

Validation of Wireless Battery Management System
(wBMS) - Gen2

Mr. Chetan[1], Mrs. Sujatha Hiremath[2]

1Student, RV College of Engineering,Bangalore, India
2Assistant Professor, RV College of Engineering,Bangalore, India

1 chetan.ec17@rvce.edu.in , 2 sujathah@rvce.edu.in ,

Abstract:Wireless Battery Management System (wBMS) is a primary enabler for the
widespread adoption of electric cars, allowing auto Original Equipment Manufacturer
(OEMs) to avoid having to rework complicated wiring diagrams for each new car and
ensuring battery scalability. This article mainly focuses on validation of an end-to-end
wBMS system by performing several tests like Packet Transfer Ratio (PTR) for different
configuration files, developing and implementing a health report application which
generates health report in real-time, automating the process of OTA (Over the Air)
upgrade which also includes automation of configuring the front-end application using
python programming language. The main intention behind developing the script to
automate OTA upgrade and health report application is to reduce time consumed to test
the system, reduce human errors, and perform the tests for any number of iterations.

Keywords:wBMS, OEM, OTA, J-Link Lite, UART, PTR

1. Introduction

In order to deliver high voltage power to its electric motors, it is necessary to regularly
monitor the safety and reliability of hybrid vehicles (HEVs) and electric vehicles (EVs) in
order to offer huge numbers of cells. The rationale for the use of Hybrid Electric Vehicle
(HEV) and Electric Vehicle (EV) gets more stronger, since vehicle pollution control
regulation is becoming tougher globally. However, the EV industry remains relatively
new and faces certain difficulties before it takes over. Developments continue to increase
the range, endurance, safety and trustworthiness of the vehicle while reducing size, cost
and weight.

Several wireless technologies that might be utilized in an electric car in the future and
provides a thorough evaluation of all of them, such four different types of wireless
communication modes which can be used in BMS are namely - Cloud-Based BMS,
Internet of Things (IoT) based wireless BMS, Bluetooth Based Wireless BMS, Zigbee
Based Wireless BMS [1]. Wireless Smart Battery Management System (WSBMS) is a
wirelessly communicated cell level BMS. When compared to normal modularized BMS,
this system provided high tolerance to faults and adequate scalability. The balancing
algorithm which is based on the State-of-health (SOH) and State-of-charge (SOC) is
capable of balancing any number battery cells, ageing condition, and capacity deviations
[2]. There also exists various wireless protocols, including ZigBee, Bluetooth Low

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 6, June - 2021 Page -816

mailto:1hkkirankumar.ec17@rvce.edu.in
mailto:sujathah@rvce.edu.in

Energy, Near Field Communication, Wi-Fi, and Wi-Fi HaLow. It is observed that Wi-Fi
and Wi-Fi HaLowappears to be the best solution in certain ways, however predicts that it
may be over-specified for WBMS applications, resulting in an increased cost overhead
[3]. The battery devaluation measure should be diminished by molding the battery in an
appropriate way, for example, controlling incessant charge and profound release cycles.
To discover the connection between voyaging distance and release cycle an examination
dependent on IoT with ongoing remote wBMS is need of the hour [4].

Present cyber-physical systems rely on the continual service battery backup systems. The
conventional methods employed for battery authentication, particularly when they are
composed of large numbers of cells, cannot be introduced to new smart cells as they lead
to increased cable requirements [5]. There have also been the case where use of IBM’s
Hyperledger-Fabric is applied for IoT-applications as Hyperledger-Fabric is private and
authorized blockchain for access control, which consumes less energy and less
computational resources for consensus creating a blockchain ledger than other platforms,
which leads to a significantly less latency [6]. Wireless connection and cloud support of
the IoT module may eliminate wireless problems and make the use of simple on-board
controllers, which increases the scalability and productivity of battery module. In
addition, it is tolerant to either the wireless slave’s failure or control units that the
proposed IoT network using the suggested leadership election methodology fails [7]. The
wireless control of the battery reduces battery failure sites to a minimum. Moreover, it
enables the replacement of individual components without the whole reconstruction while
reducing the influence of system changes on cumbersome cords. Possessing memory also
allows the system to recover if data is lost by pushing data for processing and storage
once data transmission has been restored, leading to enhanced data integrity [8].

