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Abstract

We consider problems based on linear water wave theory concerning the interaction
of wave with horizontal circular cylinder submerged in two-layer ocean consisting of a
upper layer of finite depth bounded above by an ice-cover and below by an infinite layer
of fluid of greater density, the ice-cover being modelled as an elastic plate of very small
thickness. Using the method of multipoles, we formulate the problems of hydrodynamic
forces on a submerged cylinder in either the upper or the lower layer. The vertical and
horizontal forces on the circular cylinder are obtained and depicted graphically against
the wave number for various values of flexural rigidity of ice-cover to show the effect of
the presence of ice-cover on these quantities. Also when the flexural rigidity and surface
density of the ice-cover are taken to be zero, the ice-cover tends to a free-surface. Then
all the forces are the same as in the case of two-layer fluid with free surface.

Keywords: Two-layer fluid, Water wave scattering, Submerged circular cylinder, Ice-
cover, Vertical and horizontal forces.

1. Introduction

The problem of scattering and radiation problems for a submerged as well as floating
bodies in water have been explored for decades for various shapes of bodies. Long back
Dean [1], Ursell [2] investigated the problem of water wave scattering by a horizontal cir-
cular cylinder fully submerged in deep water using the method of multipoles. This method
also used in various field of theoretical physics (cf. Jackson [3], Morse and Feshbach [4]).
Evans and Linton [5] considered both the scattering and radiation water wave problems
by a submerged circular cylinder in finite depth water as part of a need to determine ac-
curately the natural frequencies of oscillation of a highly buoyant tethered cylinder. Also,
one of the attractive features of multipole expansion method for this type of problem is
that the evaluation of hydrodynamic forces on a submerged circular cylinder in water is
investigated (cf. Linton and McIver [6], Taylor and Hu [7], Sturova [8]).

The effect of the density changes of sea water are usually ignored in the early studies
and assumption of uniform density was often used for the fluid. Recently, the effects of
density inhomogeneity have attracted more and more attention. Wave propagation in a
two-layer fluid with a free surface and an interface was first investigated by Stokes [9]. For
such a two-layer fluid, It is known that for a particular frequency, there exist two modes
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of wave in a two-layer fluid, one propagating along the free surface and the other along
the interface (cf. Art.231 of Lamb [10]). Linton and McIver [11] developed the general
theory for two-dimensional wave motion in a two-layered fluid. The problem arose from
modelling an underwater pipe bridge across Norwegian fjords consisting of a layer of fresh
water on the top a deep layer of salt water. The three-dimensional wave scattering and
radiation by a submerged sphere in a two-layer fluid is considered by Cadby and Linton
(2000). Linton and Cadby [12] extended the work of Linton and McIver [13] to oblique
scattering. Various aspects of wave motion have been analyzed in the two-layer fluids (cf.
Manam and Sahoo [14], Chamberlian and Porter [15], Ten and Kashiwagi [16], Kashiwagi,
Ten and Yasunaga [17] etc.).

Wave interaction with ice-cover (very large floating structure) is a front line area of
research due to the practical utility in constructing floating offshore oil platforms, float-
ing airports, floating pleasure cities, etc. The floating structure has elastic properties,
and if it modelled as a thin elastic plate, then the boundary condition at the floating
structure, when linearized, involves fifth order partial derivative of the potential function
describing the irrotational motion in water in contrast the first order partial derivative in
the free surface condition. This is also the case when the floating ice in an ice-covered
ocean is modelled as a thin elastic floating plate. Wave propagation problems in the
presence of floating elastic plate or floating sheet of ice are being investigated in recent
times by mathematicians as well as ocean engineers due to a surge or scientific and ocean-
related industrial activities in polar region (cf. Fox and squire [18], Meylan and squire
[19], Chakraborty [20], Squire [21], Das and Mandal [22,23], Das and Thakur [24], Thakur
and Das [25], Das and sahu[26] and others). A more general class of problems in a two-
layer fluid medium are the wave interaction with floating elastic plate or floating ice-sheet,
which are of ocean engineering interest(cf. Das [27,28], Das and Mandal [29-31]). Also
Das and Thakur [32] studied the wave scattering by a sphere in the two-layer fluid with an
ice-cover. Recently, Sturova [8] also considered the problem of hydrodynamic loads acting
on an oscillating cylinder submerged in a stratified fluid with ice-cover. Thakur and Das
[25] investigated the wave scattering by submerged horizontal circular cylinder in water
with an ice-cover to obtain the vertical and horizontal forces for infinite depth. Li et.all
[33]considered the wave radiation and diffraction by a circular cylinder submerged below
an ice-sheet with a crack. They used the multipole expansion method and the solution
was obtained for a fluid of both finite and infinite depth. Recently, Sahu and Das [34]
studied the hydrodynamic forces on a submerged horizontal circular cylinder in uniform
finite depth water with ice-cover. This has motivated us to extend the problem in two
layered fluid of which the upper layer is covered with thin ice-sheet. Here we obtain the
horizontal and vertical forces in both the cylinder in lower and upper layer. It is observed
that, when the cylinder is in the lower layer the vertical and horizontal forces are iden-
tical but they are 900 out of phase but when the cylinder is in the upper layer they are
different. The method of multipoles is used to reduce the problem to the solution of an
infinite system of linear equations which are solved numerically by truncation. The time
independent part of the vertical and horizontal forces are obtained and depicted graphi-
cally against the wave number for various values of flexural rigidity of the ice-cover.
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2. Mathematical Formulation

