
Quick and Efficient Algorithm to Compare Trees 

Sowjanya M1, Dr. Kiran V.2

Dept. of Electronics and  
Communication1,2R.V College of 

Engineering , Bangalore, India

mail.msowjanya@gmail.com1

Abstract:Tree is an important data structure in computer science and it finds its applications 
in various fields right from representing hierarchical data to implementing faster search 
algorithms or even in compiler design. This paper proposes a simple method to visualize the 
differences and similarities between any two trees. The result of the comparison is known as 
Difference Tree which provides a graphical notation to intuitively understand the differences. 

Keywords: Trees, Hierarchical Data, Difference Tree 

1. INTRODUCTION

In computer science, a tree is an abstract data type that can be used to represent hierarchical data 
or even to depict different processes. It can be used to store sorted data in a manner that makes it 
faster to search, insert or delete data. This data structure mainly finds its applications in compiler 
design, computer networks, representing folder structure, XML, JSON, HTML and YAML data, 
can be used to build expression parsers and solvers and many more. It can also be used to 
describe any workflow or represent a particular path. A tree of a set of nodes and edges 
connected in such a way that no cycles are formed. In other words, it is a graph without any 
cycles. The edges linking the nodes describe the relationship between the nodes. It consists of a 
root node and contains subtrees with parent nodes each connecting their set of child nodes. Each 
node cannot have more than one parent node whereas the parent node can have many child 
nodes. The root node does not connect to any parent node. Different types of trees can be used 
for different applications.  
A general tree can be used store any hierarchical data. A binary tree is a type of tree where each 
node consists of only two child nodes, namely the left child and the right child. Such trees are 
used to build syntax trees in compilers, to implement expression parsers and solvers, to store 
router tables in routers. A binary search tree is an extension of a binary tree where the value of 
the left node should be less than or equal to the parent node whereas the value of the right node 
should be greater than that of the parent node. It can be used to implement simple search 
algorithms, priority queues or in applications where there is data entering or leaving constantly. 
AVL trees are self balancing binary trees where the height of the left and the right subtree for a 
particular node are almost the same. AVL trees are used in situations where frequent insertions 
are involved and used in Memory management subsystem of the Linux kernel to search memory 
regions of processes during preemption.B tree is a self-balancing search tree and contains 
multiple nodes which keep data in sorted order. Each node has 2 or more children and consists 

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 7, July - 2021 Page -437

mailto:mail.msowjanya@gmail.co


of multiple keys. This can be used in databases to speed up the search or to implement 
directories in file systems. 

2. RELATED WORK

The problem of comparing tree structures is known to be a task often characterised by a 
particularly high computational complexity. Any attempt to reduce this complexity by 
considering a tree as a linear structure has generally resulted in a loss of information. Indeed, a 
comparison of tree structures which considers a tree as a single vector, obviously takes less 
execution time, but unfortunately has less credibility with respect to the classification task. The 
hierarchical relationships are thus ignored or suppressed and tree structures then behave like 
sequential data structures. [1] proposes an approach which relies on two types of traversal 
algorithm, namely the depth-first traversal and breadth-first traversal. The strategy aims to 
exploit the advantages of combining the two types of algorithms. [2] presents an analysis of the 
suitability of various measures of association to determine the similarity of two diagnostic trees 
using bootstrap simulations. It was found out that three measures of association, Goodman and 
Kruskal’s Lambda, Cohen’s Kappa, and Goodman and Kruskal’s Gamma each behave 
differently depending on what is inconsistent between the two trees thus providing both 
measures for assessing alignment between two trees developed by independent experts as well 
as identifying the causes of the differences.Taxonomy trees are used in machine learning, 
information retrieval, bioinformatics, and multi-agent systems for matching as well as 
matchmaking in e-business, e-marketplaces, and e-learning. [3] introduces a generalized formula 
to combine matching and missing valueswhen the same sub-tree appears at different positions in 
a pair of trees. Subsequently, two generalized weighted tree similarity algorithms are proposed. 
The first algorithm calculates matching and missing values between two taxonomy trees 
separately and combines them globally. The second algorithm calculates matching and missing 
values at each level of the two trees and combines them at every level recursively which 
preserves the structural information between the two trees. The proposed algorithms efficiently 
use the missing value in similarity computation in order to distinguish among taxonomy trees 
that have the same matching value but with different miss trees at different positions. [4] 
introduces a novel visual analytics approach for the comparison of multiple hierarchies focusing 
on both global and local structures. A new tree comparison score has been elaborated for the 
identification of interesting patterns. A set of linked hierarchy views was developed showing the 
results of automatic tree comparison on various levels of details. It is common to classify data in 
hierarchies, they provide a comprehensible way of understanding big amounts of data. From 
budgets to organizational charts or even the stock market, trees are everywhere and people find 
them easy to use. [5] proposes TreeVersity, a framework for comparing tree structures, both by 
structural changes and by differences in the node attributes.  

