 𝑖𝑖𝑖𝑖|𝑦𝑦 − 𝑓𝑓(𝑥𝑥)| ≤ 𝜀𝜀
|𝑦𝑦 − 𝑓𝑓(𝑥𝑥)| − 𝜀𝜀 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

�(5) 

Based on the above, the linear regression 𝑓𝑓(𝑥𝑥) is estimated by simultaneously minimizing 
||𝑤𝑤||2 and the sum of the linear 𝜀𝜀 -Insensitivity losses as shown in Equation (7).The constant 
𝑐𝑐controls a trade-off between an approximation error and the weight vector norm 𝑤𝑤 is a 
design parameter chosen by the user. 
𝑅𝑅 = 1

2
||𝑤𝑤||2 + 𝑐𝑐(∑ |𝑦𝑦 − 𝑓𝑓(𝑥𝑥)|𝜀𝜀)𝑛𝑛

𝑖𝑖=1   (6)
Minimizing the risk R is equivalent to minimizing the following risk under the following 
constraints mentioned in Equations 
Minimize𝑅𝑅 = 1

2
||𝑤𝑤||2 + 𝑐𝑐 ∑ (𝜉𝜉𝑖𝑖 + 𝜉𝜉𝑖𝑖∗)𝑛𝑛

𝑖𝑖=1   (7) 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡 �
(𝑤𝑤𝑇𝑇𝑥𝑥𝑖𝑖 + 𝑏𝑏) − 𝑦𝑦𝑖𝑖 ≤ 𝜀𝜀 + 𝜉𝜉𝑖𝑖
𝑦𝑦𝑖𝑖 − (𝑤𝑤𝑇𝑇𝑥𝑥𝑖𝑖 + 𝑏𝑏) ≤ 𝜀𝜀 + 𝜉𝜉𝑖𝑖∗

𝜉𝜉𝑖𝑖 , 𝜉𝜉𝑖𝑖∗ ≥ 0 , 𝑖𝑖 = 1,2, … ,𝑚𝑚
�  (8)  

Here, 𝜉𝜉𝑖𝑖  and 𝜉𝜉𝑖𝑖∗are slack variables, one for exceeding the target value by more than 𝜀𝜀 and 
other for being more than 𝜀𝜀 below the target. As used in SVM, the above constrained 
optimization problem is solved using Lagrangian theory and the Karush-Kuhn-Tucker (KKT) 
conditions for the optimum of a constrained functionto obtain the desired weight vector of the 
regression function[17]. 
In Equation (4), the generalization performance of such linearfunction,𝑓𝑓(𝑥𝑥), is fairly limited 
and unable to reflect thetrue regression procedure. In order to overcome suchweakness, a 
standard mathematical solution is the introductionof kernel function,φ(X), which is a 
nonlinearmapping function from the input space to a higher dimensionalfeature space. We 
can reachinfinite dimensions for a more expressive𝑓𝑓by using φ(X). The most popular kernel 
functions used in this study areshownin Table (2.1). 

Table (2.1) Admissible kernel functions 
Name Definition Parameter 
Linear 𝑘𝑘(𝑥𝑥1, 𝑥𝑥2) = 𝑥𝑥1. 𝑥𝑥2 - 
Polynomial 𝑘𝑘�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 � = (𝑥𝑥𝑖𝑖 . 𝑥𝑥𝑗𝑗 + 1)𝑑𝑑  𝑑𝑑 
Radial basis function 𝑘𝑘�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 � = 𝑒𝑒𝑒𝑒𝑒𝑒 (−𝛾𝛾|�𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗 �|2) 𝛾𝛾 
Sigmoid 𝑘𝑘(𝑥𝑥, 𝑦𝑦) = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ (𝛼𝛼𝑥𝑥𝑇𝑇𝑦𝑦 + 𝑐𝑐) c 
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2.2.2. 𝒗𝒗 -SVR Model 

