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Abstract: 
The data are said to be censored when some important information about the subject's event time that are 
required to make a conclusion is not available to the practitioner. Censoring is said to be single Type-I 
censoring (or time censoring) when the experimental time is fixed and the number of observed failures is 
a random variable. In contrast, censoring is said to be single Type-II censoring (or failure censoring) 
when the number of observed failure is fixed and the experimental time is a random variable. A mixture 
of Type-I and Type-II censoring is called a single hybrid censoring scheme. The disadvantage of a hybrid 
censoring scheme is that there is a possibility that very few failures may occur before time.  In that case, 
the efficiency of the estimator(s) might below. For this reason, So, Scientists proposed the generalized 
Type-I hybrid censoring as a modification of the hybrid censoring scheme. The reason behind the 
proposed modification is to fix the underlying disadvantages inherent in the hybrid censoring scheme. 

In information theory, entropy plays a central role which measures the uncertainty associated with the 
cumulative distribution function. The concept of information entropy was introduced by Claude Shannon 
in his 1948 paper "A Mathematical Theory of Communication". 

In this paper, we obtain the entropy estimate of a two-parameter Lomax distribution based on the first 
type of hybrid censoring scheme (HCS). The maximum probability estimates to the unknown parameters 
are extracted to the entropy estimate. 

 

Keywords: Entropy, Lomax distribution, maximum likelihood estimation,Generalized type-I hybrid 
censoring. 

 

1. Introduction 

Every probability distribution has some kind of uncertainty associated withit and the entropy is 
used to measure this uncertainty. One of the importantterms in statistical mechanics is entropy. 
Furthermore, it is a perceived asmeasure of the randomness of a probabilistic system. The entropy was 
introduced by [13] as a measure of the information associated with arandom variable or a signal. Let 𝑋𝑋 is 
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a random variable with a probabilitydensity function (pdf)  𝑓𝑓(𝑥𝑥)and cumulative distribution function (cdf) 
𝐹𝐹(𝑥𝑥).[6] defined the differential entropy 𝐻𝐻(𝑋𝑋) of therandom variable 𝑋𝑋 as: 

 

𝐻𝐻(𝑋𝑋) = − � 𝑓𝑓(𝑥𝑥) 𝑙𝑙𝑙𝑙𝑙𝑙 𝑓𝑓(𝑥𝑥)ⅆ𝑥𝑥.
∞

−∞

 

 
A widely spread distribution would result in high entropy, although a narrowly spread distribution would 
have a very low entropy. Many authors worked on estimating entropy for different lifetime distributions. 
[3] developed the entropy of upper record values and provided several upper and lower bounds for this 
entropy by using the hazard rate function. 
 
Lifetime data analysis is used to analyse data in which the time until the event is of interest, like time until 
tumour recurrence, time until cardiovascular death after some treatment and time until a machine part 
fails. Censoring is present when we have some information about a subject's event time, but we do not 
know the exact event time. If we are removing unfailed units from a test at a pre-specified time this is 
known as "Time censoring" or "type-I censoring". Type-I censoring can be described as follow: a 
randomly selected sample of n units is subjected of a life test under some environmental conditions. The 
life times of the sample units are assumed to be independent and identically distributed (𝑖𝑖. 𝑖𝑖.𝑑𝑑. ) random 
variables. The experiment is stop when a pre-specified time 𝑇𝑇. The data collected consist of 𝑥𝑥(1) < 𝑥𝑥(2) <
⋯ < 𝑥𝑥(𝑟𝑟), plus the information that (𝑛𝑛 − 𝑟𝑟) items survive beyond the time of termination 𝑇𝑇, where 𝑟𝑟 is 
the number of uncensored items. If, instead of terminating the experiment at a pre-specified time 𝑇𝑇, we 
terminate it after the 𝑟𝑟𝑡𝑡ℎ  failure, where 𝑟𝑟 is fixed in advance, this is type-II censoring scheme. The data 
collected looks like those above but  𝑟𝑟 is now random.  
 
Other types of censoring schemes have been suggested in the literature for example see [6]. Based on 
practical and cost consideration a number 𝑟𝑟 and a time 𝑇𝑇 are chosen to control the experiment. We 
terminate the experiment as soon as the number of failed units reached 𝑟𝑟 or the time on experiment 
becomes 𝑇𝑇, see [2]. One of those schemes is the hybrid censoring schemes (HCS) which is a mixture of 
type-I and type-II censoring schemes. We select a random sample of 𝑛𝑛 unit and this sample is subjected to 
a life test under identical environmental conditions. 
 