3. ALGORITHM TO COMPARE TWO TREES

This section proposes an algorithm to compare two trees describing a similar process and 
identify the differences. This algorithm merges the two trees to be compared and creates 
difference trees. The difference trees are labelled and coloured trees where nodes or edges 
coloured in black are common to both the trees whereas the the nodes or edges belonging to a 
particular tree are in a different colour. 

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 7, July - 2021 Page -438



Figure 1. Colouring Convention for the Algorithm 

Starting from the root node for both the trees, a level order comparison is done. Every node from 
each tree is compared to and added to the difference tree with the suitable colour. For example, 
if there are two trees T1 as shown in Figure 2 and T2 as shown in Figure 3, the difference tree 
would be a culmination of nodes and edges from both the trees as shown in Figure 4. 

Figure 2. First Tree to be Compared 

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 7, July - 2021 Page -439



Figure 3. Second Tree to be Compared 

To compare both the trees and generate the difference tree, the following algorithm was used: 

1. The root node of both the trees are compared and since it is the same in this case, it is added
as a black node the output tree. 
2. The compared node’s child node set and the corresponding edge labels are compared in both
the trees. 
3. Since node numbered 2 and 4 are not common to both the trees, they are added with the
suitable colour scheme. 
4. This process is repeated for the other nodes and edges in the tree and the difference tree is
obtained. 

Figure 4. Output Difference Tree 

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 7, July - 2021 Page -440



Thus, the difference trees can be used to visualize all the information present in both the trees 
and at the same time highlight the similarities and differences in a manner which is easy to 
comprehend. 

4. CONCLUSION

The paper has proposed a very simple graphic notation known as a Difference Tree as a way to 
visualise differences and similarities between two trees. The graphic notation is intuitive and 
unambiguous and makes it easier to define the differences.This displays the difference and 
similarity of two compared processes in a clear and user friendly way. 
The results to date are promising. With automation tools and large case studies are on the way, 
the proposed method can be useful for people to study software processes as well as to design 
new processes. This capability offers considerable benefits for developers to compare 
hierarchical data or process various models.  

REFERENCES 

10.1 Journal Articles 
[1] Souam, Fatiha & Hadj, Ali. (2016). Efficient similarity measure for comparing tree 
structures. International Journal of Advanced Intelligence Paradigms. 8. 77. 
10.1504/IJAIP.2016.074779. 

[2] Sabbaghan, S., Chua, C.E.H. & Gardner, L.A. Statistical measurement of trees’ similarity. 
Qual Quant 54, 781–806 (2020). https://doi.org/10.1007/s11135-019-00957-8. 

[3] D., P.K., Rao K., V.G. Generalized weighted tree similarity algorithms for taxonomy trees. 
EURASIP J. on Info. Security 2016, 12 (2016). https://doi.org/10.1186/s13635-016-0035-2. 

10.2 Conference Proceedings 

[4] S. Bremm, T. von Landesberger, M. Heß, T. Schreck, P. Weil and K. Hamacherk, 
"Interactive visual comparison of multiple trees," 2011 IEEE Conference on Visual Analytics 
Science and Technology (VAST), 2011, pp. 31-40, doi: 10.1109/VAST.2011.6102439.5.  

[5] J. A. G. Gómez, A. Buck-Coleman, C. Plaisant and B. Shneiderman, "TreeVersity: 
Comparing tree structures by topology and node's attributes differences," 2011 IEEE 
Conference on Visual Analytics Science and Technology (VAST), 2011, pp. 275-276, doi: 
10.1109/VAST.2011.610.

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 7, July - 2021 Page -441

https://doi.org/10.1007/s11135-019-00957-8
https://doi.org/10.1186/s13635-016-0035-2

	Quick and Efficient Algorithm to Compare Trees
	Sowjanya M1, Dr. Kiran V.2
	Dept. of Electronics and  Communication1,2R.V College of Engineering , Bangalore, India
	REFERENCES