𝑣𝑣-SVR is one of the most popular modifications proposed by Scho¨lkopf, Bartlett, 
Smola,and Williamson (1999). The benefit of𝑣𝑣-SVR is that it provides a way to automatically 
minimize 𝜀𝜀.In 𝜀𝜀-SVR, selection of a proper ε value is essential for an accurate regression 
approximation. However, it is difficult to specify 𝜀𝜀 beforehand, other than an empirical 
choice. In 𝑣𝑣-SVR a new parameter of a prior 𝑣𝑣 ∈ (0, 1) is introduced to automatically adjust a 
flexible tube by controlling the number of support vector and tolerated training errors. Then, 
the parameter 𝜀𝜀 becomes a variable in the optimization process and is controlled by the new 
parameter𝑣𝑣.In𝑣𝑣-SVR, the optimization problem can be written, given a function𝜑𝜑(𝑥𝑥)to the 
kernel space for a nonlinear case, as follows 

𝑚𝑚𝑚𝑚𝑛𝑛𝑤𝑤
1
2

||𝑤𝑤||2 + 𝐶𝐶(𝑣𝑣𝑣𝑣 +
1
𝑙𝑙
�(𝜉𝜉 + 𝜉𝜉∗)
𝑙𝑙

𝑖𝑖=1

) 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �
𝑦𝑦𝑖𝑖 − 𝑤𝑤𝑇𝑇𝜑𝜑(𝑥𝑥𝑖𝑖) − 𝑏𝑏 ≤ 𝜀𝜀 + 𝜉𝜉
𝑤𝑤𝑇𝑇𝜑𝜑(𝑥𝑥𝑖𝑖) + 𝑏𝑏 − 𝑦𝑦𝑖𝑖 ≤ 𝜀𝜀 + 𝜉𝜉∗

𝜉𝜉, 𝜉𝜉∗, 𝜀𝜀 ≥ 0
� (9) 

Here, the newly introduced constant variable 𝑣𝑣 ∈ (0, 1)is used as atrade-off against model 
complexity and slack variables. Forming aLagrangian formulation from (𝜑𝜑(. ) = 𝑅𝑅𝑑𝑑 → 𝐹𝐹) by 
introducing positive multipliers 𝛼𝛼, 𝛼𝛼∗, 𝜂𝜂, 𝜂𝜂∗and𝑏𝑏 gives 

𝐿𝐿(𝑤𝑤, 𝜉𝜉, 𝜉𝜉∗, 𝛼𝛼, 𝛼𝛼∗, 𝜂𝜂, 𝜂𝜂∗, 𝛽𝛽) =
1
2

||𝑤𝑤||2 + 𝐶𝐶𝐶𝐶𝐶𝐶 +
𝐶𝐶
𝑙𝑙
�(𝜉𝜉𝑖𝑖 + 𝜉𝜉𝑖𝑖∗)
𝑙𝑙

𝑖𝑖=1

 

+�𝛼𝛼𝑖𝑖∗(𝑦𝑦𝑖𝑖 − 𝑤𝑤𝑇𝑇𝑥𝑥𝑖𝑖 − 𝑏𝑏 − 𝜀𝜀 − 𝜉𝜉𝑖𝑖)
𝑙𝑙

𝑖𝑖=1

+�𝛼𝛼𝑖𝑖(𝑤𝑤𝑇𝑇𝑥𝑥𝑖𝑖 + 𝑏𝑏 − 𝑦𝑦𝑖𝑖 − 𝜀𝜀 − 𝜉𝜉𝑖𝑖∗)
𝑙𝑙

𝑖𝑖=1

 

−∑ (𝜂𝜂𝑖𝑖𝜉𝜉𝑖𝑖 + 𝜂𝜂𝑖𝑖∗𝜉𝜉𝑖𝑖∗)𝛽𝛽𝛽𝛽𝑙𝑙
𝑖𝑖=1 (10) 