The likelihood function for the hybrid censored data will be written as: 
 

𝐿𝐿(𝑥𝑥) = 𝑛𝑛 !
(𝑛𝑛−𝐷𝐷∗)!

� 𝑓𝑓(𝑥𝑥(𝑖𝑖))(1− 𝑓𝑓(𝑇𝑇∗)𝐷𝐷∗

𝑖𝑖=1 )𝑛𝑛−𝐷𝐷∗, 
 

where 𝑇𝑇∗ = 𝑚𝑚𝑖𝑖𝑛𝑛(𝑇𝑇, 𝑥𝑥𝑟𝑟), and 𝐷𝐷∗ denotes the number of units that would fail before the time 𝑇𝑇∗see [10]. 
The main disadvantage of this type the most of the inference results are obtained under the condition that 
the number of observed failures is at least one, and moreover thither may be very little failures occurring 
up to the pre-fixed time 𝑇𝑇. In that case the efficiency of the estimator(s) may be very low. Because of this 
alternative hybrid censoring scheme that would terminate the experiment at the random time 𝑇𝑇∗ =
min(𝑇𝑇, 𝑥𝑥𝑟𝑟), has been proposed. It is called the type-I hybrid censoring scheme. 
 

The Lomax distribution, which is actually the Pareto type-II, was defined by [12]. It is a heavy-
tailed distribution. It has been used in many applications such as actuarial science, economics, and life 
testing problems in engineering, see [1], [7] and [9]. There are many distributions that have close 
relationships with Lomax like the generalized Pareto distribution, the F-distribution, the 𝑞𝑞-exponential 
distribution and the beta prime distribution. Also, there are many variants of Lomax distribution like 
gamma Lomax, McDonald Lomax and weighted Lomax see [9], [11]and [5]. Furthermore, one 
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characteristic of Lomax distribution is that it plays an important role in information theory and it is of 
great importance in probability and statistics. [8] introduced and study a new distribution with three 
lifetime parameters called Lomax inverse force. 
 
In this paper, we obtain the entropy estimate of a two-parameter Lomax distribution based on the 
generalized type-I (HCS). The maximum likelihood estimates of the unknown parameters are obtained 
and plugged in the entropy function to obtain the maximum likelihood estimate of the entropy. The 
approximate Fisher information matrix is obtained and simulation studies are performed to assess the 
performance of the estimates with different sample sizes.  

 
 

2.   Generalized type-I hybrid censoring scheme (G Type-I HCS): 
 

Although HCS-I avoids the disadvantage of the usual type-II censoring of taking a very long time to end, 
it does not guarantee enough failures to make efficient inference. On the other hand, HCS-II guarantees a 
minimum of 𝑟𝑟 failures, it may take a very long time to terminate. To capture the advantages of both 
schemes, [4] proposed the G Type-I and Type-II HCS. G Type-I HCS could be described briefly as 
follow: assume that 𝑛𝑛 identical items are put on a life test at time point 0. Fix 𝑟𝑟1, 𝑟𝑟2 and 𝑇𝑇 such that 
𝑟𝑟1 < 𝑟𝑟2 < 𝑛𝑛, 𝑟𝑟1, 𝑟𝑟2 ∈ (1,2,3, … ,𝑛𝑛) and 𝑇𝑇 ∈ (0,∞), then we are faced with one of two situations: 
1- If the 𝑟𝑟1𝑡𝑡ℎ  failure occurs before time 𝑇𝑇, end the experiment at min(𝑋𝑋𝑟𝑟:𝑛𝑛 ,𝑇𝑇). 
2- If the 𝑟𝑟1𝑡𝑡ℎ failure occurs after time 𝑇𝑇, end the experiment at (𝑋𝑋𝑟𝑟:𝑛𝑛).  
 

It is clear that this G Type-I HCS modifies the Type-I HCS by allowing the experiment to 
continue beyond time 𝑇𝑇 if very few failures had been observed up to time point 𝑇𝑇. Under this scheme, we 
are guarantee minimum of 𝑟𝑟1 failures and maximum 𝑟𝑟2 failures, with the possibility of some number of 
failures in between. In this case, the likelihood functions for three different cases are as follows, see [4]. 

 

𝐿𝐿(𝑥𝑥) =  

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ 𝑛𝑛!

(𝑛𝑛 − 𝑟𝑟1)!
�𝑓𝑓(𝑥𝑥(𝑖𝑖))
𝑟𝑟1

𝑖𝑖=1

�1− 𝐹𝐹�𝑥𝑥(𝑟𝑟1)��
𝑛𝑛−𝑟𝑟1

,𝐷𝐷 = 0,1, … . , 𝑟𝑟1 − 1,

𝑛𝑛!
(𝑛𝑛 − 𝐷𝐷)!