We consider here the irrotational motion of two non-viscous incompressible fluids under
the action of gravity, neglecting any effect due to surface tension at the interface of the
two fluids, the upper being of finite depth h and the lower layer is of infinite depth. The
densities of upper and lower layers are ρ1 and ρ2 (ρ2 > ρ1) respectively. A rectangular
Cartesian co-ordinates are chosen such that (x, z)- plane coincides with the undisturbed
interface between the two fluids. The y axis being measured vertically upwards and y = 0
is the mean position of the interface and y = h(> 0) is the mean position of the ice-cover.
(See fig. 1(a), 1(b)). Assuming the linear water wave theory, the time-dependent train
of surface waves described by the potential function {φ(x, y)e−iσt}, where φ(x, y) is the
complex valued potential function and σ denotes the angular frequency. The upper fluid,
0 < y < h is referred to as region I, while the lower fluid, y < 0 will be referred to as
region II and the corresponding potential functions are φI and φII respectively, which
satisfy the Laplace equations (cf. Das and Mandal [30])

∇2φI = 0, for 0 < y < h, (2.1)

∇2φII = 0, for y < 0. (2.2)

The linearized boundary conditions at the interface and the ice-cover are

φI
y = φII

y on y = 0, (2.3)

ρ
(

φI
y −KφI

)

= φII
y −KφII on y = 0, (2.4)

where ρ = ρ1
ρ2
(< 1) and

(

D
∂4

∂x4
+ 1− ǫK

)

φI
y −KφI = 0, on y = h, (2.5)

whereK = σ2/g,D = L/(ρ1g), L being the flexural rigidity of the ice-cover, ǫ = (ρ0/ρ1)h0,
ρ0 is the density of the ice and h0 is the small thickness of ice-cover.
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Also condition at large depth is

∇φII → 0 as y → −∞. (2.6)

In a two layer fluid progressive waves have the form

φI = e±ikx
[

{k(Dk4 + 1− ǫK) +K}ek(y−h) + {k(Dk4 + 1− ǫK)−K}e−k(y−h)
]

(2.7)

and

φII = e±ikxeky
[

{k(Dk4 + 1− ǫK) +K}e−kh + {k(Dk4 + 1− ǫK)−K}ekh
]

, (2.8)

where k satisfies the dispersion equation,

H(k) = Kρ
{

k
(

Dk4 + 1− ǫK
)

cosh kh−K sinh kh
}

− {k(1− ρ)−K}

×
{

k
(

Dk4 + 1− ǫK
)

sinh kh−K cosh kh
}

= 0. (2.9)

The equation (2.9) has only two real positive roots λ1, λ2 (λ1 < λ2)(cf. Das [27]).
When k = λj (j = 1, 2), the progressive waves are thus of the form,

φI(x, y) = e±iλjxgj(y), j = 1, 2, (2.10)

φII(x, y) = e±iλjx+λjy, j = 1, 2, (2.11)

where,

gj(y) =
[

{λj(Dλ4
j + 1− ǫK) +K}eλj(y−h) + {λj(Dλ4

j + 1− ǫK)−K}e−λj(y−h)
]

×
(λj(1− ρ)−K

Kρ{λj(Dλ4
j + 1− ǫK) cosh λjh−K sinhλjh}

, j = 1, 2. (2.12)

Also φI(x, y) and φII(x, y) behave an outgoing waves as |x| → ∞ .

3. Cylinder in the lower layer

Let a horizontal circular cylinder of radius a have its axis y = f(< 0) and its generator
runs parallel to z axis. Polar co-ordinates (r, θ) are defined in the (x, y) plane by

x = r sin θ, and y = f − r cos θ. (3.1)

Let φs
n and φa

n denote the symmetric and anti-symmetric multipoles respectively which
satisfy the boundary conditions. The multipoles are (cf. Das and Mandal[30])

φIs
n =

(−1)n

(n− 1)!

∫

⌣
∞

0
kn−1{A(k)eky +B(k)e−ky} cos kxdk, (3.2)

φIIs
n =

cosnθ

rn
+

(−1)n

(n− 1)!

∫

⌣
∞

0
kn−1C(k)eky cos kxdk, (3.3)

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 8, August - 2021 Page-285



φIa
n =

(−1)n+1

(n− 1)!

∫

⌣
∞

0
kn−1{A(k)eky +B(k)e−ky} sin kxdk, (3.4)

φIIa
n =

sinnθ

rn
+

(−1)n+1

(n− 1)!