Following the KKT conditions that partial derivatives with respect tothe variables 
𝑤𝑤, 𝑏𝑏, 𝑥𝑥, 𝑥𝑥∗, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 are equal to be zero and the products of theLagrange multipliers and the 
constraint are equal to zero, we have thefollowing dual optimization problem of 𝑣𝑣-SVR 
𝑚𝑚𝑚𝑚𝑥𝑥𝛼𝛼,𝛼𝛼∗ ∑ 𝑦𝑦𝑖𝑖(𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖∗) − 1

2
∑ ∑ (𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖∗)�𝛼𝛼𝑗𝑗 − 𝛼𝛼𝑗𝑗∗�𝑘𝑘(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 )𝑙𝑙𝑠𝑠𝑠𝑠

𝑗𝑗
𝑙𝑙𝑠𝑠𝑠𝑠
𝑖𝑖

𝑙𝑙𝑠𝑠𝑠𝑠
𝑙𝑙 ,

where 𝑘𝑘�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 � = 𝜑𝜑(𝑥𝑥𝑖𝑖)𝜑𝜑�𝑥𝑥𝑗𝑗 �subject to 

∑ (𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖∗) = 0,  𝛼𝛼𝑖𝑖 , 𝛼𝛼𝑖𝑖∗ ∈ �0, 𝐶𝐶
𝑙𝑙
�𝑙𝑙𝑠𝑠𝑠𝑠

𝑖𝑖 , ∑ (𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖∗) ≤ 𝐶𝐶𝐶𝐶𝑙𝑙𝑠𝑠𝑠𝑠
𝑖𝑖 (11) 

Then, the regression estimate takes the form 
𝑓𝑓(𝑥𝑥) =  ∑ (𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖∗)𝑙𝑙𝑠𝑠𝑠𝑠

𝑖𝑖 𝑘𝑘(𝑥𝑥𝑖𝑖 , 𝑥𝑥) + 𝑏𝑏(12) 
Compared to the optimization problem in ε-SVR [10], we can see thatthe parameter 𝜀𝜀 
vanishes but instead there is the new parameter 𝑣𝑣 in 𝑣𝑣-SVR [9]. Scho¨lkopf et al. had proved 
that𝑣𝑣 ∈ (0, 1) is an upper bound on the fraction of errors (i.e., data points outside of the tube 
divided by the total number of data points 𝑙𝑙) and a lower bound on the fraction of support 
vectors (i.e., the numbers of support vectors divided by the total number of data points 𝑙𝑙). 

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 6, June - 2021 Page -1703



This simulation was conducted for the purpose of comparison between 𝜀𝜀-SVR and𝑣𝑣-
SVR models after and before applying PCA using four different kernel functions to detect the 
PCA effect on data reduction. In this study, all trained models designed are evaluated using 
measured data based on two different measures, root mean square error (RMSE), and 
coefficient of determination (𝑅𝑅2). RMSE is a commonly used measure of the difference 
between predicted values of model and the actual values from the system that is being 
modeled. The sample sizes are arbitrarily determined to represent small, moderate, and large 
sample sizes such as; 𝑛𝑛 = 50,100, 250, 500, 1000,1500,1750, and 2000. The simulation 
results were based on10000 replications. All computations are using the R program (R x64 
3.2.5) version. 

Two types of procedures have been adopted within the practical aspect.The first 
procedure lays in studying and applying the data reduction method, PCA, within 𝜀𝜀-SVR 
model with four different kernel functions; linear, polynomial, redial, sigmoid, which was 
referred to previously through which we can use this to simulate a large number of 
hypothetical cases that may arise within the practical aspect. Thus, generalizing the results 
becomes more comprehensive. According to the importance of the components, table (a) 
[SeeAppendix (a)], show that components one and two together capture from 86% to 95%. 