�𝑓𝑓(𝑥𝑥(𝑖𝑖))
𝐷𝐷

𝑖𝑖=1

[1 − 𝐹𝐹(𝑇𝑇)]𝑛𝑛−𝐷𝐷 ,𝐷𝐷 = 𝑟𝑟1, 𝑟𝑟1 − 1, … , 𝑟𝑟2 − 1,

𝑛𝑛!
(𝑛𝑛 − 𝑟𝑟2)!

�𝑓𝑓(𝑥𝑥(𝑖𝑖))
𝑟𝑟2

𝑖𝑖=1

�1 − 𝐹𝐹�𝑥𝑥(𝑟𝑟2)��
𝑛𝑛−𝑟𝑟2 ,                           𝐷𝐷 = 𝑟𝑟2,

� (1) 

 
where 𝐷𝐷  denotes a number of failures observed before time 𝑇𝑇. Then 𝐷𝐷 is a discrete random variable with 
support {0,1, … , 𝑟𝑟}with pdf 
 

𝑃𝑃𝜃𝜃(𝐷𝐷 = 𝑗𝑗) =

⎩
⎪
⎨

⎪
⎧�
𝑛𝑛
𝑗𝑗� (𝑓𝑓(𝑇𝑇))𝑗𝑗 �1− 𝐹𝐹(𝑇𝑇)�

𝑛𝑛−𝑗𝑗
,    𝑗𝑗 = 0,1, … . , 𝑟𝑟 − 1

1 −��
𝑛𝑛
𝑗𝑗� (𝑓𝑓(𝑇𝑇))𝑗𝑗 �1− 𝐹𝐹(𝑇𝑇)�𝑛𝑛−𝑗𝑗

𝑟𝑟−1

𝑗𝑗=0

,          𝑗𝑗 = 𝑟𝑟
� 

 

(2) 
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In this scheme, we have one of the following types of observations: 
 
Case I : 

 
 

Figure 1. Schematic representation of the generalized type-I HCS. 

Case II: 
 

 
 

Figure 2. Schematic representation of the generalized type-I HCS. 
 
Case III : 
 
 

 
 

Figure 3. Schematic representation of the generalized type-I HCS. 

 

3.    The maximum likelihood estimation: 
 

Let  𝑋𝑋 be distributed as Lomax distribution with cdf  F(𝑥𝑥) and pdff(𝑥𝑥) defined respectively as: 
 

𝐹𝐹(𝑥𝑥) = 1 − (1 + 𝑥𝑥
𝜆𝜆

)−𝛼𝛼 ,   𝑥𝑥>0 ,   α, λ > 0, (3) 

and 

𝑓𝑓(𝑥𝑥) = 𝛼𝛼
𝜆𝜆

(1 + 𝑥𝑥
𝜆𝜆

)−(𝛼𝛼+1),        𝑥𝑥 > 0,     𝛼𝛼, 𝜆𝜆 > 0 , (4) 
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where 𝜆𝜆 is the scale parameter and α is the shape parameter. To obtain the maximum likelihood estimate 
we first construct the likelihood function which, of course, dependence in the sample scheme. In the 
complete sample, consider a life-testing experiment in which 𝑛𝑛 identical units are put on test. Suppose 𝑛𝑛 
items were put in a life test and that we observe and record the failure times 𝑥𝑥(1) < 𝑥𝑥(2) < ⋯ < 𝑥𝑥(𝑛𝑛) in 
the order in which they occur. Therefore 𝑥𝑥(1) ≤ 𝑥𝑥(2) ≤ ⋯ ≤ 𝑥𝑥(𝑛𝑛). If we can afford to wait until all items 
fail, we would have a complete sample and likelihood function would be: 

 

𝐿𝐿(𝜃𝜃 ∕ 𝑥𝑥(𝑖𝑖)) = � 𝑓𝑓�𝑥𝑥(𝑖𝑖)�
𝑛𝑛
𝑖𝑖=1 .                                                                      (5) 

 
If we had a complete sample situation, we would have differentiated likelihood function in equation (5) 
with respect to the parameter of interest, equating these derivatives with zero and solving the "normal" 
equations to obtain the maximum likelihood estimates. Actually, we are interested in estimating the 
entropy of the distribution from which the complete sample data at hand came. The solution to this 
problem is readily available via the invariance principle of the maximum likelihood estimators which 
implies that the maximum likelihood estimate of the entropy is the entropy function of the MLE estimates 
of the parameters. That is 

 
(𝐻𝐻(𝜃𝜃))� = 𝐻𝐻(𝜃𝜃�). (6) 

 
In many situations in practice, the ideal situation in complete sample is violated and we are faced with 
what is known as the censoring problems.  Censoring occurs when the observed values we hoped for are 
only partially known; at least for some observation. There are many reasons for censored data, some of 
which may be planed by the researcher, and therefore there are many types of censoring. 
 
