

Continuous Integration and Continuous
Deployment with Jenkins in C++ Software

Development

Suhas T M1, Sowmya Nag K2

1Student, Dept of Electronics and Communication, R.V. College of Engineering,
Bangalore, INDIA

2Professor, Dept of Electronics and Communication, R.V. College of Engineering,

Bangalore, INDIA

1suhastm.ec17@rvce.edu.in
2sowmyanagk@rvce.edu.in

Abstract: Continuous Integration is a practice in software program development process where software
program builders combine code into a shared repository frequently, more than one instances through the
day. Jenkins is a continuous integration tool which assist developer and testers by using automating the
entire test, on the way to reduce their work with the aid of tracking the development at each and every stage
in software development, each integration push is then tested by means of automated build and test cases,
and an easy way to make CI quicker and accelerate CI procedure is to automate the testing of recent build. In
this paper a real scenario is taken into consideration, how the software program trying out is performed in
corporate sectors and how Jenkins can save developers/testers important valuable hours by automating the
whole software development system.

Keywords: Jenkins, Continuous Integration, deployment, C++, Automated Testing.

1. INTRODUCTION

Automation tools enable developers to easily automate the entire process of testing, building and
deployment in software development. This differs from manual testing where a human being is
responsible for single-handedly testing the functionality of the software in the way a user would.
Automation is well-suited for large projects where changes are made more frequently and building
those projects and testing the project and finally deployment of the project to recent updates.

In software development, developers work as a team with a shared repository into which new
continuous integration features or developed versions are incorporated on a regular basis. , each push
can then be verified using automated testing. The Quality Assurance team can review the latest unified
version and find defects. Defects can be unsatisfactory construction, non-adaptive construction, which
may affect previous functionality. A recent survey shows that companies use continuous integration in
their software development process because of its outstanding features and automation testing.
Continuous deployment and continuous delivery are considered best practices to keep the application
available at all times and to introduce new changes into production as soon as possible. This keeps the
team up to speed and makes the business interactive with customers by providing them with high
quality standards that can be tested automatically. Jenkins is an open-source tool written in the java
programming language with built-in plugins for continuous integration. Jenkins is widely used in the

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 7, July - 2021 Page -805

software development lifecycle, in build and test projects, helping new changes to be incorporated into
the main codebase, providing customers with a new version.

2. LITERATURE REVIEW

In this [1] the continuous integration model is described and the various stages of the
Continuous integration are described.[2] presents the challenges and solutions to the delivery
of the software’s through Build , Test and deployment stages.[3] the author performed GUI
testing with various testing tools and it is concluded that use of selenium can increase test
coverage.[4] talks about the DEVOPS and the pipelining the different stages and
containerizing the application with Docker.
The continuous integration approaches were discussed in [5] where the best practices can be
implemented in software development and achieve higher level of collaboration. Continuous
delivery was also explained briefly where the users can perform various types of testing like
unit test,integration testing, Acceptance testing and other types of testing to verify the product
functionality and performance before releasing it to the market.
The automation can be implemented in Software development lifecycle like agile or waterfall
method and can be made more reliable and faster. [6] explains all the steps in agile software
development cycle.
In paper [7], the use of Jenkins in automation of continuous integration and continuous
delivery was discussed and its various features and how the automation can be achieved and
various types of test automation. The python-based automation was briefly explained in [8].
The reusability of software and hardware in the automation and its advantages over manual
execution was pictured and effective use of resources can be made during the automation.

3. NEED FOR AUTOMATION

To reduce compatibility issues, reduce manual workload and bring software updates to users faster
for a better experience. Subsequent development cycles will require repeated execution of the same set
of tests. It is necessary to speed up the deployment of recent software updates for greater reliability and
user responsiveness. To avoid insufficient testing or bugs in a product, a shared repository is needed
where developers and operations (devops) can easily identify the type of defect. Slow-release process
of software updates, identify and resolve vulnerabilities before they impact customers is time and
money consuming which is not user reliable and with the demand for rapidly developed and deployed
web clients there needs to be a infrastructure to account for these problems.

4. JENKINS SINGLE SERVER ARCHITECTURE

The Jenkins Master-Slave architecture is used for distributed build management. Master and slave
communication via standard Internet protocol. The primary Jenkins server is the server and it performs
the tasks mentioned below:
• Running builds on the slaves.
• Maintenance of slaves (software packages).
• Provides a stable version for production.
• Schedule tasks.

 Jenkins slaves are remote machines tagged in the respective server. The main functions of the Jenkins
slave are:
• Receive requests sent by the master.
• Slaves can run on many different operating systems.
• Slaves provide the flexibility to periodically perform specific tasks on them.
• These slaves are usually virtual machines deployed on VMware.

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 7, July - 2021 Page -806

5. METHODOLOGY

Continuous Integration and automation Process includes following steps: Firstly, setup of source code
management tool like GIT, and then installing the Jenkins, Cross-compilers, Cygwin for cross
compatibility building of Cplusplus project. Installing all the required software’s for building of the
project and deployment.

