
A Comparative Study of Transfer Learning Models for Offline

Signature Verification and Forgery Detection

Manikantha K1, Aishwarya R Bhat2, Pavani Nerella3, Pooja Baburaj4* and

Sharvari K S5

Department of Computer Science and Engineering, B.N.M Institute of Technology,

Bengaluru
1manikanthak@bnmit.in, 2bhat.aishwarya99@gmail.com,

3pavanin862@gmail.com, 4baburaj.pooja@gmail.com,
5sharvarisuresh9@gmail.com

Abstract: Recognising one's identity to enter a system is called authentication. This

process can take various forms where users input the system with a set of identifying

credentials to access the system. Signatures belong to behavioural biometric, where the

distinct features of every individual are considered in order to corroborate the person's

identity. The act of falsely imitating one's signature biometric to impersonate and leverage

access to their assets is called signature forgery. Our paper presents a comparative study

of various deep learning models using the Siamese architecture, over a wide catalogue of

signature images. Openly available datasets like CEDAR, Handwritten Signatures dataset

from Kaggle, ICDAR 2011 SigComp, and BH-Sig260 signature corpus are used to train the

models. A set of classifiers – Support Vector Classifiers (SVC), Gaussian Naïve Bayes

(GNB), Logistic Regression (LR) and K-Nearest Neighbours (KNN) are applied

sequentially to classify the signature as genuine or forged.

Keywords: Convolutional Neural Networks, Offline Signature Verification, Signature

Forgery Detection, Deep Learning, Transfer Learning

1. Introduction

Signatures belong to behavioural biometric, where the distinct features of every

individual are considered in order to corroborate the person's identity. The act of falsely

imitating one's signature to impersonate and leverage access to their assets is called

signature forgery. The forgers use different methods like tracing and optical transfer to

fabricate false signatures. Random/blind forgery, unskilled forgery and skilled forgery are

the different types of forgery encountered when trying to discern genuine signatures from

fake ones.

Handwritten signatures play a vital role in our social and legal life. It is used for

verification and authentication and when a person places a signature on a document, it

implies his/her intent to agree with conditions or terms stated by that document. Thus,

signature verification becomes a very important security aspect.
According to how the signatures are acquired, the verification is done in online and

offline signature verification modes. In Online signature, the signer is made to sign on a

digital device with the help of a stylus in real time to acquire the signature. The system

captures dynamic features, such as position, velocity, pressure, etc. Offline Signature

Verification is used when physically signed documents have to be inspected, and only a

two-dimensional image is available for verifying the signature.
Offline signature verification can be addressed with two approaches – writer dependent

approach where the system is updated every time a new signer is introduced and writer

independent approach where a generic system is built to distinguish between genuine and

forged signatures [1].

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 7, July - 2021 Page -1129

mailto:bhat.aishwarya99@gmail.com
mailto:pavanin862@gmail.com
mailto:baburaj.pooja@gmail.com

The offline signature verification system discussed in this paper is implemented using a

Siamese Network containing twin Convolutional Neural Networks (CNN). The Siamese

neural network consists of two identical CNNs, where each of them are capable of learning

the hidden features of an input vector. Both networks have the same structure and

parameters such that they can compare their outputs at the end. Training a signature

verification system under a writer independent scenario, divides the available signers into

train and test sets and for a particular signer, signatures are coupled as similar (genuine,

genuine) or dissimilar (genuine, forged) pairs [1].
Our paper focuses on comparing systems trained on data from various dataset, using

different network models and classifiers. Experiments are also conducted with two different

distance functions namely, cosine and Euclidean distances to obtain the similarity or

dissimilarity score of the feature embeddings from the two signature images.

2. Literature Survey

Recent works on handwritten signature verification have explored different CNN

architectures with or without a separate classifier. In [2], Jerome et al. propose the use of a

basic CNN architecture with three convolution and max pooling layers in an alternating

fashion. The model achieves 98.23% validation accuracy but a new class has to be created

for the genuine and forged signatures of each signer. Sultan et al. [3] propose a three-layer

CNN architecture for feature extraction and classification with data augmentation to

improve performance. Krishnaditya et al. [4] compare two optimizers: Adam and

RMSProp, on their CNN model for three different datasets.

An architecture using both CNN and Crest Trough method for signature recognition

along with Harris and Surf Algorithms for forgery detection is proposed by Jivesh et al. [5].