[2] give a good review of the history of censoring and of the many types of censoring. we are interested in 
the G Type-I HCS. So, let us assume that the lifetimes of the experimental unit are 𝑖𝑖. 𝑖𝑖.𝑑𝑑. Lomax random 
variables with 𝑝𝑝𝑑𝑑𝑓𝑓 (4) and 𝑐𝑐𝑑𝑑𝑓𝑓 (3). If d denotes the number of failures that occur by time point 𝑇𝑇, then 
based on the G Type-I HCS, the likelihood functions of α and 𝜆𝜆 are given by: 

 

𝐿𝐿 =
𝑛𝑛!

(𝑛𝑛 − 𝑟𝑟1)!
�
𝛼𝛼
𝜆𝜆
�
𝑟𝑟1
��1 +

𝑥𝑥(𝑖𝑖)

𝜆𝜆
�
−(𝛼𝛼+1)

𝑟𝑟1

𝑖𝑖=1

�1 +
𝑥𝑥(𝑟𝑟1)

𝜆𝜆
�
−𝛼𝛼(𝑛𝑛−𝑟𝑟1)

 (7) 

 
The logarithm of (7) can be written as: 
 

𝐼𝐼𝑛𝑛𝐿𝐿 ∝ 𝑟𝑟1𝐼𝐼𝑛𝑛𝛼𝛼 − 𝑟𝑟1𝐼𝐼𝑛𝑛𝜆𝜆 − (𝛼𝛼 + 1)�(1 +
𝑥𝑥(𝑖𝑖)

𝜆𝜆
)

𝑟𝑟1

𝑖𝑖=1

− 𝛼𝛼(𝑛𝑛 − 𝑟𝑟1)𝐼𝐼𝑛𝑛 �1 +
𝑥𝑥(𝑟𝑟1)

𝜆𝜆
�. (8) 

 
Taking derivatives with respect to α and 𝜆𝜆 of (8), and equality to zero, we obtain the following 
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𝜕𝜕𝐼𝐼𝑛𝑛𝐿𝐿
𝜕𝜕𝛼𝛼

=
𝑟𝑟1
𝛼𝛼
−�𝐼𝐼𝑛𝑛 �1 +

𝑥𝑥(𝑖𝑖)

𝜆𝜆
� − (𝑛𝑛 − 𝑟𝑟1)𝐼𝐼𝑛𝑛 �1 +

𝑥𝑥(𝑟𝑟1)

𝜆𝜆
�

𝑟𝑟1

𝑖𝑖=1

, 
 

(9) 

 

𝜕𝜕𝐼𝐼𝑛𝑛𝐿𝐿
𝜕𝜕𝜆𝜆

=
−𝑟𝑟1
𝜆𝜆

+ (𝛼𝛼 + 1)��1 +
𝑥𝑥(𝑖𝑖)

𝜆𝜆�𝜆𝜆 + 𝑥𝑥(𝑖𝑖)�
�+ 𝛼𝛼(𝑛𝑛 − 𝑟𝑟1)

𝑥𝑥(𝑟𝑟1)

𝜆𝜆�𝜆𝜆 + 𝑥𝑥(𝑟𝑟1)�

𝑟𝑟1

𝑖𝑖=1

. (10) 

 

�̑�𝛼 =
𝑟𝑟1

∑ 𝑙𝑙𝑛𝑛( 1 +
𝑥𝑥(𝑖𝑖)

�̑�𝜆
) − (𝑛𝑛 − 𝑟𝑟1) 𝑙𝑙𝑛𝑛( 1 +

𝑥𝑥(𝑟𝑟1)

�̑�𝜆
)𝑟𝑟1

𝑖𝑖=1

 (11) 

 
Using (10) in (9) �̑�𝜆 can be written as: 
 

�̑�𝜆 =
𝑟𝑟1

(�̑�𝛼 + 1)∑ (
𝑥𝑥(𝑖𝑖)

�̑�𝜆(�̑�𝜆+𝑥𝑥(𝑖𝑖))
) + �̑�𝛼(𝑛𝑛 − 𝑟𝑟1)(

𝑥𝑥(𝑟𝑟1)

�̑�𝜆(�̑�𝜆+𝑥𝑥(𝑟𝑟1))
)𝑟𝑟1

𝑖𝑖=1

. (12) 

 
 