Fig -1: Flow chart

Secondly, setup the Jenkins webpage and create a pipeline job. Implement the pipeline for CI through
Jenkins script for execution of different stages. Next, link the source code management tool repository
to Jenkins to pull the code whenever there are code changes committed to SCM. Monitor the pipeline
for different stages through Jenkins. The configuration of the same is shown in figure 2.

Fig -2: Pipeline job configuration

Build the project through scripting and creating the makefiles that will execute in cygwin for building
the different objects created during building stage in Jenkins pipeline. Then, deploying and testing the
objects in VMware by executing the different test cases or basic acceptance test cases. Finally, Logging
the results to SCM. Jenkins provides all the necessary tools to implement these stages.
Maintenance of a software is an activity which includes frequent development, error corrections,
optimization and deletion of existing feature, these changes may affect the system corrupted, working
not properly so regression testing becomes necessary. Regression testing can be defined as the software
testing technique that guarantees that recent updates made to the code is not affecting the earlier

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 7, July - 2021 Page -807

features. There can be full or partial selection of existing and executed test cases which are
runrepeatedly to assure the software stability.

6. RESULTS

The figure 3 shows the Jenkins pipeline job with different stages like declarative checkout , build,
deploy and unit test. Other stages can be added as required by the users.

Fig -3: Jenkins pipeline

The fig 5 shows the logs of unit test stage in Jenkins. The testing was done after establishing connection to
remote server through ssh. This step included many unit test scenarios which were executed by ssh
commands.

Fig -4: Jenkins pipeline script

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 7, July - 2021 Page -808

Fig -4: unit test stage logs in Jenkins

The different stages were implemented and included in Jenkins declarative pipeline script and thus the
continuous integration and continuous delivery of the software was achieved as shown in fig 4.

ACKNOWLEDGEMENT

I would like to express our gratitude to our guide Sowmya Nag K for guiding us in each step of
project.

CONCLUSIONS AND FUTURE SCOPE

Continuous integration and continuous delivery is an ideal scenario for application teams in an
organization. Developers simply push the code to a repository. This code will be integrated, tested,
deployed, retested, merged with the infrastructure, undergo quality and security audits, and be ready
to deploy with extreme confidence.
 Using Continuous integration and Continuous delivery, code quality is improved, and software
updates are delivered quickly and with certainty that no significant changes will occur. The impact of
any release can be correlated with production and operations data. It can also be used to plan for the
next cycle, a key DevOps approach to the organization's cloud transition.
The software development lifecycle is revolutionized with DevOps, the cloud nativeapproach and the
microservices architecture. DevOps integrates test and productionenvironments, and developers can
see issues before the application goes live. ApplyingAI and ML to DevOps pipelines can help run
much better builds and automation withdeeper control over information. People are moving from
DevOps to DataOps and AIOps,with an emphasis on using artificial intelligence and machine learning
to learn logs andmonitoring metrics to drive DevOps in a controlled manner.

REFERENCES

[1] Viktor Farcic. DevOps 2.0 Toolkit “Automating the Continuous deployment Pipeline with Containerized
Microservices”

[2] Aleksi Hakli. "Implementation of Continuous Delivery Systems", Faculty Council of the Faculty of
Computer and Electrical Engineering 4 May 2016

[3] J. Humble and D. Farley, Continuous Delivery: Reliable Software Releases Through Build, Test, and
Deployment Automation. Addison-Wesley, 2010.

[4] D. Stahl and J.Bosch. “Modelling continuous integration practice differences in industry software
developent”, Journal of Systems and Software, vol. 87, pp. 48-59, 2014.

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 7, July - 2021 Page -809

[5] N. Seth and R. Khare, "ACI (automated Continuous Integration) using Jenkins: Key for successful
embedded Software development," 2015 2nd International Conference on Recent Advances in Engineering
& Computational Sciences (RAECS), Chandigarh, 2015, pp. 1-6.

[6] Y. Liu, Y. Lu, Y. Li, An Android-Based Approach for automatic unit test, 2015.
[7] S. Sivanandan and Yogeesha C. B, "Agile development cycle: Approach to design an effective Model

Based Testing with Behaviour driven automation framework," 20th Annual International Conference on
Advanced Computing and Communications (ADCOM), Bangalore, 2014, pp. 22-25.

[8] K. Jambunatha, "Design and implement Automated Procedure to upgrade remote network devices using
Python," 2015 IEEE International Advance Computing Conference (IACC), Banglore, 2015, pp. 217-221.

[9] Victor E. L. Valenzuela, Vicente F. Lucena, Nasser Jazdi, Peter Göhner, "Reusable hardware and software
model for remote supervision of Industrial Automation Systems using Web technologies" in IEEE, ISBN
978-1-4799-0864-6/13/\$31.00 ©2013.

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 7, July - 2021 Page -810

