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Abstract: Presently, Wireless Sensor Network (WSN) is the extremely standard services utilized in commercial 

in addition to industrial applications, owing to its technical development in the embedded computing devices' 

processor, communication, along with less-power usage. Moreover, in the WSN's advantages, the sensor data's 

energy-efficient distribution onto the cloud data centre is amid the core challenges caused by higher data loads 

and also congestion. Aimed at overcoming these problems, this work proffers an energy-efficient Data Packet 

(DP) distribution protocol comprising an optimal routing path centred congestion control technique in the WSN 

environment. This system not just ponders the energy-efficient DP distribution nevertheless increments the 

sensor's lifetime by choosing the Cluster Head (CH) centred on the sensor's residual energy, packet loss factor, 

data forwarding rate, and minimal distance. Next, the numerous routing paths prevalent in inter-cluster and 

intra-clusters are detected utilizing the QLA2ODV method; the congested nodes are detected as of these paths 

utilizing LM-NN classifier; if congestion happens, the QLA2ODV distributes the DP onto the Base Station (BS) 

via the optimum congestion-free routing path. The optimal routing paths were elected as of the congestion-free 

paths utilizing the WFCSO method. Past obtaining the sensor data, the BS transmits the DPs onto the Fog 

Nodes (FNs). At last, the sensor data are effectively distributed onto the cloud data centres grounded on the 

data's features and cloud features utilizing the BD-SBO technique. The experiential outcomes determine the 

proposed system's effectiveness. 

Keywords: Wireless Sensor Network (WSN), Energy Efficient Data Distribution, Cloud Data Centers, Queue 

Load Adopted Ad-Hoc on-demand Distance Vector (QLA2ODV) protocol, Optimal Path, and Congestion 

detection. 

1. INTRODUCTION 

Enormous quantity of distributed Sensor Nodes (SN) that transmits information to the Cloud Server is 

possessed by IoT [1]. The SN introduced „3‟ major operations: (i) data collector, (ii) data processing, along with 

(iii) data transmission [2]. Industrial monitoring along with control systems utilized WSN for improving their 

functionality and also efficiency [3]. These networks seek many attractive applications in fields, namely 

business, healthcare, military surveillance, air pollution control, river level variation monitoring, intelligent 

highway designing along with remote health assistance, etc. For communication, data processing, along with 

perception, enormous energy is utilized by the SN while installing such applications [4]. The major performance 

metrics are network lifetime along with quick data delivery [5] because generally, SN has low power along with 

the battery‟s replacement is complicated [6]. 

Communication overhead is brought about by the strategy in which each SN communicated straight 

with the BS. For avoiding this, SN is categorized into disparate clusters [7]. One header is possessed by each 

cluster of a network, called a CH [8] that communicates with other CH on the network. CH‟s function is to 

gather the information detected from the SN that are the members in the clusters. The data is aggregated and 

sent to the BS or through the CH [9]. The CH‟s selection is executed in such a way that to attain higher 

throughput centered on the node‟s energy present within the cluster [10]. A lot of energy is required for 

converting perceived data directly to BS, and a routing protocol is utilized in cluster WSNs for identifying the 

better way between CH and PS to decrease power consumption [11]. 

A huge quantity of data transferred has brought dynamic modifications in the multiple routing paths, 

along with congestion is created within the other SN [12]. Therefore, no data is acquired by the BS from the SN 

[13]. Congestion stands as an undesirable occurrence owing to the significant reduction in network‟s 
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performance and network life and less energy wastage. Thus, greater consideration is gained by CC in WSN 

recently [14]. The best mitigation technique is to choose the best possible route for avoiding congestion. A 

process of suitable path selection as of source to destination for sending the DPs is routing [15]. Mathematical 

optimization, along with heuristics techniques, is utilized to conduct the route discovery method [16]. Numerous 

nodes implicated in route discovery are reduced by these techniques, which will reduce the network‟s control 

overhead and also the system‟s Energy Consumption (EC) [17]. 

Apart from the above-mentioned problems, energy-effective distribution of sensor data on virtual 

machines (VM) has seen as an essential problem on the cloud computing environment by considering several 

elements like completion time, the all-out expense for conducting every one of clients' assignments, asset‟s 

usage, power utilization, along with adaptation to internal failure [18]. The overall network for optimal path 

discovery and node‟s EC must be controlled for designing an energy-effective data transmission of sensor data 

on VM. The routing protocol needs to be adequately effective for sustaining the throughput, routing overhead 

reduction, packet delivery ratios (PDR), together with the decrementation of Ends-to-Ends Delay (EED) in the 

complete network [19]. Thus, an energy-effective data distribution scheme with an optimal routing path 

centered CC approach in a WSN environment is proposed by this paper.  