Harris corner detection algorithm and Surf feature extraction algorithm is seen again in the

model proposed by Debasree et al. in [6].

Hanmandlu et al. [7] have used two CNN architectures for feature extraction: LeNet and

AlexNet. An SVM classifier using the Cubic kernel in conjunction with AlexNet performed

to provide a 96.6% recognition rate on the GPDS960 database. GoogLeNet Inception V1

and Inception V3 CNN architectures are used by Jahandad et al. in [8], where the Inception

V1 model outperformed Inception V3. Hsin-Hsiung Kao et al. [9] propose a signature

verification method based on explainable deep learning and local feature extraction on a

single reference sample. They used two architectures: VGG19 and Inception V3. In [10],

G. Alvarez et al. based their model on the VGG16 architecture. They trained and tested

using the ICDAR 2011 SigComp dataset. Atefeh et al. [11] use pretrained models of

VGG16, VGG19, ResNet50, Inception V3, and signature verification networks SigNet and

SigNet-F to review existing CNN based models.

The SigNet model proposed in [1] uses a convolutional Siamese network. S. Dey et al.

propose the first implementation of a CNN–Siamese network for offline signature

verification and their results are used as a benchmark in this paper. OSVNet by C. Sekhar

et al. [12] is another CNN–Siamese based writer independent model which produces 78.6%

to 100% accuracy for MCYT-100 and MCYT-330 datasets.

3. Siamese Neural Network and Deep Transfer Learning

Bromley et al. [13] introduced the Siamese network in the early 1990s, and it was used

to solve signature verification using the image matching concept. A Siamese network, as

the word suggests, is a twin network architecture that usually contains two identical

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 7, July - 2021 Page -1130

networks. Each one of the twins have the same configuration with the same weights, which

can be trained to learn features where similar observations are kept in proximity. A pair of

signatures are input to the twin CNNs and the high-level features in the images are learnt

by each network. At the end the two networks are joined by a distance layer, where a

distance function calculates the difference of the extracted features in the last output

layer. A widely known loss function – contrastive loss, receives the distance calculated

using the similarity/dissimilarity metric – Cosine or Euclidean distance.
This paper deploys different types of Convolutional Neural Network architectures for

the twins and presents a comparative study of each model against various types of datasets

and distance functions. The architectures in study are implemented using pre-trained

models via transfer learning, which helps in adapting the weights from previous image

classification tasks to help in faster model convergence and better feature extraction.

4. Experiments

4.1. Datasets: A variety of datasets with unique structure and features of the signatures are

taken for studying the model performance when the input is diverse. We have gathered

different well-known datasets to evaluate the models with the aim of establishing a

comparative study in this paper. The datasets considered are CEDAR, BHSig260[14], a

dataset named Handwritten Signatures from Kaggle for which the original source is

unknown, UTSig[15] and ICDAR 2011 Signature Verification Competition datasets [16].

Only the offline samples are used in each dataset. Table 1 and Table 2 shows the details of

the datasets used.

Table 1. Datasets Description

Dataset
No. of

Signers

No. of Genuine

Signatures per

Signer

No. of Forged

Signatures

per Signer

Language

CEDAR 55 24 24 English

BHSig260 (Hindi) 160 24 30 Hindi

BHSig260 (Bengali) 100 24 30 Bengali

Kaggle

(Source unknown)
30 5 5 English

UTSig 115 27 42 Persian

ICDAR 2011

SigComp

(Chinese)

Train Set 10 21 to 24 23 to 36 Chinese

ICDAR 2011

SigComp

(Dutch)

Train Set 10 23 to 24 8 to 16 Dutch

ICDAR 2011 SigComp test set has a different structure from the previous datasets as

shown in Table 2. Each dataset, Chinese and Dutch, have reference and questioned

signatures from different signers. The image file is named such that genuine and forged

pairs can be distinguished for creating the test labels. The number of reference and

questioned signatures are not consistent for each signer unlike other datasets.

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 7, July - 2021 Page -1131

Table 2. ICDAR 2011 SigComp Test Sets

Dataset
No. of

Signers

No. of Reference

Signatures per Signer

No. of Questioned

Signatures per Signer

 Chinese 10 10 to 12 46 to 59

 Dutch 10 12 20 to 24

A few of the signature images are shown in Figure 1. The signatures are taken from

different datasets showing a genuine and forged pair for each language.