Similarly, for case II and III in a G Type-I HCS, the estimate of α and 𝜆𝜆 can be written as: 
 
 

�̑�𝛼 =

⎩
⎪
⎪
⎨

⎪
⎪
⎧

𝑟𝑟1
∑ 𝑙𝑙𝑛𝑛( 1 +

𝑥𝑥(𝑖𝑖)

�̑�𝜆
) − (𝑛𝑛 − 𝑟𝑟1) 𝑙𝑙𝑛𝑛( 1 +

𝑥𝑥(𝑟𝑟1)

�̑�𝜆
)𝑟𝑟1

𝑖𝑖=1

,𝐷𝐷 = 0,1, … . , 𝑟𝑟1 − 1,

𝐷𝐷
∑ 𝑙𝑙𝑛𝑛( 1 +

𝑥𝑥(𝑖𝑖)

�̑�𝜆
) − (𝑛𝑛 − 𝐷𝐷) 𝑙𝑙𝑛𝑛( 1 + 𝑇𝑇

�̑�𝜆
)𝐷𝐷

𝑖𝑖=1
,𝐷𝐷 = 𝑟𝑟1, 𝑟𝑟1 − 1, … , 𝑟𝑟2 − 1,

𝑟𝑟2

∑ 𝑙𝑙𝑛𝑛( 1 +
𝑥𝑥(𝑖𝑖)

�̑�𝜆
) − (𝑛𝑛 − 𝑟𝑟2) 𝑙𝑙𝑛𝑛( 1 +

𝑥𝑥(𝑟𝑟2 )

�̑�𝜆
)𝑟𝑟2

𝑖𝑖=1

,                           𝐷𝐷 = 𝑟𝑟2.

� (13) 

 
And  
 

�̑�𝜆 =

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧

𝑟𝑟1
(�̑�𝛼 + 1)∑

𝑥𝑥(𝑖𝑖)

�̑�𝜆(�̑�𝜆+𝑥𝑥(𝑖𝑖))
+ �̑�𝛼(𝑛𝑛 − 𝑟𝑟1)

𝑥𝑥(𝑟𝑟1 )

�̑�𝜆(�̑�𝜆+𝑥𝑥(𝑟𝑟1 ))
𝑟𝑟1
𝑖𝑖=1

,𝐷𝐷 = 0,1, … . , 𝑟𝑟1 − 1,

𝐷𝐷

(�̑�𝛼 + 1)∑
𝑥𝑥(𝑖𝑖)

�̑�𝜆(�̑�𝜆+𝑥𝑥(𝑖𝑖))
+ �̑�𝛼(𝑛𝑛 − 𝐷𝐷) 𝑇𝑇

�̑�𝜆(�̑�𝜆+𝑇𝑇)
𝐷𝐷
𝑖𝑖=1

,𝐷𝐷 = 𝑟𝑟1, 𝑟𝑟1 − 1, … , 𝑟𝑟2 − 1,

𝑟𝑟2

(�̑�𝛼 + 1)∑
𝑥𝑥(𝑖𝑖)

�̑�𝜆(�̑�𝜆+𝑥𝑥(𝑖𝑖))
+ �̑�𝛼(𝑛𝑛 − 𝑟𝑟2)

𝑥𝑥(𝑟𝑟2)

�̑�𝜆(�̑�𝜆+𝑥𝑥(𝑟𝑟2))
𝑟𝑟2
𝑖𝑖=1

,                         𝐷𝐷 = 𝑟𝑟2.

� (14) 
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Equation (13) and (14) are very hard to evaluate theoretically and a numerical procedure is needed to 
solve these equations numerically. Mathematica 11 will be used to obtain the MLE of shape and scale 
parameter �̑�𝛼and  �̑�𝜆of α and 𝜆𝜆 respectively. 
 
For the pdf (4), entropy simplifies given by: 
 

𝐻𝐻(𝑋𝑋) ≡ 𝐻𝐻(𝑓𝑓) = − � 𝑓𝑓(𝑥𝑥)𝑙𝑙𝑙𝑙𝑙𝑙𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥
∞

−∞

 

= − �
𝛼𝛼
𝜆𝜆
�1 +

𝑥𝑥
𝜆𝜆
�
−(𝛼𝛼+1)

∞

−∞

log
𝛼𝛼
𝜆𝜆
�1 +

𝑥𝑥
𝜆𝜆
�
−(𝛼𝛼+1)

 𝑑𝑑𝑥𝑥 

= − log
𝛼𝛼
𝜆𝜆
− (𝛼𝛼 + 1) �

𝛼𝛼
𝜆𝜆
�1 +

𝑥𝑥
𝜆𝜆
�
−(𝛼𝛼+1)