This paper is categorized as: Section 2 explained the related works to the proposed CC and energy-effective data 

distribution. Section 3 presented the proposed system‟s accurate overview. Section 4 examined and assessed the 

proposed system‟s outcomes. Section 5 completed the paper together with future guidelines is provided.  

 

2. RELATED WORKS 

Pampapathi B M et al. [1] introduced  „two‟ methods for IoT data distribution to the cloud utilizing IANFIS 

in addition to secure transmission of those distributed data utilizing MECC. Initially, the IoT device is 

authenticated by means of performing registration, login, as well as verification for preventing the device as of 

unauthorized utilization. Subsequently, the device is accessed to sense the information as of associated objects 

by utilizing smart sensors; in addition, the communication of disparate IoT sensors is performed by employing 

the MQTT protocol. By means of the IANFIS, this sensed information as of disparate IoT devices is distributed 

to the specific cloud server (CS). Then by employing the MECC algorithm, the data is sent securely to the user. 

Lastly, the local calculation (LC) is carried out by means of HFPGA. The experimentation is executed for 

analyzing the proposed work‟s performance. The outcomes exhibited that the proposed techniques work better 

when weighed against other existing algorithms. 

D. Loganathanet al. [20] created an Energy-Aware Efficient Data Aggregation (EAEDAR) as well as Data 

Re-Scheduling with the amalgamation of clustering methods. This model was formed with an energy factor-

centered cluster for reducing the transfer time along with improving the data transmission efficiency. The SN‟s 

EC rate was lessened by implementing the Appropriate Aggregator SN selection along with effective Data 

Aggregation, thus enhancing the network‟s life. Data PL was reduced by utilizing Transmission Re-scheduling. 

The EAEDAR model had provided a higher PDR, throughput, along with energy efficiency as shown by the 

results. But, the transmission delay was not decreased to the normal level.   

MortezaKheirkhahet al. [21] introduced a transport protocol, i.e. Maximum MultiPath TCP (MMPTCP), for 

minimizing short flows' completion times whilst producing outstanding goodput to long flows. MMPTCP 

operated in „2‟ stages. First, the packets were randomly scattered across the network in a congested window. 

This was beneficial for latency-sensitive flows. MMPTCP had switched to normal Multiple Path TCP modes 

after a particular data amount was sent. The number of subflows was adjusted by a topology-specific extension 

of MMPTCP during the protocol‟s second stage centered upon knowledge of the recipient's location in the data 

center. MMPTCP had substantially decreased the loss rate of every link within the network along with network 

resources' utilization was increased as shown by the results. 

Baradaran and Navi [22] presented a Higher-Quality Clustering Algorithms (HQCA) to generate higher-

quality clusters for providing energy-effective data transmission. A criterion was utilized by the HQCA 

technique for assessing the cluster quality that improved the inter-cluster along with intra-cluster distances in 

addition to error rate during clustering was reduced. The optimal CH was chosen centered on fuzzy logic; as per 

several criteria, namely the residual energy, the minimum and maximum energy in each cluster, the minimum 

and also maximum distances among the nodes within all clusters and also BS. The HQCA-WSN had improved 
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the network‟s lifetime, even though the average EC in HQCA-WSA must be reduced as shown by the 

simulation results.  

Shishupal Kumar et al. [23] introduced a G.9959 protocol-centered packet delivery method in a WSN 

environment. The encoding along with decoding was performed on the network sensed packet parameters 

intended for selecting an appropriate channel/path to support multicasting. The presented strategy was utilized to 

assess the IoT-oriented WSN‟s performance concerning several performance metrics, say energy, lifetime, 

overhead along with PDR, etc. This scheme had outperformed when contrasted to other approaches predicted in 

this field as shown by the simulation outcomes. A higher probability was given for effectively transmitting the 

packet to the destination with EC. A transmission delay was caused by this approach because of congestion 

occurrence.  

Mehta and Saxena [25] introduced a Multiple Objective centered Clustering along with Sailfish Optimizers 

(SFO) technique for sustaining WSN‟s energy efficiency. The CH was selected centered upon efficient fitness 

function that was created from many objectives. It had assisted to diminish the consumption of energy together 

with various dead SN was reduced. SFO was utilized for selecting an optimum path to Sn intended for 

transmitting data after the CH selection. The SFO method had performed 21.9% and 24.4% better concerning 

EC along with many live SN respectively when contrasted to GWO as shown by the simulation outcomes. The 

network‟s lifetime will be considerably decreased if there is more traffic movement from several CH to the sink.  