Figure 1. Signature Images in Datasets

4.2. Preprocessing

The images are taken from a wide gamut of datasets, the aim of pre-processing is to

prepare all the signatures for further operations and increase the feasibility of learning. A

size S=H*W is maintained as a default for training the network. Signature images inherently

have noise present around the strokes which may decrease the model performance.

The images undergo three essential steps after being resized. I) Gray Scaling: Grey

Scaling includes converting the RGB image into a grayscale image by inverting the pixels

based off a weighted average threshold. To provide a 3-channel input image to the

pretrained model, the one channel image resulting from the grey scale operation is stacked

up to form three layers of the same pixel values. II) Binary processing: To suppress noise

and the grey remains, the image is converted to a binary image to have only black and white

pixel values by global/local thresholding. The background pixel intensities above a

threshold are converted to 255 and below to 0 transforming the images using Otsu’s

algorithm. III) Denoising: Maintaining the original features of a signature and removing

noise without waning the image requires usage of image denoising filters. OpenCV avails

a tool fastNlMeansDenoising which we use to fine tune and remove noises with template

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 7, July - 2021 Page -1132

window size=7 pixels and search window size= 21 pixels. It theoretically performs a non-

local mean sorting pixels and the replace mean values to smoothen out grainy noise of grey-

images. Finally, the image is sharpened for resolution and the pixel values are normalised

as a precondition for optimal network training.

Figure 2. Signature Image Pre-processing

4.3. Models

SigNet[1] signature verification model was used as base for the Siamese architecture

in this paper. SigNet hyperparameters and final dense layers were combined with

pretrained models downloaded from the Keras Applications API. The base network

layers were frozen to preserve the weights essential for feature extraction. The different

pretrained architectures used are VGG16, ResNet50, MobileNetV2, DenseNet121 and

Xception. A few of the model details are mentioned in Table 3. The dense layers and

dropout layers along with the base network make up the feature extractor. Input pairs are

passed to this network and their final feature embeddings are given to a distance function

to calculate similarity. A loss function receives the calculated distance and adjusts

parameters so as to decrease distance between (genuine, genuine) pairs and increase

distance between (genuine, forged) pairs.

Table 3. Pre-trained Models Description

Pre-trained

model
Depth

No. of

Parameters
Output Feature Layer

Output

Feature

Size

VGG16 16 138M block5_pool (MaxPool2D) 7* 7* 512

ResNet50 50 23M
conv5_block3_out

(Activation)
7*7*2048

MobileNetV2 53 3.4M out_relu (ReLu) 7*7*1280

DenseNet121 121 20M relu/Relu:0 (ReLu) 7*7*1024

Xception 71 22M
block14_sepconv2_act

(Activation)
7*7*2048

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 7, July - 2021 Page -1133

4.4. Classifiers

Classification of the distance vector output from the predict() function of the model can

be done using different classifiers like SVM, KNN, Gaussian Naïve Bayes and Logistic

Regression. All classifiers used in our experiments are trained on the distance vectors of

the embeddings of the (genuine, genuine) and (genuine, forged) image pairs along with the

class labels (similar/dissimilar). Initially, the accuracy and best distance threshold is

calculated by looping through the minimum and maximum distance values in steps of 0.001

and checking the number of samples correctly classified using that distance threshold.

Classifiers do this job by using linear and non-linear techniques and sometimes provide

more accurate results. Hence, the accuracies using each classifier is recorded and compared.

KNN was configured at n=2. SVC was tested on different kernels–RBF, Poly, Linear and

Sigmoid and RBF was selected as it consistently produced maximum test accuracy. The

classifier models were imported from the scikit-learn library.

4.5. Experimental Setup

To study the performance of different pre-trained models on detecting forgery, our

experiments follow the given design.

1. Load data and generate pairs of similar and dissimilar classes

2. Pre-process the generated image pairs which yield batches of grey-scaled, noise free and

normalized arrays of pixel values

3. Split the data into train, test and validation sets after investigating the dataset structure:

datasets like SigComp provide separate train and test sets for original and forged

signatures whereas BHSig has one folder for original signatures and one for forged;

train, test and validation sets must be extracted from these folders.