∞

−∞

log �1 +
𝑥𝑥
𝜆𝜆
�  𝑑𝑑𝑥𝑥 

= − log
𝛼𝛼
𝜆𝜆

+ (𝛼𝛼 + 1)𝐸𝐸[log �1 +
𝑥𝑥
𝜆𝜆
�]  

 
On substituting 1 + 𝑥𝑥

𝜆𝜆
= 𝑡𝑡and solving it of 𝑡𝑡, we get 

 
𝐸𝐸[log �1 + 𝑥𝑥

𝜆𝜆
�] = 1

𝛼𝛼
 , 

hence 

𝐻𝐻(𝑥𝑥) = − 𝑙𝑙𝑙𝑙𝑙𝑙
𝛼𝛼
𝜆𝜆

+ �
𝛼𝛼 + 1
𝛼𝛼

�. (15) 

 
Once we obtain the MLE of 𝛼𝛼 say 𝛼𝛼�, and MLE of 𝜆𝜆 say �̂�𝜆, the MLEs of entropy are obtained as: 
 

𝐻𝐻�(𝑥𝑥) = − 𝑙𝑙𝑙𝑙𝑙𝑙
𝛼𝛼�
�̂�𝜆

+ �
𝛼𝛼� + 1
𝛼𝛼�

�. (16) 

 
The asymptotic variance-covariance matrix of (𝛼𝛼�, �̂�𝜆) is obtained by inverting the information matrix with 
elements that are negatives of expected values of the second order derivatives of logarithms of the 
likelihood function, 
 

𝐼𝐼�𝛼𝛼�, �̂�𝜆� = −��

𝜕𝜕2 𝑙𝑙𝑛𝑛 𝐿𝐿
𝜕𝜕𝛼𝛼2

𝜕𝜕2 𝑙𝑙𝑛𝑛 𝐿𝐿
𝜕𝜕𝛼𝛼𝜕𝜕𝜆𝜆

𝜕𝜕2 𝑙𝑙𝑛𝑛 𝐿𝐿
𝜕𝜕𝛼𝛼𝜕𝜕𝜆𝜆

𝜕𝜕2 𝑙𝑙𝑛𝑛 𝐿𝐿
𝜕𝜕𝜆𝜆2

��

𝛼𝛼=�̑�𝛼

.    

The element of Fisher information matrix are given as follows: 

 
𝜕𝜕2 𝑙𝑙𝑛𝑛 𝐿𝐿
𝜕𝜕𝛼𝛼2 =

−𝑟𝑟1
𝛼𝛼�

, 
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𝜕𝜕2 𝑙𝑙𝑛𝑛 𝐿𝐿
𝜕𝜕𝛼𝛼𝜕𝜕𝜆𝜆

= � 𝑥𝑥(𝑖𝑖)

𝜆𝜆�2+𝑥𝑥𝜆𝜆�

𝑟𝑟1

𝐼𝐼̇=1
+ (𝑛𝑛 − 𝑟𝑟1) 𝑥𝑥(𝑟𝑟1)

𝜆𝜆�2 +𝑥𝑥𝜆𝜆�
, 

and 

𝜕𝜕2 𝑙𝑙𝑛𝑛 𝐿𝐿
𝜕𝜕𝜆𝜆2 =

−𝑟𝑟1
�̂�𝜆2 −��1 +

𝑥𝑥(𝑖𝑖)�2�̂�𝜆 − 𝑥𝑥(𝑖𝑖)�
�̂�𝜆2��̂�𝜆 + 𝑥𝑥(𝑖𝑖)�

� .

𝑟𝑟1

𝐼𝐼̇=1

 

4.    Simulation study: 
 
In this section, we present the results of a simulation study that was carried out to assess the performance 
of MLE estimation of the Lomax entropy. The assessment is carried out through measures of the bias, 
relative mean square error (RMSE), entropy and RMSE of Entropy under different variation of the G 
Type-I HCS. The simulation is carried out for different combination of 𝑛𝑛, 𝑟𝑟1, 𝑟𝑟2 and 𝑇𝑇 values. In each 
case process is replicated N = 10000 times for a particular set of G Type-I HCS. The MLEs for the 
entropy were obtained as described before. We were able to express α in terms of  𝜆𝜆 as in formula (13) 
therefore obtaining the MLE estimates is attained be solving the equation (14). The computational system 
Mathematica 11 was used to solve equation (14) in 𝜆𝜆. We substitute these values in (13) to obtain the 
values of α. These values of α and 𝜆𝜆 constitute their maximum likelihood estimates. We substitute these 
values in (16) to obtain the MLE estimates of the entropy of the Lomax distribution under G Type-I HCS. 
 