Amit Singh and Nagaraju [26] introduced an application of „3‟ various algorithms for improving the sensor 

network‟s performance. Moreover, opportunistic coding was utilized for reducing several transmissions at 

potential relays. Therefore, „3‟ algorithms were integrated by this implementation that combined the merits of 

each for considerable improvement in data transmission. Firstly, the Sn was placed through a particle swarms 

optimizations. Secondly, the route construction from the sensors along with a sink of the particular cluster 

utilizing a minimum wiener spanning tree was further optimized by the artificial bee colony method. 

Opportunistic packet combination was done before sending to neighbors in the third step. An enhancement of 

25% network throughput was attained as shown by the results. Higher time complexity was the major drawback 

in this method.  

Pampapathi B M et al. [28] proposed a secure and energy-aware routing method of WSN using Cosine 

Distance-based Learning Vectors Quantization (CD-LVQ) and Brownian movement-based Shark Smell 

Optimizations (BM-SSO) algorithms. Initially, the classifier, namely CD-LVQ, finds the MN on the WSN. It 

extracts some node parameters for detection. After that, only Trusted Nodes (TN) in the networks is considered 

for further operation by avoiding those MN. The GRBF-MS clustering algorithm groups the TN; for each 

grouping of SN, the Cluster Head (CH) is selected to increase the Network Life-Time (NLT) and save the 

nodes‟ energy. Next, the BMSSO algorithm selects an optimal path for the CH that generates the best path as of 

CH to sink aimed at Data Transmission (DT). Lastly, the Ranking mutation-based Blue Monkey Optimization 

(RMBMO) efficiently allocates the sink data to the optimal Virtual Machine (VM) of the Cloud Server (CS). 

The proposed methods‟ outcomes are examined and contrasted with the other prevailing techniques, which 

confirmed that the proposed CD-LVQ, BMSSO, and RMBMO algorithms classify the MN, selecting the 

optimal path, and perform rescheduling in an extremely good manner when compared with others. 

 

3. CONGESTION AVOIDANCE AND ENERGY EFFICIENT DATA DISTRIBUTION  

Recently, wireless SN operates as a base aimed at the higher-end industrial Internet of Things (IoT) 

application. All real-time IoT application senses data employing previously built-in sensors.Sensor DPs‟ energy-

efficient distribution on VMs is amid the core challenges prevalent in WSN. Networks can be disturbed by 

congestion caused by the network‟s limited resources and its higher data loads. Congestion and unbalanced EC 

prevalent in the DPs‟ routing procedure is amidst the core problems existent in WSN. A proper method must be 

adapted aimed at modelling the energy-efficient data distribution system comprising congestion control in the 

WSN that evades DP loss, decrements the power consumption, and also increments the network life. 

Consequently, an energy-efficient DP distribution technique comprising optimal routing path centred congestion 

control methodology put forwarded in this work has been modelled aimed at WSN. The proposed system 

comprises „6‟ stages: inter-cluster and intra-cluster formation, numerous routing path creations, congestion 

detection, optimal path centred congestion evasion, energy-efficient data distribution over the VM.  The stages 

are detailed below. Figure 1 exhibits the proposed congestion control system‟s flow.  
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Figure 1: Block Diagram of Proposed Methodology 

 

3.1 Cluster Formation 

The SNs are the minute autonomous devices that are set up in the WSN‟s sensing area. They sense the 

natural events as of the sensing domain and then send the sensed data towards the BS via multiple-hop 

communication. At first, the SNs will be clustered utilizing Manhattan distance-centred K-Nearest Neighbour 

(MKNN) clustering protocol. To resolve the energy issues, a CH is chosen here, where the source node (SN) 

sends its data onto the CH via the intermediate nodes within every cluster. K-Nearest Neighbour is amidst the 

simplest Machine Learning protocol grounded on the Supervised Learning methodology. It ponders the 

similarity betwixt the novel data and existent DP and adds the novel data underneath the group which is much 

identical to the prevalent types. Aimed at computing the similarity betwixt „2‟ data, the proposed MKNN 

technique utilizes Manhattan distance that is computed as the addition of the absolute differences betwixt the „2‟ 

vectors such that the cluster formation is much precise.  The MKNN cluster the SNs grounded on their distance 

as of their neighbouring nodes. The MKNN‟s steps are given as, 

Step 1: Initialize the -number of clusters. Ponder as the set of SNs and 

as the SNs‟ position.  