4. Create the final model by adding dense layers on the loaded pre-trained model

5. Train the network on each dataset separately.

6. Compute its accuracy for the batches of the test data using different classifiers.

Pretrained models are loaded from Keras Applications API, two dense layers are added

after flattening the base model’s output. The first Dense layer has 1024 neurons with a

Dropout rate of 0.5, whereas the second Dense layer has 128 neurons. Rectified Linear

Units (ReLU) activation function is used on the output of the fully connected layers. The

twin CNNs with the above structure output image encodings whose distance is calculated

using a Euclidean distance function and again using a cosine distance function for

comparative study.

This Siamese network is trained using RMSprop for 15 epochs using contrastive loss,

with momentum rate equal to 0.9 and batch size equal to 128. The initial learning rate (LR)

is set to 1e − 4 with hyper parameters ρ = 0.9 and €= 1e − 8. Early stopping with patience

set as 12 is used to reduce overfitting. ReduceLROnPlateau is called to reduce learning rate

when model metric has stopped improving, with factor set as 0.1, patience as 5 and

minimum learning rate as 1 X 10-6 [1]. The entire framework is implemented using Keras

library with the TensorFlow as backend. Trained was done using a single 12GB NVIDIA

Tesla K80 GPU, and the overall model training took approximately 2 to 5 hours depending

on the dataset.
The trained Siamese model outputs a distance vector which is used to decide if the image

pair belongs to the (genuine, genuine) class or (genuine, forged) class, this is fed to a

separate binary classifier which yields the target label. The classifiers used are SVC using

RBF kernel, KNN, Gaussian Naïve Bayes and Logistic Regression. Final kernel for SVC

was chosen on a trial-and-error basis.

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 7, July - 2021 Page -1134

4.6. Results and Discussions

The accuracies for each model with all the datasets and both distance functions are shown

in Table 4, Table 5, Table 6, Table 7 and Table 8. The test accuracy refers to the accuracy

calculated by looping through different threshold values and checking the number of

correctly classified image pairs.

Table 4. VGG16 Accuracies for Different Distance Functions & Classifiers

Dataset Distance

Function

Test LR GNB KNN SVC

(RBF)

Kaggle Euclidean 100 100 100 100 100

Cosine 89.03 96.0 96.0 89.5 97

CEDAR Euclidean 100 100 100 99.1 100

Cosine 50.0 65.1 65.4 64.3 65.1

BHSig260

(Hindi)
Euclidean 64.54 63.75 62.26 59.87 64.02

Cosine 93.6 93.08 93.08 88.04 93.1

BHSig260

(Bengali)
Euclidean 83.0 81.74 74.56 80.7 81.2

Cosine 71.04 70.11 69.62 62.08 70.86

UTSig Euclidean 79.28 71.5 72.11 65.16 73.01

Cosine 87.47 87.33 87.17 83.31 87.37

ICDAR 2011

SigComp

(Chinese)

Euclidean 64.0 58.6 57.8 69.5 67.2

Cosine 63.59 55.72 51.04 55.98 55.98

ICDAR 2011

SigComp

(Dutch)

Euclidean 67.9 62.18 61.48 64.53 66.4

Cosine 60.47 55.0 55.0 52.18 54.92

The VGG16 architecture produces best results for the smallest dataset, which was

obtained from Kaggle and the second smallest dataset CEDAR using the Euclidean

distance. The Support Vector Classifier on RBF kernel performs the best consistently

following which are the Gaussian Naïve Bayes and Logistic Regression classifiers. Both

give similar accuracies. K-Nearest Neighbors classifier does not produce up to par

accuracies but is still acceptable for most datasets. Cosine distance works well for

BHSig260 Hindi and UTSig Persian datasets while Euclidean distance performs best for

the remaining datasets.

Table 5. ResNet50 Accuracies for Different Distance Functions & Classifiers

Dataset Distance

Function

Test LR GNB KNN SVC

(RBF)

Kaggle Euclidean 78.0 75.0 78.0 75.5 75.0

Cosine 90.5 89.5 90.0 90.5 89.0

CEDAR Euclidean 66.75 64.93 59.17 62.03 64.53

Cosine 76.01 76.6 76.0 75.0 75.8

Euclidean 82.82 82.59 82.67 77.49 82.79

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 7, July - 2021 Page -1135

BHSig260

(Hindi)
Cosine 84.15 84.1 84,08 82.17 84.13

BHSig260

(Bengali)
Euclidean 84.20 83.41 83.97 82.98 83.41

Cosine 78.3 50.5 78.8 50.0 70.25

UTSig Euclidean 78.71 66.44 66.49 62.71 66.34

Cosine 82.23 80.0 80.21 79.86 81.48

ICDAR 2011

SigComp

(Chinese)