3.1. Effect on Support Vector Regression Number: 

Tables from (b.1) to (b.8)[See Appendix (b)], show that before using PCA, the 𝜀𝜀-SVR 
application reduced the number of SVR by 30% to 40%, with the linear kernel being superior 
to its counterparts at most sample sizes, and it reached 70% for sample size 100, and the 
polynomial kernel showed good performance with large sample sizes 1750 and 2000.But the 
𝑣𝑣-SVR application reduced the number of SVR by a rate ranging from 53% to 60% with the 
sigmoid kernel function being superior to its counterparts at all most all sample sizes,the 
performance of all functions converged.And after applying PCA with 𝜀𝜀-SVR, the percentage 
was about 30% with the radial kernel function superior to its counterparts with all most all 
sample sizes, and only in one case the decrease in the number of SVR reached 56% at 
𝑛𝑛 = 1750.But with𝑣𝑣-SVR, the results of sigmoid and linear kernel functions were equal for 
50% of the cases, and the percentage ranged from 54% to 60%, and the differences between 
them and polynomial were very narrowfollowed by the radial kernel function.  

3.2. Effect of Sample Size 

The following two figures illustrated the effect of sample size on the RMSE values. 

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 6, June - 2021 Page -1704

3. Simulation Study: Results and Discussion



Figure (3.1) the effects of 𝑛𝑛 under 𝜀𝜀-SVR 
before using PCA 

Figure (3.2) the effects of 𝑛𝑛 under𝑣𝑣-SVR 
before using PCA 

Under 𝜀𝜀-SVR and 𝑣𝑣-SVR and with all sample sizes from 𝑛𝑛 = 50 to 𝑛𝑛 = 2000, after using 
PCA, and from figures (3.1) and (3.2), it is clear that the root mean square error with almost 
different kernel functionsdecreased with increasing sample size except for sample size 
𝑛𝑛 = 100 and 𝑛𝑛 = 500. But the worst values of RMSE were at 𝑛𝑛 = 100and 𝑛𝑛 = 500.A 
sample size 𝑛𝑛 = 250 gave good results for linear, radial, and polynomial kernel functions 
between sample sizes of 50 to 1000. [See Appendix (c), figures (c.1) and (c.2) for before 
using PCA case] 

3.3. Effect of PCA 

The following figures show the effects PCA with small, moderate, and large sample size under𝜀𝜀-
SVRbefore and after using PCA. 

Fig. (3.3) effect of PCA for 𝜀𝜀-SVRat n=50 Fig. (3.4) effect of PCA for 𝜀𝜀-SVR at n=250 
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Fig. (3.5) effect ofPCA for 𝜀𝜀-SVRat n=1000 Fig. (3.6) effect of PCA for 𝜀𝜀-SVRat n=1750 

Under 𝜀𝜀-SVR, and with sample size 𝑛𝑛  = 50, 250, 1000,1750, before and after using PCA, and from 
figure (3.3), figure (3.4), figure (3.5)  and figure (3.6) respectively, it can be concluded that for sample 
size greater than or equal 1500, results improved after applying PCA. And, it is clear that the root mean 
square error with linear kernel function gave the best values other than other kernel functions. In 
addition, the sigmoidkernel gave the worst values for RMSE amongst the other kernel functions.[See 
Appendix(c), figures from (c.3) to (c.6) for 𝑛𝑛  = 100, 500, 1500, 2000]. The following figures 
show the effect of PCA under 𝑣𝑣 -SVR.

Fig. (3.7) effect of PCA for 𝑣𝑣-SVRat 𝑛𝑛 = 100 Fig. (3.8) effect of PCA for 𝑣𝑣-SVR at 𝑛𝑛 = 500 

Fig. (3.9) Effect of PCA for𝑣𝑣-SVR at 𝑛𝑛 =
1500 

Fig. (3.10) Effect of PCA for𝑣𝑣-SVRat 
𝑛𝑛 = 2000 

As it can be seen, under 𝑣𝑣-SVR, and with sample size 𝑛𝑛 = 100, 500, 1500,2000, from figure 
(3.7) to figure (3.10), it can be concluded that the 𝑣𝑣-SVR results did not improve after 
applying PCA with all sample sizes.Kernel function gave the best values rather than other 
kernel functions. In addition, the sigmoidkernel gave the worst values for RMSE amongst the 
other kernel functions. [See Appendix (c), figures from (c.7) to (c.10) 
for𝑛𝑛 = 50, 250, 1000, 1750] 

3.4. Effect of Support Vector Regression 

The following figures showed thatwith all types of kernel functions and at all sample sizes𝜀𝜀-
SVR is better than 𝑣𝑣-SVR after using PCA, except for only one case for𝑛𝑛 = 1500 and 

-400

100

600

1100

1600

2100

Lin. Rad. Pol. Sig.