Step 2: Elect  random SNs as neighbours. Aimed at every SN perform the subsequent functions: 

(a) Compute a number of neighbours‟ Manhattan distance as, 

                                    (1) 

(b) Organise the distances‟ and indices‟ ordered collection as of the smallest to the largest (in the 

ascending order) via the distances. 

(c) Elect the 1st entries as of the organised collection 

(d) Amidst the -neighbours, calculate the number of data-points within every group. 

(e) Then, it will allot a class for the SN centred on the largely frequent class of these rows. 
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Step 3: Continue step 2 till the identical points are allotted to every cluster within the successive rounds. 

Pursuing this method, every node prevalent in WSN is clustered.  

Past the cluster formation, the CH aimed at every respective cluster is chosen grounded on the sensor's 

residual energy, packet loss factor, minimal distance, and also data forwarding rate that is fixed as the fitness 

function. Ponder, as the -th SN‟s residual energy, data forwarding rate, distance, and 

packet loss factor. The proposed protocol encompasses „1‟ preset threshold value that the SN‟s 

value nearest to the threshold is pondered as a CH; likewise, the CHs are elected aimed 

at every cluster. These CHs are accountable to gather the DP as of the SN.  

 

3.2 Multiple Routing Discovery in Inter-Cluster and Intra Cluster 

Many alternate paths through a network are created by a routing method named Multipath routing 

discovery. Several benefits, namely augmented bandwidth, fault tolerance, along with enhanced security are 

produced. The single routing path connecting the source as well as the destination node (DN) is found by many 

WSN routing protocols. When the primary path breaks or congestion appears, the DP are dropped by the 

intermediate nodes as alternate paths are unavailable to arrive at the DN till the subsequent route discovery 

method is started. Thus, multiple routing paths betwixt nodes are created by the proposed work inside the 

cluster, which are named inter-cluster paths. Moreover, the proposed work produces multiple routing paths 

between CH, which are labeled intra-cluster paths. The proposed system utilized the Queue Load Adopted Ad-

Hoc on-demand Distance Vector (QLA2ODV) protocol for the discovery of every possible path to the 

destination.   

Route request (r_RQ) messages are transmitted within the network by QLA2ODV for discovering a possible 

route to the DN. The information regarding the route to the source nodes, previous nodes, along with forwarding 

nodes in the route is maintained by intermediate nodes on route reply (r_RP) message from the DN to the 

source. Conventionally, routing tables (RT) are utilized by the Ad-Hoc on-demand Distance Vector protocol for 

storing routing information. The RT includes the subsequent fields (columns): source address, source sequence 

number, broadcast id, destination sequence number, a destination address, hop_count, and life_time. However, 

another column i.e. queue load is included by this proposed methodology. Now, the mobile agent is initialized 

for monitoring and updating the queue load of all the nodes on the QLA2ODV routing table for congestion path 

detection. Hence, the mobile agent is merged with the QLA2ODV protocol in the proposed system.   

 

 

Table 1: Routing Table Format of QLA2ODV protocol 

Source 

Address 

Source 

Sequence 

Number 

Broadcast_id Destination 

Address 

Destination 

Sequence 

Number 

Hop_Count Queue 

Load 

 

The RT is maintained at each node. The discovered multiple routing paths are mathematically indicated as, 

 1                                                   (2) 

Where, represents the discovered routing paths as well as represents -th routing path. The DP is 

transmitted to the DN by means of the source through these routing paths.   

 

3.3 Congestion Detection and Avoidance 

Herein, every node‟s status is calculated to decide the quantity of traffic prevalent across diverse routing 

paths. Congestion on a network occurs at any time; whilst the number of DPs arriving at a node surpasses its 

buffer capacity, the node gets congested and starts to lose DPs.  Hence, it is essential to detect every node‟s 
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congestion status within the routing paths in advance. Centred on every node's queue load, the congestion may 

be found. A node‟s queue load signifies the number of DPs prevalent within the queue at any specified time . 

Whilst the queue‟s load rises, congestion occurs. Whilst the queue‟s load value is big, the arriving traffic gets 

bursty. The queue load‟s continuous growth signifies that the arriving heavy traffic surpasses the mobile node's 

buffer capacity and also buffer overflow happens. 

 

Figure 2: Structure of LM-NN 

Aimed at congestion detection, the proposed system utilizes the LM-NN that ponders every node‟s 

queue load as input and also detects the congestion in advance. Amid the very crucial factors influencing the 

system‟s performance is the training function‟s selection that is changed grounded on the system‟s loss 

computation. Past loss computation, the bias value and Weight Value (WV) are updated grounded on the 

Levenberg-Marquardt since it is to detect efficient training directions utilizing the loss function‟s 2nd 

derivatives. Figure 2 shows the LM-NN‟s general structure.  