Euclidean 65.61 62.6 57.79 98.29 70.29

Cosine 63.80 64.04 65.13 69.47 65.04

ICDAR 2011

SigComp

(Dutch)

Euclidean 62.65 61.32 60.6 60.07 62.15

Cosine 63.31 58.16 61.63 61.8 60.07

ResNet50 produces the best accuracy for the ICDAR 2011 SigComp Chinese dataset on

Euclidean distance, but only for the KNN classifier. Looking at the overall accuracies,

Gaussian Naïve Bayes classifier works well consistently but not better than the direct

threshold-based classification used to produce the test accuracy. Cosine distance works well

for most datasets except BHSig260 Bengali and ICDAR 2011 SigComp Chinese.

Table 6. MobileNetV2 Accuracies for Different Distance Functions &

Classifiers

Dataset Distance

Function

Test LR GNB KNN SVC

(RBF)

Kaggle Euclidean 78.0 78.0 75.0 76.0 78.0

Cosine 80.0 78.0 79.0 80.0 79.5

CEDAR Euclidean 92.0 92.0 73.0 88.0 89.0

Cosine 96.0 96.0 95.9 96.0 96.0

BHSig260

(Hindi)
Euclidean 75.0 75.0 74.0 75.0 75.0

Cosine 70.73 69.0 68.0 68.8 68.6

BHSig260

(Bengali)
Euclidean 85.63 85.0 73.4 80.3 83.4

Cosine 75.51 75.0 75.0 74.6 74.5

UTSig Euclidean 74.6 74.0 74.5 74.5 49.0

Cosine 73.56 74.0 73.5 73.4 50.0

ICDAR 2011

SigComp

(Chinese)

Euclidean 57.25 50.1 64.9 57.9 56.7

Cosine 54.46 59.1 49.7 59.1 59.1

ICDAR 2011

SigComp

(Dutch)

Euclidean 59.52 59.5 56.5 57.3 57.5

Cosine 64.83 64.2 64.3 63.3 64.2

MobileNetV2 produces the best accuracies using the Cosine distance on the CEDAR

dataset. Logistic Regression classifier and SVC on RBF kernel seem to do well for almost

all the datasets but the test accuracy gives equally good results. Here, Cosine and Euclidean

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 7, July - 2021 Page -1136

distances perform well on alternative datasets with Cosine outperforming Euclidean for the

Kaggle, CEDAR, BHSig260 Bengali and ICDAR 2011 SigComp Dutch datasets.

Table 7. DenseNet121 Accuracies for Different Distance Functions &

Classifiers

Dataset Distance

Function

Test LR GNB KNN SVC

(RBF)

Kaggle Euclidean 62.5 96.5 97.0 96.5 96.0

Cosine 98.5 62.5 61.5 60.0 62.5

CEDAR Euclidean 69.63 68.0 65.0 65.3 68.65

Cosine 67.82 65.94 65.39 64.6 64.92

BHSig260

(Hindi)
Euclidean 77.47 77.0 72.0 76.0 76.7

Cosine 81.08 80.8 80.3 79.4 80.5

BHSig260

(Bengali)
Euclidean 80.83 81.0 70.8 78.6 79.6

Cosine 74.18 74.0 73.8 73.7 73.5

UTSig Euclidean 76.83 69.3 68.7 63.9 69.9

Cosine 74.29 70.8 68.9 61.0 66.0

ICDAR 2011

SigComp

(Chinese)

Euclidean 63.31 66.1 75.6 71.3 71.3

Cosine 64.63 62.0 66.5 71.0 64.0

ICDAR 2011

SigComp

(Dutch)

Euclidean 64.22 62.5 63.0 60.0 62.4

Cosine 60.73 64.5 62.2 64.3 64.3

DenseNet121 has the best accuracy for Kaggle dataset when used with the distance

thresholding test classifier. Logistic Regression, Gaussian Naïve Bayes and Support Vector

Classifier on RBF perform fairly well in comparison to KNN and the Test accuracy.

Logistic Regression produces slightly better accuracies for most of the datasets and

Euclidean distance does well in the majority of the datasets.