Before

After

0

50

100

150

Lin. Rad. Pol. Sig.

Before

After

0
5

10
15
20
25
30

Lin. Rad. Pol. Sig.

Before

After

0
0.5

1
1.5

2
2.5

3

Lin. Rad. Pol. Sig.

Before

After

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 6, June - 2021 Page -1706



sigmoid. These results were similar to results obtained before using PCA [See Appendix (c), 
figures from (3.11) to(3.14)]. 
Figure (3.7) the effects of𝜀𝜀-SVR and𝑣𝑣-SVR with all kernels functions, and for all sample 
sizes,after using PCA 

Fig. (3.11) Effect of SVR for Linear kernel Fig. (3.12) Effect of SVR for Radial kernel 

Fig. (3.13) Effect of SVR for Polynomial kernel Fig. (3.14) Effect of SVR for Sigmoid kernel 

 3.5. Effect of kernel function 

The following to figures (3.15) and (3.16) illustrates the effects of kernel function on RMSE 
with 𝜀𝜀-SVR and𝑣𝑣-SVR, at all sample sizes, after using PCA. 

Fig. (3.15)𝜀𝜀-SVR after PCA Fig. (3.16) 𝑣𝑣-SVR after PCA 
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value. But the sigmoid kernel function gave the worst value of RMSE with all sample sizes 
(except at 𝑛𝑛 = 50). It is worth noting that with the increase in the sample size, the results of 
linear, radial and polynomial are close to each other, except for radial when the sample size 
𝑛𝑛 = 1750. The results of 𝑣𝑣-SVR are very similar to the results of 𝜀𝜀-SVR except for sample 
size 𝑛𝑛 =  100 the polynomial kernel function gave the worst error value, and for sample sizes 
𝑛𝑛 =  500 the radial kernel function gave the best error value, figure (3.16).These results are 
similar to results before using PCA. [See Appendix (c), figures (3.15) and (3.16)]. 

4. General Conclusions

When reducing the data dimensions, it’s important not to lose more information than 
is necessary. Principal Component Analysis (PCA) is a well-established mathematical 
technique for reducing the dimensionality of data, while keeping as much variation as 
possible as we notes in practical section. It is also known that using of SVR with various 
kernel functions improves the estimation of models. The behavior of two different 
models 𝜀𝜀-SVR and 𝑣𝑣-SVR are compared through an extensive simulation study under 
four different kernel functions; linear, radial, polynomial, and sigmoid kernel 
functions, with different sample sizes ranges from small, moderate to large. 
Generally,it can be concluded that according to the reduction of SVR, after applying 
PCA and with all sample sizes, under𝜀𝜀-SVR, the percentage of reduction was about 
30% with the radial kernel function. But under𝑣𝑣-SVR, the result of sigmoid and linear 
kernel functions were the best between other counterparts, and the percentage ranged 
from 54% to 60%. But with regard to the value of RMSE, under 𝜀𝜀-SVR, for sample 
size greater than or equal 1500, results improved. And, it is clear that the RMSE with linear 
kernel function gave the best values rather than other kernel functions. In addition, the 
sigmoidkernel gave the worst values amongst the other kernel functions. But under 𝑣𝑣-SVR, 
results did not improve after applying PCA with all sample sizes. It is also drawn that, with 𝜀𝜀-
SVR and 𝑣𝑣-SVR, the RMSE with almost different kernel functionsdecreased with 
increasing sample size which is considered as an indicator to the consistency. In addition, 
from sample sizes ranges from 𝑛𝑛 = 50to 𝑛𝑛 = 1000, the sample size 𝑛𝑛 = 250 gave good 
results for linear, radial, and polynomial kernel functions. 
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Appendix (a) 