In a vehicle, based on overhearing, a dependable, multi-hop communications is designed.
Both the BMS and the sensor networks is used for the technique. The ratio of packet
arrival for BMS and the nearby sensor network within 20ms is around 99.48%, the packet
arrival rate gets reduced if the there is an increase in the number of nearby networks [9].
The developed system comprises of hardware namely sensors, the microcontroller and the
Bluetooth module and software. This has been built using a cheap Arduino UNO micro-
controller. The microprocessor transfers temperature, current and voltage data,
subsequently battery data is transmitted through Bluetooth connection to display. In real-
time, the monitoring system has been able to present temperature, current and voltage
data, and simultaneously display data on smartphones and Personal computers [10].

2.End-to-End wBMS:Overview

An end-to-end wBMS consists of a master board, slave board, cell interface board, PC
with front-end application configured in it. So basically, hardware part of the wBMS goes
into the electric vehicle with slaves being attached or placed along with the battery packs
and these slaves are in turn connected to master board wirelessly. The figure 1. shows the
brief block diagram of how the components are interconnected to each other.

The main hardware components are the master board, slave board, cell interface, a
personal computer with front-end application installed in it and a USB hub to connect all
the UARTs and J-Link lite debuggers an ethernet cable to connect personal computer to
master board. An end-to-end wBMS can contain any number of slave cell boards based
upon requirement. In this project, initially a system with one slave board and one master
board was setup and the same system was later extended to a system with many slave
boards and one or more master board.

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 6, June - 2021 Page -817

Figure 1: An end-to-end wBMS

Within the car, a wireless network is formed by a set of slaves and masters. Only slaves
and network masters inside that particular vehicle, or more particularly a specific battery
pack within that vehicle, are permitted to join the network. Other car’s wBMS networks
are entirely distinct systems. Larger vehicles, like trucks, may have numerous battery
backs, however each battery back runs as a distinct wBMS and is therefore considered a
distinct system.

A slave in this system has a chip, a 2.4 GHz RF transceiver to interact with the wireless
network, and a microcontroller(s) to interface with the battery and the transceiver.
Because the network master does not communicate with a battery module, it just has the
2.4 GHz RF transceiver and a microprocessor to communicate with the transceiver and
the BMS Controller. However, one of the network masters is usually linked to a sensor,
which checks the battery’s total charge level.

The command/response architecture of communication from the BMS Controller to the
BMS Monitors in the wireless system is limited by what every radio can accomplish -
basically either send or receive in a time slot. If the wireless system attempts to
implement the same command/response sequence as a cable system, the communication
might be exceedingly inefficient. To mitigate this, the slaves in a wired system require
greater autonomy to perform the loop operated in the BMS Controller. The BMS
Controller takes on the role of a traffic controller, instructing the slaves to start and stop
the loop, requesting more information, and modifying configuration parameters that allow
the slave loops to run in different ways.

3.Test Methodology

The basic procedure followed to fulfil any of the framed objective includes

1. Connecting master, slave, Universal Serial Bus (USB) to Universal
AsynchronousReceiver Transmitter (UART) converters, J-Link lite to form a
network.

2. Configuring the Front-end application, downloading configuration and binary
files to master and slaves.

3. Writing and using the corresponding python scripts to perform framed objectives.

As referenced in Figure 2, initially hardware setup is done, which includes connecting all
the components. Further these are connected to user’s computer using USB hubs. Since
there will be new versions coming now and then with fault correction, master and slave

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 6, June - 2021 Page -818

are flashed using J-Link lite debuggers. Next step involves downloading files to master
and slaves and configure them so as to make them capable of sending data to each other.
Once the Front-end application is configured, the network information like PTR, number
of slaves connected, type of operation can be seen in Front-end application. Front-end
application is basically is Graphical User Interface (GUI) provided for user to monitor
and control the network remotely.

Figure 2: Flowchart representing test methodology

3.1. Health Report Application

The health report application parses the real time packets sent by master and slaves by
subscribing to a back-end interface, generates few reports, displays the few fields of
formatted data in several different consoles in tabular column, and simultaneously logs
the data in excel sheet. This network health information in these packets can be used to
calculate system-level performance metrics and to diagnose network performance issues.

This application parses the real-time packets obtained from masters and slaves, which
will be in raw byte form, modifies the bytes as per the fields and display few fields of all
the four below mentioned reports in table format on different consoles and
simultaneously logs data into excel sheet which can be found in ”Health reports” folder.
The excel sheets will start logging data when the .bat file is run and stops logging when
scripts are killed. Many packets will be received every minute from masters and slaves.