Aimed at congestion identification, the queue‟s load values have been fed initially into the inputted layer 

neurons. Each node‟s queue load is articulated as, 

                                          (3) 

Here, implies the -th node‟s queue load. Every node‟s queue load is enumerated as, 

                                            (4) 

Here, signifies theinstant queue size; implies the average queue size that is enumerated as, 

                        (5) 

Here, signifiesthe queue‟s weight that is a constant parameter ( ). Offering the nodes‟ queue load 

into the inputted layer neurons, an equivalent WV is initialized. Then both the inputted valued and also 

WVs are offered to the hidden layer that generates the subsequent output. 

                              (6) 
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 Here, signifies the hidden layer‟s output, implies the bias value. After that, the end output is enumerated 

by summing all input values‟ weights.  

                              (7) 

Here, implies the outputting unit. Next, the network training algorithm is centred on an energy function‟s 

minimization signifying the instant error. 

                         (8)
 

Here, implies the error function, signifies the attained output; signifies the NN‟s aimed output. The 

system‟s error is should be decremented. Aimed at decrementing this value, the bias and weights value should 

be updated. In this training procedure, the Levenberg-Marquard is utilized aimed at updating bias value and also 

WV. The WV‟s and bias value‟s updation procedure utilizing Levenberg-Marquard is equated as, 

                      (9) 

                    (10) 

Here, implies the updated WV;  implies the bias value; implies thedamping factor, symbolizes 

theJacobian matrix. The updated bias values and WVs are dispersed to the LM-NN. The bias values and WVs 

are updated until attaining the minimal error value. Thus, the LM-NN has been trained to detect the congestion 

prevalent in the network.  

The LM-NN‟s output comprises „2‟ classes: congestion-free nodes, congested nodes. If a congested 

node is offered, the paths that comprise that congested nodes are evaded aimed at the upcoming data packet 

transmission till the normal traffic condition is reached. The routing protocol QLA2ODV begins to distribute the 

traffic over other congestion-free paths for attaining the normal traffic condition to evade congestion.  

3.4 Optimal Routing Path Discovery 

Aimed at attaining minimal transmission delay, least EC, together with maximal throughput, the routing 

paths must be consistent, greatly energy-efficient, and shortest as of the source node to the DN. Consequently, 

the optimal routing path is identified utilizing the Wiener Factor Chicken Swarm Optimization (WFCSO). 

WFCSO imitates a chicken swarm‟s hierarchical order together with its behaviours at the food search, in which 

every chicken signifies a potential solution for an optimization issue. Basically, CSO employs the following „4‟ 

rules for idealizing the chickens‟ behaviour: 

1. The chicken flock comprises numerous groups. Every group encompasses „1‟ dominant rooster, „2‟ 

chickens, and then chicks. 

2. The Chickens comprising the finest multiple fitness values act as roosters, each one will be the head 

rooster in their group. Chickens comprising the least multiple exercise values will be hired as chicks 

and the others will be chickens. 

3. The dominant relationship and the mother-child relationship stay the same in the group hierarchical 

order. These classes just update every number (G) step. 

4. Chickens pursue their rooster mate whilst seeking food. Ponder that the chickens generally steal the 

good quality food which others have found already. Chicks seek food just in the region of their 

mothers. The rooster is in support of the competition aimed at food. 

Chickens comprising good fitness values prioritize food access analogized to least fitness values. Likewise, if a 

path comprises higher residual energy and also the shortest path distance, that path is more likely to be optimal. 

This function is preset as WFCSO‟s fitness function. Each solution‟s fitness is computed; every candidate 

solution is pondered as the elected path. Consequently, each solution‟s fitness is pondered as the least EC and 

least path distance.  
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                  (11) 

Here, signifies the path distance betwixt a source node and a DN. Centred on the fitness values, 

the chicken swarm is split as diverse subgroups. Ponder that , ,  and  as the number of roosters, 

the hens, the chicks and the mother hens, correspondingly. All chicken is signified by its position as,  

 (12) 

Here, implies the chickens‟ position at iteration that look for food within the -dimensional space. 

Since the chickens‟ behaviours change inside the subgroup, the rules aimed at updating their status also change 

regarding their roles. 

Rooster Movement: Rooster comprising good fitness values finds a wider range of food analogized to those 

comprising least fitness values. Their movement is equated as, 

(13) 

 (14) 

Here, signifies the smallest constant utilized to evade the zero-division-error; implies a rooster‟s index 

that is chosen randomly as of the roosters‟ group;  symbolizes the rooster ‟s fitness value; 

signifies the wiener factor that is computed as, 

 (15) 

Here, implies the random variables. 