Table (a): Evaluation of componentsfor all sample size 
n Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 

Standard deviation 
50 

2.399582 1.493121 0.850262 0.466969 0.263411 
Proportion of variance 0.639777 0.247712 0.080327 0.024229 0.00771 
Cumulative Proportion 0.639777 0.887489 0.967817 0.992046 0.999755 

Standard deviation 
100 

2.405992 1.406846 0.941638 0.540262 0.194417 
Proportion of variance 0.6432 0.219913 0.09852 0.032431 0.0042 
Cumulative Proportion 0.6432 0.863113 0.961633 0.994064 0.998264 

Standard deviation 
250 

2.4141047 1.6512802 0.49868025 0.43419256 0.08290096 
Proportion of variance 0.6475446 0.3029696 0.02763133 0.02094702 0.00076361 
Cumulative Proportion 0.6475446 0.9505142 0.97814554 0.99909256 0.99985618 

Standard deviation 
500 

2.251667 1.696724 0.999785 0.221098 0.051637 
Proportion of variance 0.563334 0.319875 0.111063 0.005432 0.000296 
Cumulative Proportion 0.563334 0.883208 0.994272 0.999703 0.999999 

Standard deviation 
1000 

2.124317 1.818052 0.977601 0.410422 0.209954 
Proportion of variance 0.501414 0.367257 0.106189 0.018716 0.004898 
Cumulative Proportion 0.501414 0.868671 0.97486 0.993576 0.998474 

Standard deviation 
1500 

2.637062 1.097019 0.91294 0.083799 0.036359 
Proportion of variance 0.772678 0.133717 0.092607 0.00078 0.000147 
Cumulative Proportion 0.772678 0.906394 0.999001 0.999781 0.999928 

Standard deviation 
1750 

2.581409 1.22201 0.699998 0.447875 0.374477 
Proportion of variance 0.740408 0.165923 0.054444 0.022288 0.015581 
Cumulative Proportion 0.740408 0.906331 0.960776 0.983063 0.998645 

Standard deviation 
2000 

2.601504 1.028339 0.904634 0.485987 0.333533 
Proportion of variance 0.751981 0.117498 0.090929 0.026243 0.012361 
Cumulative Proportion 0.751981 0.869479 0.960408 0.98665 0.999011 
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Appendix (b) 

Table (b.1):Application results of𝜀𝜀-SVR and𝑣𝑣-SVR with n=50 

Kernel Using
PCA

𝜀𝜀-SVR=50 𝑣𝑣-SVR=50
No. SVR RMSE No. SVR RMSE

Linear Before 35 5.905735 0.611466 26 4.487617 0.648434
After 34 15.63424 0.920805 22 6.973119 0.922534

Polynomial Before 41 10.24338 0.518209 31 10.64776 0.525611
After 36 18.34726 0.824364 22 9.766403 0.820838

Radial Before 37 7.983526 0.317025 30 10.44179 0.367461
After 36 20.07923 0.109865 23 8.525746 0.150681

Sigmoid Before 37 11.18416 0.783092 24 10.15318 0.752485
After 40 16.73461 0.692276 20 8.911357 0.737407

Table (b.2): Application of𝜀𝜀-SVR and𝑣𝑣-SVR with𝑛𝑛 = 100 

Kernel Using 
PCA 

𝜀𝜀-SVR=100 𝑣𝑣-SVR=100
No. SVR RMSE 𝑅𝑅2 No. SVR RMSE 𝑅𝑅2 

Linear Before 30 3.812108 0.989790 44 3.898366 0.989469 
After 70 20.12219 0.734026 42 19.94299 0.730193 

Polynomial Before 70 45.75615 0.618775 48 44.65717 0.584493 
After 72 30.64740 0.380796 43 38.99390 0.114258 

Radial Before 42 22.98349 0.645508 51 13.33926 0.644507 
After 70 26.87716 0.475720 46 23.15135 0.449809 