Table 8. Xception Accuracies for Different Distance Functions & Classifiers

Dataset Distance

Function

Test LR GNB KNN SVC

(RBF)

Kaggle Euclidean 54.5 52 52.5 51 52.5

Cosine 66.5 62.5 60.5 71.5 60

CEDAR Euclidean 62.13 60.97 61.63 48.36 61.63

Cosine 50.57 54.4 56.9 55.9 56.3

BHSig260

(Hindi)
Euclidean 75.32 72.95 74.81 73.57 74.48

Cosine 73.96 73.76 73.86 72.66 73.86

BHSig260

(Bengali)
Euclidean 71.7 68.84 63.83 66.18 68.84

Cosine 65.31 64.32 64.21 62.97 63.5

UTSig Euclidean 58.3 53.87 54.94 51.28 50.77

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 7, July - 2021 Page -1137

Cosine 53.24 51.61 51.78 50.19 49.79

ICDAR 2011

SigComp

(Chinese)

Euclidean 59.94 54.94 77.6 69.01 69.01

Cosine 59.63 61.16 67.18 68.30 68.08

ICDAR 2011

SigComp

(Dutch)

Euclidean 60.29 57.3 57.6 58.5 57.5

Cosine 60.90 58.12 58.98 58.51 58.28

Xception has its best accuracy of 77.6% on the ICDAR 2011 SigComp Chinese dataset

using Euclidean distance. None of the classifiers perform well consistently and the test

accuracy seems sufficient for the first few datasets. Euclidean distance brings good

accuracies in most cases except for the Kaggle dataset.

The VGG16 model using Euclidean distance performs best for the Kaggle, CEDAR and

ICDAR 2011 SigComp Dutch datasets. VGG16 on Cosine distance gives the best

accuracies for BHSig260 Hindi and UTSig datasets. MobileNetV2 works the best using

Test accuracy for the BHSig260 Bengali dataset while ResNet50 gives the best accuracy

for ICDAR 2011 Chinese dataset on KNN classifier.

5. Conclusion

A comparative analysis is made using various pretrained models–VGG16, ResNet50,

MobileNetV2, DenseNet121 and Xception on various datasets–CEDAR, Kaggle Dataset,

BHSig260, UTSig Persian dataset, and ICDAR 2011 SigComp. A variety of classifiers–

Support Vector Classifier, K-Nearest Neighbours, Gaussian Naïve Bayes and Logistic

Regression, are used to see their effect on the overall performance. The implementation

is inspired from the SigNet model. It adopts transfer learning methods using various

Convolutional neural network architectures to implement the base twin networks in the

Siamese model.

Based on the analysis of the results obtained, it can be concluded that Siamese

network using VGG16 measured on Euclidean distance and Gaussian Naïve Bayes as

the binary classifier best detects signature forgery with a maximum accuracy of 100%

on CEDAR and Kaggle datasets. ResNet50 has the highest accuracy of 98.29% for

detecting forgery in Chinese signatures obtained from ICDAR 2011 SigComp dataset of

handwritten signatures. MobileNetV2 performed best for the CEDAR dataset using cosine

distance with 96% accuracy and DenseNet121 produced 98.5% accuracy for the Kaggle

dataset using the cosine distance function. Xception saw its best accuracy of 77.6% on the

ICDAR 2011 SigComp Chinese dataset using the Euclidean distance function.

Future works include implementing fine tuning, exploring more loss functions, models

and datasets. Curriculum learning would be another interesting area to look into and

different hyperparameters can be tested for each model.

6. Acknowledgements

We thank our guide Prof. Manikantha K for mentoring us during the establishment of

this paper. We would also like to thank our Head of Department of Computer Science and

Engineering, Dr. Sahana Gowda for her support and lastly BNM Institute of Technology

for giving us the opportunity to pursue this work.

REFERENCES

[1] Dey, Sounak & Dutta, Anjan & Toledo, J. & Ghosh, Suman & Lladós, Josep & Pal, Umapada. (2017).

SigNet: Convolutional Siamese Network for Writer Independent Offline Signature Verification.

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 7, July - 2021 Page -1138

[2] Gideon, S & Kandulna, Anurag & Kujur, Aron & Diana, A & Raimond, Kumudha. (2018). Handwritten

Signature Forgery Detection using Convolutional Neural Networks. Procedia Computer Science. 143.