The packets obtained from slaves and masters are basically of two kind one is packet-1
and the other is packet-2. So, based upon these packets it generates four health reports
namely,

1. Slave report-1
2. Slave report-2
3. Master report-1

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 6, June - 2021 Page -819

4. Master report-2

3.2. Packet Transfer Ratio (PTR)

Measuring PTR of a system is one of the very crucial process of validating an wBMS
since it gives an overview of how well the components of the system are communicating
with each other and also the rate at which the packets are being sent, and also specifies
the number of packets lost due to interference. By downloading front-end application, by
default we get few configuration files with “.cfg” extension which can be further
modified as per requirement. The default configuration file is modified and then 10 more
configuration files are generated from it. Each of the configuration file generated differs
from each other by only one parameter i.e., BMS sampling rate. So, the requirement here
is to check for 10 different configuration files namely config-1, config-2 and so on till
config-10. BMS sampling rate is nothing but the rate at which the slaves samples the
packet.

The expected PTR should be always be high since the setup and tests are performed in a
clean lab environment. Even though if the setup or the system is kept in vicinity of
another system, it shouldn’t decrease the PTR of both the systems. There will be a
possibility of one system getting the packets from another system causing interference,
but it should be taken care by making sure that both the systems are isolated and packet
transfer between them is negligible. PTR can be tested for any specified time, but it is
always preferred to measure PTR by keeping the system for as long as possible to cover
the worst-case scenario.

3.3.Automation of Front-End Application Configuration and OTA Upgrade Process

This test automation covers complete automation of front-end application, from flashing
slaves and masters, to setting up the front-end application and OTA upgrade both masters
and slaves. The sequence of events occurring can be seen in console and when the script
is completely run, an excel file will be generated which contains the structured report
with different columns indicating the version and also failures if any during the OTA
upgrade process. The entire script is written in python and is integrated with front-end
application using back-end APIs.

The whole script is written in python using pytest framework which is specifically
developed to perform efficient testing and make the script bug free. There are two scripts,
the main script which contains implementation of the sequence of events mentioned
above and the other script, conftest.py where the paths to configuration, container files
are specified. The main script imports the paths from the other script as and when
required during the run. The second script conftest.py is maintained to easily modify the
script and run quickly when there is an upgrade. So, the OTA upgrade script should be
rigorous and robust and should be capable of identifying the problems in the system
which cannot be found out manually. Again, it can be run for any number of iterations
continuously without stopping which increases the efficiency of finding defects in the
system as well as saves time and reduces manual intervention.

4. Results and Discussions

Setting up an end-to-end wBMS is common step for all proposed tests to be performed so
initially a slave, a master setup, USB to UART converter, personal computer with front-

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 6, June - 2021 Page -820

end application, USB hub and J-Link Lite was performed. Since one slave only gives an
insight of how the system behaves, increasing the number of slaves gives the actual
behavior of the wBMS in real time scenario. So, the number of slaves were extended
from one to more than one slave in an end-to-end wBMS.
4.1. Health Report Application

As discussed earlier, type-1 packet is sent from each master per minute. It can be easily
observed from the figure 3 that two packets are received per minute, which are
highlighted in the output. 240 is device id of the master-1 and 241 is the device id of
master-2.

Figure 3: Real-time console output of master report-1

Figure 4 shows the console output of Master report-2. As mentioned earlier, 2 packets
indicating important information of the master are sent per minute from the master board.
There exists a lot of fields in this report which can be seen in the excel.

Figure 4: Real-time console output of master report-2

Figure 5 shows the console output of the slave report-1 which is formatted from the raw
packet data obtained from slaves present in the network. Since only packet is sent from
each device present in the system, so only one packet from each slave is captured per
minute and displayed in the table format.

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 6, June - 2021 Page -821

Figure 5: Real-time console output of slave report-1

Figure 6 shows the console output of the slave report-2 of each slave which is formulated
by capturing the raw data packet obtained from each slave every minute. Since we are
measuring interference obtained from other slaves in the system on specific channel, so
again there exists many fields in this report each representing the amount of interference
at a particular channel.

Figure 5: Real-time console output of slave report-2

4.2. Packet Transfer Ratio (PTR)

The table 1 shows the PTR of each slave and also the number of packets generated and
received. It can be observed that PTR of each slave is greater than 99.7% for config-1.
Similarly, the PTR is calculated for other config files which were generated and the
average PTR of all slaves per configuration file is as shown in the table 1.