In general, it has been observed that: 
 
- The RMSE of 𝐻𝐻�(𝑥𝑥)at α = 0.5,  𝜆𝜆= 2.5 in Table 2, has the smallest value compared to the RMSE of 𝐻𝐻� in 
the other Tables. 
- In Tables 1, 2 and 3, for a fixed 𝑛𝑛,𝛼𝛼, 𝜆𝜆  and 𝑟𝑟1, the RMSE values of 𝐻𝐻�(𝑥𝑥) increase generally as the 
stopping time 𝑇𝑇 increases, which usually results in a larger number of failures.  
- In Tables 4, 5 and 6, for a fixed 𝑛𝑛,𝛼𝛼, 𝜆𝜆 and 𝑇𝑇, the RMSE values of 𝐻𝐻�(𝑥𝑥) decrease generally as the 
number of failures 𝑟𝑟2 increases, the same conclusion as in the previous item.  
- For a fixed 𝛼𝛼, the RMSE values of 𝐻𝐻�(𝑥𝑥) decrease generally as the scale parameter 𝜆𝜆increases. 
In general, we observe that the RMSE values of 𝐻𝐻�(𝑥𝑥) decrease as the sample size 𝑛𝑛 increase. 
 
5.       Summary 
In this article, entropy estimates for the Lomax distribution were computed using the MLE of α and 𝜆𝜆 
based on G Type-I HCS. The estimates were assessed in terms of their RMSE and it has been found the 
RMSEs are fairly small. Also, we obtained the approximate Fisher information matrix. To assess the 
performance of the estimates, we performed simulation studies with different sample sizes focusing on 
the entropy estimate of the Lomax distribution under the G Type-I HCS. 

 
Appendix  

Table 1: Bias estimates, relative mean square error (RMSE), entropy and relative MSE of 
entropy for α = 0.5 and 𝜆𝜆  = 3 by selected values 𝑛𝑛, 𝑟𝑟1, 𝑟𝑟2 and 𝑇𝑇 

 

𝑛𝑛 𝑟𝑟1 𝑟𝑟2 𝑇𝑇 
Bias 

α 

Bias 

𝜆𝜆 

RMSE 

α 

RMSE 

𝜆𝜆 
𝐻𝐻� 

RMSE 

𝐻𝐻� 

150 40 115 50 0.071 0.337 0.167 0.126 5.162 0.717 

   60 0.083 0.337 0.200 0.126 5.256 0.088 
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   70 0.119 0.604 0.235 0.252 5.469 0.123 

 

100 25 75 50 0.099 0.417 0.249 0.173 5.355 0.105 

   60 0.269 0.519 0.298 0.209 5.459 0.122 

   70 0.140 0.640 0.393 0.277 5.666 0.154 

 

75 20 55 50 0.130 0.612 0.353 0.257 5.573 0.140 

   60 0.142 0.608 0.401 0.279 5.687 0.157 

   70 0.151 0.447 0.435 0.108 5.841 0.179 

 
Table 2: Bias estimates, relative mean square error (RMSE), entropy and relative MSE of 

entropy for α = 0.5 and 𝜆𝜆  = 2.5 by selected values 𝑛𝑛, 𝑟𝑟1, 𝑟𝑟2 and 𝑇𝑇 
 

𝑛𝑛 𝑟𝑟1 𝑟𝑟2 𝑇𝑇 
Bias 

α 

Bias 

𝜆𝜆 

RMSE 

α 

RMSE 

𝜆𝜆 
𝐻𝐻� 

RMSE 

𝐻𝐻� 

150 40 115 50 0.060 0.138 0.138 0.058 5.058 0.088 

   60 0.130 0.563 0.353 0.141 5.363 0.141 

   70 0.108 0.453 0.275 0.221 5.204 
0.114 

 

100 25 75 50 0.091 0.252 0.224 0.112 5.154 0.105 

   60 0.118 0.418 0.309 0.201 5.315 0.133 

   70 0.138 0.570 0.382 0.295 5.438 
0.152 

 

75 20 55 50 0.127 0.127 0.343 0.207 5.404 0.147 

   60 0.137 0.353 0.375 5.532 5.532 0.166 

   70 0.137 0.353 0.377 0.164 5.532 0.166 

 
Table 3: Bias estimates, relative mean square error (RMSE), entropy and relative MSE of 

entropy for α = 0.5 and 𝜆𝜆  = 1.5 by selected values 𝑛𝑛, 𝑟𝑟1, 𝑟𝑟2 and 𝑇𝑇 
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𝑛𝑛 𝑟𝑟1 𝑟𝑟2 𝑇𝑇 
Bias 