Sigmoid Before 80 74.41939 0.044944 41 41.14962 0.000311 
After 72 78.73017 0.105730 42 75.49266 0.107149 

Table (b.3): Application results of 𝜀𝜀-SVR and𝑣𝑣-SVR with n=250 

Kernel Using 
PCA 

𝜀𝜀-SVR=250 𝑣𝑣-SVR=250
No. SVR RMSE 𝑅𝑅2 No. SVR RMSE 𝑅𝑅2 

Linear Before 149 2.7591288 0.896497 103 3.0581533 0.8846127 
After 179 6.4037621 0.44426 102 5.8314337 0.5741451 

Polynomial Before 184 5.87614584 0.613779 105 7.9868842 0.3640643 
After 182 7.0393593 0.35889 104 8.12225091 0.2861072 

Radial Before 156 3.3402499 0.858116 111 4.5304271 0.7494853 
After 176 6.6047535 0.40594 108 6.5998772 0.4548942 

Sigmoid Before 196 55.216609 0.001994 102 40.6345665 0.008469012 
After 199 40.581904 0.00173 102 38.9927044 0.0165334 

Table (b.4):Application results of𝜀𝜀-SVR and𝑣𝑣-SVR with𝑛𝑛 = 500 

Kernel Using 
PCA 

𝜀𝜀-SVR=500 𝑣𝑣-SVR=500 
No. SVR RMSE 𝑅𝑅2 No. SVR RMSE 𝑅𝑅2 

Linear Before 361 9.975281 0.343531 203 9.466509 0.329342 
After 366 11.73772 0.098096 202 11.55629 0.329342 

Polynomial Before 360 11.99407 0.146126 205 10.463957 0.126680 
After 357 12.17787 0.02367 203 12.19348 0.1266801 

Radial Before 360 11.44221 0.152811 218 10.176497 0.146262 
After 368 11.65505 0.125827 214 11.388279 0.146262 
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Sigmoid 
Before 399 122.0327 0.035544 202 102.1085 0.0025699 
After 394 130.80145 0.010471 201 90.1976 0.00256991 

Table (b.5): Application results of𝜀𝜀-SVR and𝑣𝑣-SVR with 𝑛𝑛 = 1000 

Kernel 
Using 
PCA 

𝜀𝜀-SVR=1000 𝑣𝑣-SVR=1000 
No. SVR RMSE 𝑅𝑅2 No. SVR RMSE 𝑅𝑅2 

Linear 
Before 618 3.42460 0.8826332 405 3.100595 0.882584 
After 720 7.08211 0.5049097 401 7.3756314 0.504739 

Polynomial 
Before 687 6.975845 0.560541 413 8.443815 0.547097 
After 721 7.98206 0.3652298 402 9.083121 0.350718 

Radial 
Before 636 4.2676199 0.825030 438 4.0220206 0.818858 
After 717 7.1008020 0.504075 413 7.3552450 0.501977 

Sigmoid 
Before 794 174.4608 0.0968525 402 161.9323 0.053553 
After 795 171.090 0.0099719 401 191.52642 0.009081 

Table (b.6): Application results of𝜀𝜀-SVR and𝑣𝑣-SVR with 𝑛𝑛 = 1500 

Kernel 
Using 
PCA 

𝜀𝜀-SVR=1500 𝑣𝑣-SVR=1500 
No. SVR RMSE 𝑅𝑅2 No. SVR RMSE 𝑅𝑅2 

Linear 
Before 1069 4.29137 0.4949637 603 4.32192 0.497399 
After 1080 4.30776 0.4872366 602 4.48947 0.4874544 

Polynomial 
Before 1076 4.979287 0.333197 605 5.064822 0.344293 
After 1084 4.82179 0.351424 603 5.12483 0.3504718 

Radial 
Before 1067 4.3989396 0.466456 623 4.501377 0.464170 
After 1079 4.3563 0.474433 618 4.5555559 0.463043 

Sigmoid 
Before 1199 314.6709 0.1760055 601 216.9770 0.0941660 
After 1190 205.508 0.0081285 602 80.25321 0.03242593 