Table 1. PTR for 10 configuration files

Configuration file PTR in percentage (%)
Config-1 99.64989
Config-2 99.58932
Config-3 99.45097
Config-4 99.22723
Config-5 98.93412
Config-6 98.94131
Config-7 95.12438

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 6, June - 2021 Page -822

Config-8 96.39085
Config-9 98.37578

Config-10 98.36865

4.3. Automation of Automation of OTA upgrade process

The table 2 shows the output observed after running the script. It can be observed that all
the slaves and managers were upgrade to version 2.0 from version 1.0.It can be observed
that time taken to OTA upgrade all slaves parallelly is around 2 min. The time taken for
every iteration varies since the OTA upgrade is wireless and may be delayed due to
interference in some cases. All of the iterations were successful with all the files being
retained after OTA upgrade and even the slaves getting upgraded to the OTA upgraded
version.

Table 2. Observations from 10 iterations of OTA upgrade process

Iteration
count

Previous
version

Upgraded
version

Success/Fail

1 1.0 2.0 Success

2 1.0 2.0 Success

3 1.0 2.0 Success

4 1.0 2.0 Success

5 1.0 2.0 Success

6 1.0 2.0 Success

7 1.0 2.0 Success

8 1.0 2.0 Success

9 1.0 2.0 Success

10 1.0 2.0 Success

Table 3 shows the time taken per iteration. It is around 9 minutes approximately. So it
proves that automation is very less time consuming and saves manual intervention too.
Average time taken to perform OTA upgrade and Explorer configurations is around 13
minutes and it also tedious. Automating will not only reduce the time consumed per
iteration but also will find the bugs which cannot be found manually. And it is also hard to
perform 100 iterations of OTA upgrade manually, but it can be easily achieved using OTA
upgrade automation and moreover, it can be run for any number of iterations, be it 100 or
1000 or more.

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 6, June - 2021 Page -823

Iteration
count

Time taken by
automation script

Time taken
manually

1 9 minutes 13 minutes

10 1.5 hours 2 hours

50 7.5 hours 10.8 hours

100 15 hours 21 hours

1000 150 hours 216 hours

It is to be noted that manual time for iteration count other than 1 is calculated using the
time taken to OTA upgrade manually once. The time taken per iteration is multiplied by
number of iterations to differentiate between two methods.

5. Conclusion

Setting up the more than one slave, more than one master network being common
procedure for implementing the framed tests, so it is basically a prerequisite. Health
report application was not existent previously and development of this application has
allowed the user to examine the packets from the slaves and masters effectively from the
excel report generated. PTR calculation for different configuration files gave a PTR of
above 95% for all configurations, maximum being 99.9431%. Front-end application and
OTA upgrade automation has made it a lot easier not only by reducing time consumption
per iteration to less than 10 minutes from manual process which would take around 13
minutes per iteration but also giving the flexibility to perform OTA upgrade for any
number of iteration be it 10, 100 or 1000 or anything more. Assuming 100 iterations are
performed manually and by the proposed automation, the time saved due to automation
would be 6-7 hours and also, it’s very tedious to perform 100 iterations of OTA upgrade
manually. So, OTA upgrade automation is a big boost for the implementation of wBMS.

7. Future Scope
One of the major constraints of this project is that it experiences interference from the
other nearby networks if any, and it may lead to few slave disconnections or slaves not
joining the network within specified time. Exploring the best ways to isolate a system
from the other nearby system will be the challenging step and this should come at the
least cost. Also enhancing the features so that remote access of the system becomes
feasible is another key challenge to make the system robust and flexible.

REFERENCES

8.1. Journal Articles

[1]. V. K, R. K. Nema, and A. Ojha, “Various types of wireless battery management system in ev,” in 2020
IEEE International Students’ Conference on Electrical,Electronics and Computer Science (SCEECS),
2020, pp. 1–5. doi: 10.1109/ SCEECS48394.2020.115.

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 6, June - 2021 Page -824

Table 3. Comparison of time taken for manual and automated OTA upgrade process

[2]. X. Huang, A. B. Acharya, J. Meng, X. Sui, D.-I. Stroe, and R. Teodorescu, “Wireless smart battery
management system for electric vehicles,” in 2020 IEEE Energy Conversion Congress and Exposition
(ECCE), 2020, pp. 5620–5625. doi: 10.1109/ ECCE44975.2020.9236279.