Hen Movement: Regarding the chickens, they can pursue their group-corresponding roosters in food search. 

They will generally snatch the good quality food discovered by the other chickens, even if they are covered up 

by the other chickens. The hen movement‟s arithmetical design can be written as follows,  

        (16) 

                                                    (17) 

                                                        (18) 

Here, ,  implies the rooster‟s index that is the  hen‟s group-mate, whilst  implies a chicken‟s 

index (hen or rooster) that is chosen randomly as of the swarm . 

Chick Movement: Chicks search just around their mother for food. The chick movement‟s arithmetical design is 

proffered in eqn. (), 

   (19) 

Here, signifies the position of the  chick's mother ;  implies the parameter, which 

signifies how much fast a chick will pursue its mother. Examine each new solution‟s fitness. If the novel 
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solution's fitness is good whilst analogized to its preceding one, it is pondered as an optimal solution. Stop if the 

termination standard is fulfilled, or else execute the '3' steps above. Figure 3 exhibits the WFCSO algorithm‟s 

pseudo-code.   

 

Figure 3: Pseudocode of WFCSO Algorithm 

Likewise, the optimal path is elected by implementing this WFCSO algorithm betwixt the source and 

destination.The optimal path signifies the path, which comprises the highest energy-level with minimal distance. 

On this optimal routing path, the DPs are sent as of the SN to the DN; then, it is sent towards the BS. Past 

receiving of DP as of the wireless SNs, the BS combines the DP and transmits it towards the FNs (fog layer), 

which are the distributed fog calculating entities that facilitate the fog services‟ deployment; FNs are built by 

numerous physical devices comprising processing and sensing abilities. These nodes distribute the acquired 

sensor data into the cloud data centre with the objective to increment the network‟s bandwidth, privacy, 

mobility, and security.  

3.5 Energy-Efficient Data Distribution 

The process of organizing the resources among disparate VM as per certain rules and regulations of 

resource usage under a specific cloud environment is indicated by resource allocation. The SN data is distributed 

by the proposed work to the VM as per both node features along with VM features, say data type, data memory 

utilization, storage, processing speed, and bandwidth. Bernoulli Distribution (BD) adoptive Satin Bower-bird 

Optimizer (BD-SBO) was utilized for employing the resource allocation. The normal distribution is employed 

by the SBO in the bowerbird attraction phase, although it is inappropriate for a huge population. Therefore, BD 

is utilized here that performed superior to the normal distribution for a huge amount of values. The optimization 

process of BD-SBO is separated into four stages, which are described below. 

An initial populace is produced randomly. This population is a set of series bowers, that is written as, 

                    (20)  )( ;),..,,(,....,),..,,( 2121 1
bowerslistfffffff

NdNdNi 
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Where, indicates the set of bowers.The male bird is the important factor in building the attraction probability 

of the bowers whether it can attract a mate. A bower is selected by the female Satin bower bird centered upon its 

probability. The probability ( ) can well be exhibited as, 

                                                         (21)
 

Where, indicates the fitness of -th solution, and signifies the total bowers. The fitness value of each 

bower is computed by, 

                                     (22) 

 

Where, indicates the objective function value of -th bower. The highest fitness value bower is 

deemed elite centered on the fitness value of each bower. The changes of every bird's bower in each iteration 

formulated as, 

                        (23) 

Where, symbolizes the position of -th bower at iteration , indicates the larger 

probability having a solution, denotes the location of the elite, and is the attractiveness parameter 

which determines as follows, 

                                                              (24) 

Where, represents the greatest step size. When the target position‟s probability is 0, the highest step size 

occurs while the step size will be . Conversely, when the target position‟s probability is 1, the lowest step size 

occurs while the step size will be . Next, the mutation is executed. A bower built on the ground by the 

males could be attacked by other animals or entirely ignored. The stronger males might steal items as of weak 

males or demolish their bowers in multiple cases. Hence, random changes with a BD and certain probability are 

applied in the mutation process.  

                                             (25) 

Where, indicates Bernoulli distributions, is a space width proportion, which is formulated as follows, 

                                                     (26) 

Where, and denotes the upper as well as lower bound and  denotes the percentage of the difference 

betwixt the upper and lower bound. The old and new populations are combined and sorted centered on their 

fitness at the end of the process along with the new population is produced. When the termination conditions are 

not fulfilled, the bower position updation and mutation process are repeated. The optimal solution is finally 

obtained. Following this way, the VM is chosen for each SN data by applying this BD-SBO algorithm. Lastly, 

the SN data are efficiently distributed over the VM. 
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4. RESULTS AND DISCUSSIONS 

The proposed system‟s performance is examined. This work is performed in the working platform of 

JAVA. The proposed system‟s performance is examined in „3‟ methods. Firstly, the performance analysis of 

optimal path selection is performed in section 4.1.  Then, the performance analysis of congestion detection is 

executed in section 4.2. The performance analysis of energy-efficient data distribution is finally done in section 

4.3.   