978-987. 10.1016/j.procs.2018.10.336.

[3] S. Alkaabi, S. Yussof, S. Almulla, H. Al-Khateeb and A. A. AlAbdulsalam, "A Novel Architecture to

verify Offline Hand-written Signatures using Convolutional Neural Network," 2019 International

Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT), 2019,

pp. 1-4, doi: 10.1109/3ICT.2019.8910275.

[4] K. Kancharla, V. Kamble and M. Kapoor, "Handwritten Signature Recognition: A Convolutional Neural

Network Approach," 2018 International Conference on Advanced Computation and Telecommunication

(ICACAT), 2018, pp. 1-5, doi: 10.1109/ICACAT.2018.8933575.

[5] Poddar, Jivesh & Parikh, Vinanti & Bharti, Drsantosh. (2020). Offline Signature Recognition and Forgery

Detection using Deep Learning. Procedia Computer Science. 170. 610-617. 10.1016/j.procs.2020.03.133.

[6] Mitra, Debasree & Baksi, Aurjyama & Modak, Alivia & Das, Arunima & Das, Ankita. (2019). Machine

Learning Approach for Signature Recognition by HARRIS and SURF Features Detector. International

Journal of Computer Sciences and Engineering. 7. 73-80. 10.26438/ijcse/v7i5.7380.

[7] Hanmandlu, M. & Sronothara, A. & Vasikarla, Shantaram. (2018). Deep Learning based Offline

Signature Verification. 732-737. 10.1109/UEMCON.2018.8796678.

[8] Jahandad, & Sam, Suriani & Kamardin, Kamilia & Sjarif, Nilam & Mohamed, Norliza. (2019). Offline

Signature Verification using Deep Learning Convolutional Neural Network (CNN) Architectures

GoogLeNet Inception-v1 and Inception-v3. Procedia Computer Science. 161. 475-483.

10.1016/j.procs.2019.11.147.

[9] Kao, Hsin-Hsiung & Wen, Che-Yen. (2020). An Offline Signature Verification and Forgery Detection

Method Based on a Single Known Sample and an Explainable Deep Learning Approach. Applied

Sciences. 10. 3716. 10.3390/app10113716.

[10] Alvarez, Gabe, Blue Sheffer, and Morgan Bryant. "Offline signature verification with convolutional

neural networks." Technical report, Stanford University, 2016.

[11] A. Foroozandeh, A. Askari Hemmat and H. Rabbani, "Offline Handwritten Signature Verification and

Recognition Based on Deep Transfer Learning," 2020 International Conference on Machine Vision and

Image Processing (MVIP), 2020, pp. 1-7, doi: 10.1109/MVIP49855.2020.9187481.

[12] C. S. Vorugunti, G. Devanur S, P. Mukherjee and V. Pulabaigari, "OSVNet: Convolutional Siamese

Network for Writer Independent Online Signature Verification," 2019 International Conference on

Document Analysis and Recognition (ICDAR), 2019, pp. 1470-1475, doi: 10.1109/ICDAR.2019.00236.

[13] Bromley, Jane & Bentz, James & Bottou, Leon & Guyon, Isabelle & Lecun, Yann & Moore, Cliff &

Sackinger, Eduard & Shah, Rookpak. (1993). Signature Verification using a "Siamese" Time Delay

Neural Network. International Journal of Pattern Recognition and Artificial Intelligence. 7. 25.

10.1142/S0218001493000339.

[14] Alaei, Alireza & Pal, Srikanta & Pal, Umapada & Blumenstein, Michael. (2017). An Efficient Signature

Verification Method Based on an Interval Symbolic Representation and a Fuzzy Similarity Measure.

IEEE Transactions on Information Forensics and Security. PP. 1-1. 10.1109/TIFS.2017.2707332.

[15] Soleimani Bajestani, Amir & Fouladi, Kazim & Araabi, Babak. (2016). UTSig: A Persian offline

signature dataset. Preprint, submitted to IET biometrics. 6. 10.1049/iet-bmt.2015.0058.

[16] M. Liwicki et al., "Signature Verification Competition for Online and Offline Skilled Forgeries

(SigComp2011)," 2011 International Conference on Document Analysis and Recognition, 2011, pp.

1480-1484, doi: 10.1109/ICDAR.2011.294.

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 7, July - 2021 Page -1139