[3]. P. Bansal and P. Nagaraj, “Wireless battery management system for electric vehicles,” in 2019 IEEE
Transportation Electrification Conference (ITEC-India), 2019, pp. 1–5. doi: 10.1109/ITEC-
India48457.2019.ITECINDIA2019-83.

[4]. S. Haldar, S. Mondal, A. Mondal, and R. Banerjee, “Battery management system using state of charge
estimation: An iot based approach,” in 2020 National Conference on Emerging Trends on Sustainable
Technology and Engineering Applications (NCETSTEA), 2020, pp. 1–5. doi:
10.1109/NCETSTEA48365.2020.9119945.

[5]. A. Al Khas and I. Cicek, “Sha-512 based wireless authentication scheme for smart battery management
systems,” in 2019 8th International Conference on Renewable Energy Research and Applications
(ICRERA), 2019, pp. 968–972. doi: 10.1109/ ICRERA47325.2019.8996531.

[6]. T. Faika, T. Kim, J. Ochoa, M. Khan, S.-W. Park, and C. S. Leung, “A blockchainbased internet of
things (iot) network for security-enhanced wireless battery management systems,” in 2019 IEEE
Industry Applications Society Annual Meeting, 2019, pp. 1–6. doi: 10.1109/IAS.2019.8912024.

[7]. T. Faika, T. Kim, and M. Khan, “An internet of things (iot)-based network for dispersed and
decentralized wireless battery management systems,” in 2018 IEEE Transportation
Electrification Conference and Expo (ITEC), 2018, pp. 1060–1064. doi:
10.1109/ITEC.2018.8450161.

[8]. C. Shell, J. Henderson, H. Verra, and J. Dyer, “Implementation of a wireless battery
management system (wbms),” in 2015 IEEE International Instrumentation and Measurement
Technology Conference (I2MTC) Proceedings, 2015, pp. 1954–1959. doi:
10.1109/I2MTC.2015.7151581.

[9]. T. Kumtachi, K. Kinoshita, and T. Watanabe, “Reliable wireless communications in battery
management system of electric vehicles,” in 2017 Tenth International Conference on Mobile
Computing and Ubiquitous Network (ICMU), 2017, pp. 1–6. doi:
10.23919/ICMU.2017.8330099.

[10]. A. Jamaluddin, F. A. Perdana, A. Supriyanto, A. Purwanto, Inayati, and M. Nizam,
“Development of wireless battery monitoring for electric vehicle,” in 2014 International
Conference on Electrical Engineering and Computer Science (ICEECS), 2014, pp. 147–151.
doi: 10.1109/ICEECS.2014.7045235.

[11]. D. Alonso, O. Opalko, M. Sigle, and K. Dostert, “Towards a wireless battery management
system: Evaluation of antennas and radio channel measurements inside a battery emulator,” in
2014 IEEE 80th Vehicular Technology Conference (VTC2014- Fall), 2014, pp. 1–5. doi:
10.1109/VTCFall.2014.6966212.

[12]. M. Lee, J. Lee, I. Lee, J. Lee, and A. Chon, “Wireless battery management system,” in 2013
World Electric Vehicle Symposium and Exhibition (EVS27), 2013, pp. 1–5. doi:
10.1109/EVS.2013.6914889.

[13]. S. A. Mathew, R. Prakash, and P. C. John, “A smart wireless battery monitoring system for
electric vehicles,” in 2012 12th International Conference on Intelligent Systems Design and
Applications (ISDA), 2012, pp. 189–193. doi: 10.1109/ISDA. 2012.6416535.

[14]. Y. Wu, X. Liao, W. Chen, and D. Chen, “A battery management system for electric vehicle
based on zigbee and can,” in 2011 4th International Congress on Image and Signal Processing,
vol. 5, 2011, pp. 2517–2521. doi: 10.1109/CISP.2011.6100781.

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 6, June - 2021 Page -825

	1. Introduction
	2.End-to-End wBMS:Overview
	3.Test Methodology
	3.3.Automation of Front-End Application Configuration and OTA Upgrade Process

	4. Results and Discussions
	4.3. Automation of Automation of OTA upgrade process

	5. Conclusion
	7. Future Scope
	REFERENCES