4.1 Performance Analysis of Optimal path Selection 

Firstly, the proposed WF-CSO algorithm‟s performance is contrasted by the system with other 

conventional algorithms, namely, Chicken Swarm Optimization (CSO), Black Widow Optimization (BWO), 

Crow Search Algorithm (CSA), along with Genetic Algorithm (GA) concerning EED, network lifetime, PDR, 

and throughput. The simulated representation of every parameter is deliberated in the below table. 

Table 2: Comparison of different methods 

Metrics 

Number of 

sensor 

nodes 

Proposed 

WF-CSO 
CSO BWO CSA GA 

End to End 

delay (ms) 

20 0.21 0.6 0.9 1.1 1.34 

40 0.46 0.85 0.12 1.42 1.58 

60 0.69 0.98 0.154 1.66 1.72 

80 0.9 1.24 0.171 1.86 1.98 

100 1.2 1.58 0.2 2.1 2.4 

Network 

lifetime (s) 

20 510 351 210 150 105 

40 590 470 340 250 190 

60 730 550 460 390 320 

80 802 700 510 430 410 

100 910 730 620 520 480 

Packet 

delivery ratio 

(%) 

20 91 87 76 74 68 

40 89 84 71 69 64 

60 85 81 68 65 60 

80 81 77 64 61 58 

100 78 72 61 59 51 

Throughput 

(kbps) 

20 241 211 187 142 113 

40 234 200 172 136 101 

60 222 191 165 127 97 

80 212 180 157 121 83 

100 201 175 149 115 70 

  

Discussion: The preceding table describes the proposed WF-CSO algorithm‟s performance, which is contrasted 

with the conventional CSO, BWO, CSA, and GA algorithms. Some performance metrics, say EED, network 

lifetime, PDR, and throughput metrics are utilized for doing the performance comparison. The performances are 

grounded upon several SN ranging from 20 to 100. The existing GA attained 1.34 ms EED, 105s network 

lifetime, 68 % PDR, and 113kbps throughput for „20‟ SN that offers lower performance than the proposed one. 

Lower performance is also offered by the existing CSO, BWO, and CSA. But, the proposed WF-CSO takes low 

EED (0.21ms), high network lifetime (510s), high PDR (91 %), and high throughput (241 kbps). Likewise, 

higher performance is offered by the proposed one when weighted against the existent methods aimed at the 
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remaining SN (40-100). Therefore, the system had given a better performance when weighted against the 

prevailing techniques as concluded by the discussion. 

 

4.2 Performance Analysis of Congestion Detection 

 The suggested LM-NN‟s performance is contrasted with the traditional NN, ENN, SVM, and NB 

classifiers in this performance analysis of the congestion detection. Various parameters, namely recall, 

precision, accuracy, along with specificity metrics are deemed for assessing the suggested model‟s performance. 

This analysis could be graphically represented from the below figure,  

 

Figure 4: Comparative analysis of the proposed model with the conventional methods 

Discussion: Figure 4 demonstrated the recommended LM-NN‟s performance with the traditional Neural 

Network (NN), Elman NN (ENN), Support Vectors Machine (SVM), along with Naive Bayes (NB) classifiers 

concerning the accuracy, recall, precision, along with specificity metrics. 63 % precision, 63.2 % recall, 64 % 

detection accuracy, and 64.5 % specificity are offered by conventional NB, which is very lesser when contrasted 

to the suggested one. A precision of 87.3 %, 75.38 %, and 67.32 %, recall of 86.9 %, 73.76 %, and 67.1 %, 87.2 

%, 76.22 %, and 66.14 % detection accuracy, together with a specificity of 86 %, 76.32 %, and 66 % is offered 

by the conventional CSO, BWO, and CSA algorithm. A very high-performance value (i.e. 96.15 % precision, 

96.01 % recall, 96 % accuracy, and 95.5 % specificity) is attained by the suggested one. Generally, the graph 

shows better performance results concerning precision, recall, accuracy, along with specificity utilizing the 

proposed LM-NN classifier.  