α 

Bias 

𝜆𝜆 

RMSE 

α 

RMSE 

𝜆𝜆 
𝐻𝐻� 

RMSE 

𝐻𝐻� 

150 40 115 50 0.082 0.012 0.258 0.025 5.015 0.183 

   60 0.136 0.110 0.374 0.079 5.089 0.194 

   70 0.200 0.886 0.667 1.445 5.011 0.182 

 

100 25 75 50 0.148 0.333 0.423 0.286 5.047 0.188 

   60 0.174 0.548 0.534 0.576 5.141 0.203 

   70 0.168 0.343 0.509 0.297 5.268 0.222 

 

75 20 55 50 0.200 0.518 0.671 0.527 5.531 0.259 

   60 0.208 0.627 0.719 0.719 5.521 0.257 

   70 0.217 0.759 0.771 1.024 5.508 0.256 

 
Table 4: Bias estimates, relative mean square error (RMSE), entropy and relative MSE of 

entropy for α = 0.5 and 𝜆𝜆  = 3 by selected values 𝑛𝑛, 𝑟𝑟1,𝑇𝑇  and 𝑟𝑟2 
 

𝑛𝑛 𝑟𝑟1 𝑇𝑇 𝑟𝑟2 Bias 

α 

Bias 

𝜆𝜆 

RMSE 

α 

RMSE 

𝜆𝜆 
𝐻𝐻� 

RMSE 

𝐻𝐻� 

150 40 50 60 0.085  0.074  0.125  0.002  5.124  0.065 

   75 0.100  0.254  0.152  0.829 5.225  0.829 

   120 0.102  0.424  0.257  0.164  5.383  0.109 

 

100 25  40 0.002  0.124  0.012  0.021  5.125  0.165 

   50 0.015  0.015  0.025  0.036  5.012  0.044 

   80 0.048  0.227  0.108  0.081  5.033  0.048 

 

75 20  60 0.134  0.289  0.125  0.002  5.320  0.099 
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   35 0.251  0.258  0.025  0.015  5.054  0.052 

   30 0.067  0.425  0.156  0.016  5.097  0.052 

 
Table 5: Bias estimates, relative mean square error (RMSE), entropy and relative MSE of 

entropy for α = 0.5 and 𝜆𝜆  = 2.5 by selected values 𝑛𝑛, 𝑟𝑟1,𝑇𝑇  and 𝑟𝑟2 
 

𝑛𝑛 𝑟𝑟1 𝑇𝑇 𝑟𝑟2 
Bias 

α 

Bias 

𝜆𝜆 

RMSE 

α 

RMSE 

𝜆𝜆 
𝐻𝐻� 

RMSE 

𝐻𝐻� 

150 40 50 110 0.106 0.372 0.270 0.175 5.227 0.118 

   75 0.154 0.485 0.299 0.201 5.362 0.140 

   60 0.258 0.625 0.301 0.258 5.214 0.115 

 

100 25  75 0.112 0.254 0.258 0.118 5.281 0.127 

   50 0.201 0.335 0.315 0.239 5.236 0.119 

   40 0.231 0.421 0.331 0.302 5.345 0.137 

 

75 20  60 0.012 0.021 0.207 0.012 5.321 0.133 

   35 0.458 0.145 0.632 0.190 5.342 0.137 

   30 0.504 0.224 0.482 0.224 5.401 0.146 

 
Table 6: Bias estimates, relative mean square error (RMSE), entropy and relative MSE of 

entropy for α = 0.5 and 𝜆𝜆  = 1.5 by selected values 𝑛𝑛, 𝑟𝑟1,𝑇𝑇  and 𝑟𝑟2 
 

𝑛𝑛 𝑟𝑟1 𝑇𝑇 𝑟𝑟2 
Bias 

α 

Bias 

𝜆𝜆 

RMSE 

α 

RMSE 

𝜆𝜆 
𝐻𝐻� 

RMSE 

𝐻𝐻� 

150 40 50 110 0.110 0.301 0.282 0.251 4.686 0.125 

   75 0.251 0.578 0.362 0.485 4.558 0.100 

   60 0.458 0.698 0.478 0.352 4.778 0.142 

 

100 25  75 0.105 0.159 0.267 0.188 4.758 0.138 
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   50 0.258 0.015 0.235 0.258 4.658 0.12 

   40 0.365 0.254 0.147 0.458 4.965 0.174 

 

75 20  60 0.114 0.226 0.297 0.178 4.789 0.144 

   35 0.198 0.244 0.402 0.201 4.825 0.150 

   30 0.254 0.365 0.447 0.235 4.932 0.169 
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