Table (b.7):Application results of ε-SVR and v-SVR with n=1750 

Kernel Using 
PCA 

𝜀𝜀-SVR=1750 𝑣𝑣-SVR=1750 
No. SVR RMSE 𝑅𝑅2 No. SVR RMSE 𝑅𝑅2 

Linear 
Before 1080 5.12654 0.9296202 708 3.034645 0.9312248 
After 1027 3.94297 0.6098332 702 2.5561089 0.672139 

Polynomial 
Before 821 5.38031 0.9234148 711 3.0423366 0.9240209 
After 1083 4.234208 0.5439352 704 3.0099337 0.5328131 

Radial 
Before 1333 8.289448 0.9816035 724 3.13559 0.9827222 
After 769 6.7023958 0.8830206 709 2.974966 0.8840259 

Sigmoid 
Before 1381 577.73834 0.0121804 702 69.768746 0.00003041 
After 1394 496.99376 0.1055873 702 48.677263 0.09880482 
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Table (b.8): Application results of𝜀𝜀-SVR and𝑣𝑣-SVR with𝑛𝑛 = 2000 

Kernel Using 
PCA 

𝜀𝜀-SVR=2000 𝑣𝑣-SVR=2000 
No. SVR RMSE 𝑅𝑅2 No. SVR RMSE 𝑅𝑅2 

Linear 
Before 1080 1.0057917 0.9994493 805 1.0542278 0.99333 
After 1394 0.0539351 0.6137618 802 1.0873407 0.9999 

Polynomial 
Before 1260 1.449058 0.6674626 813 1.3706637 0.6756977 
After 1447 0.9712849 0.3253675 804 1.3895499 0.6756977 

Radial 
Before 1389 1.0335056 0.9883338 949 1.4172537 0.9933313 
After 1408 0.1752729 0.5916619 815 1.1007692 0.9933313 

Sigmoid 
Before 1598 109.76821 0.1382282 802 69.33145 0.06405554 
After 1591 80.915245 0.0192846 803 65.374727 0.06405554 

Appendix (c) 

Fig. (c.1) Effect of PCA for 𝜀𝜀-SVRat n=1000 Fig. (c.2) Effect of PCA for 𝜀𝜀-SVR at n=1000 

Fig. (c.3) Effect of PCA for 𝜀𝜀-SVRat n=100Fig.(c.4) Effect of PCA for 𝜀𝜀-SVR at 

n=500
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Fig. (c.5) Effect of PCA for 𝜀𝜀-SVR at 𝑛𝑛 =
1500 

Fig.(c.6) Effect of PCA for ε-SVR at 𝑛𝑛 =
2000

Fig.(c.9) effect of PCA for𝑣𝑣-SVRat 𝑛𝑛 = 50Fig. (c.8) effect of PCA for𝑣𝑣-SVRat 

𝑛𝑛 = 250

Fig. (c.9) effect of PCA for𝑣𝑣-SVRat n=1000 Fig. (c.10) effect of PCA for 𝑣𝑣-SVRat n=1750 

0
1
2
3
4
5
6
7
8

Lin. Rad. Pol. Sig.

Before

After

0

0.5

1

1.5

2

Lin. Rad. Pol. Sig.

Before

After

0

5

10

15

20

25

E-SVR

V-SVR

-10

10

30

50

70

90

110

E-SVR

V-SVR

0

20

40

60

80

100

120

E-SVR

V-SVR

0

2000

4000

6000

8000

10000

E-SVR

V-SVR

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 6, June - 2021 Page -1714



Fig.(c.11) Effect of SVR for Linear kernel Fig. (c.12) Effect of SVR for Radial kernel 

Fig. (c.13) Effect of SVR for Polynomial 
kernel 

Fig. (c.14) Effect of SVR for Sigmoid kernel 

Fig. (c.15) 𝜀𝜀-SVR before PCA Fig. (c.16) 𝑣𝑣-SVR before PCA 
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