4.3 Performance Analysis of Energy Efficient data Distribution 

In this section, the proposed BD-SBO algorithm‟s performance is contrasted to the prevailing Satin 

Bowerbird Optimizer (SBO), Blue Monkey Optimization (BMO), Grasshopper Optimization Algorithm (GOA), 

and Particle Swarm Optimization (PSO) algorithms concerning Average Waiting Time (AWT), EC, Average 

Turn-around Time (ATT), along with CPU memory usage metrics. The performance is grounded upon the 

number of sensor data from 100 to 500. These are graphically explained from the below figure.  
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Figure 5: EC comparison graph 

Discussion: The above figure indicates the proposed BD-SBO algorithm‟s performance with the conventional 

SBO, BMO, GOA, and PSO algorithms concerning EC metrics. The EC (average) is the main parameter for 

assessing the WSN‟s performance. It shows the EC throughout data distribution and the life span of the entire 

sensor network is predicted. For „100‟ nodes, the EC of 3342.25J is given by means of the proposed BD-SBO, 

which is lesser than the existent algorithms. Similarly, the proposed one offers the smallest EC values for the 

remaining sensor data (200-500). For an augmenting number of sensor data, the comparison analysis graph in 

Figure 5 reveals that the projected BD-SBO needs less energy when contrasted to the conventional SBO, BMO, 

GOA, and PSO algorithms.   

 

Figure 6: CPU memory usage analysis 

Discussion: The above figure shows the proposed BD-SBO‟s performance, which is contrasted with the 

traditional SBO, BMO, GOA, and PSO algorithm grounded on CPU memory usage metrics. The proposed BD-

SBO utilizes low CPU memory on deeming the prevailing approaches for 100 to 500 sensor data. The memory 

usage of the proposed work is increasing with the augmenting number of sensor data; but, the increased level 

does not exceed the existing techniques. For example, for 100-500 sensor data, the existent SBO, BMO, GOA, 

and PSO takes CPU memory of 6505960 kb, 6683224 kb, 6925408 kb, 7351000 kb, and 7930104 kb, but the 

proposed one takes 4015786 kb, 4465844 kb, 5563524 kb, 5835874 kb, and 5924578 kb, which is very lesser 
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when contrasted to the conventional techniques. The proposed BD-SBO‟s efficiency is proved from this 

analysis. 

 

(a) 

 

(b) 

Figure 7: Comparative analysis of the proposed model with the existent methodologies in terms of (a) ATT and 

(b) AWT 

Discussion: Figure 7 shows the resultant graph while contrasting the (a) ATT and (b) AWT with the 

conventional SBO, BMO, GOA, and PSO methods. From figure 7 (a), for 500 sensor data, an ATT of 1547ms is 

taken by the existing PSO, which is greater than the proposed one (since an ATT of 998ms is taken by the 

proposed one for „500‟ sensor data). From figure 7 (b), an AWT of just 1067ms is taken by the proposed one for 

500 sensor data, but the existent PSO, GOA, BMO, and SBO takes an AWT of 1502ms, 1354ms, 1219ms, and 

1135ms time respectively, which is greater when contrasted to the proposed one. Likewise, the proposed one 

consumes low ATT and AWT than all the existing methodologies for the remaining number of sensor data (100-
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400). Therefore, the proposed one offers a higher-level performance than the existing techniques concerning 

ATT along with AWT as shown by the discussion. 

5. CONCLUSION 

The data communication performance betwixt WSN towards cloud is affected immensely by the network 

congestion and sensor nodes‟ higher EC. This work proffered an energy-efficient data distribution process on 

the cloud utilizing the optimal routing path centred congestion control technique. The proposed system utilizes 

the LM-NN and WFCSO aimed at detecting the congestion nodes, various routing paths, and detecting an 

optimal routing path aimed at energy-efficient routing. For offering energy-efficient data distribution on cloud 

data-centres, a BD-SBO is adapted. The proposed techniques‟ performance is analogized with numerous 

existent techniques for verifying the proposed system‟s effectiveness. The analogy outcome defines that 

utilizing the proposed algorithms the system acquires higher throughput, higher packet delivery ratio, higher 

network lifetime, and also less end to end delay. The WFCSO decrements the end to end delay to 1.2ms aimed 

at 100 nodes and increments the network lifetime to 910 seconds. Alternatively, the proposed BD-SBO method 

employs only 4752.25J energy together with 5924578kb CPU memory to distribute 500 sensor data. The 

proposed LM-NN classifier precisely identifies the congestion nodes with a 96% accuracy-level. Hence, the 

proposed routing protocol is found to be highly accurate and also more energy-efficient. This work can be 

prolonged in the upcoming future by adding in cryptographic methods aimed at evading the attacks in data 

transmission. 
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