∫

⌣
∞

0
kn−1C(k)eky sin kxdk, (3.5)

where,
A(k) = K{k(Dk4 + 1− ǫK) +K}ek(f−h)/H(k), (3.6)

B(k) = K{k(Dk4 + 1− ǫK)−K}ek(f+h)/H(k), (3.7)

C(k) =
[

Kρ{k(Dk4 + 1− ǫK) cosh kh−K sinh kh}

−{k(1− ρ) +K}{k(Dk4 + 1− ǫK) sinh kh−K cosh kh}
]

ekf/H(k), (3.8)

where the contour is intended below the poles k = λ1 and k = λ2, which satisfy the
dispersion equation (2.9).

A power series expansion can be obtained from (3.3) and (3.5) as (cf. Das and Mandal
[30]),

φIIs
n =

cosnθ

rn
+

∞
∑

m=0

Anmr
m cosmθ, (3.9)

and

φIIa
n =

sinnθ

rn
+

∞
∑

m=0

Anmr
m sinmθ, (3.10)

where,

Anm =
(−1)n+m

(n− 1)!m!

∫

⌣
∞

0
kn+m−1C(k)ekfdk. (3.11)

Incident wave due to a wave number λj, j = 1, 2:
The incident wave potential φII

inc = eiλjx+λjy has the expansion about r = 0 as,

φII
inc =

∞
∑

m=0

(−1)m

m!
λm
j r

m(cosmθ − i sinmθ)eλjf . (3.12)

For the symmetric and anti-symmetric part we write the multipole expansion as,

φIIs
λj

= eλjy cosλjx+
∞
∑

n=1

anαnφ
IIs
n , (3.13)

and

φIIa
λj

= ieλjy sin λjx+
∞
∑

n=1

anβnφ
IIa
n , (3.14)

where, αn and βn are unknown complex constants. Now, applying the body boundary

condition
∂φII

λj

∂r
= 0 on r = a and using the orthogonal properties of trigonometric functions

we get the two infinite systems of linear equations are,

αm −
∞
∑

n=1

an+mAnmαn =
(−λja)

m

m!
eλjf , m = 1, 2, · · · (3.15)
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βm −
∞
∑

n=1

an+mAnmβn = −i
(−λja)

m

m!
eλjf . m = 1, 2, · · · (3.16)

These systems can be solved numerically by truncating the infinite series and solving an
N × N system of equations. Here (3.15) and (3.16) are truncated upto five terms. For
a submerged horizontal circular cylinder in infinite depth water and an incident wave of
amplitude, the vertical exciting force is given by for both λ1 and λ2,

XV = ρgA
∫ π

−π
φIIs
n (a, θ) cos θadθ.

Using orthogonality of the trigonometric functions we have, (cf. Thakur and Das [25])

XV = 2πρgAaα1. (3.17)

Similarly, the horizontal exciting force is given by,

XH = 2πρgAaβ1. (3.18)

(3.18) Comparing (3.15) and (3.16) we have, βn = −iαn. Then,

XH = −2iπρgAaα1. (3.19)

Here, it is seen that the amplitudes of these oscillatory forces are identical, but they are
900 out of phase.

Numerical Results

Figures 2,3 show the non-dimensional vertical exciting forces on the horizontal cylinder
in lower layer due to an incident wave of wave number λ1 and 4,5 show that the vertical
forces in lower layer due to an incident wave number λ2. Fig.2 Shows vertical forces
against Ka for h/a = 2, f/a = −3, ρ = .95 and for different values of D/a4. It is
observed that, first the vertical forces increase as Ka increases from low to moderate
values, then decrease as Ka further increase for any value of D/a4, but forces increase
D/a4 increases with increasing of Ka. When D/a4 = .001, ǫ/a = .001 the curve coincides
to the curve for the case of two-layer fluid with free surface. In Fig.3 the vertical forces is
plotted against Ka, for h/a = 2, D/a4 = 1, ǫ/a = .01, ρ = .95 and for different values of
f/a. These figures show that,the vertical forces first increase then after attending its max
values, decrease very slowly. In Fig.4, |XV | is plotted against Ka for f/a = −2, h/a = 2,
ρ = .95 and for different values of D/a4. From the figures it is observed that,vertical
forces first increase from low to moderate values then decrease as Ka increases. When
D/a4 = .001, ǫ/a = .001 the vertical exciting forces are the same as in case of two-layer
fluid with free surface. In Fig5., |XV | is plotted against Ka for D/a4 = 1, h/a = 2,
ρ = .95, ǫ/a = .01 and for various values of Ka. First |XV | increases then decreases as
Ka further increases.

The horizontal forces for the cases of incident waves λ1 and λ2 are not shown here. The
magnitude of the horizontal forces are equal to the magnitude of the vertical forces for
both the incident wave of wave numbers and display the same qualitative effects. Also it
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is noted that when the cylinder is closed to the interface (f/a = −2) the vertical forces
are greater as more wave energy are generated at the interface than on the larger depth
of the cylinder from the interface.
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4. Cylinder in the upper layer

Let a horizontal circular cylinder of radius a have its axis y = f(> 0) and its generator
runs parallel to z axis (f > a). Polar co-ordinates (r, θ) are defined in the (x, y) plane by
x = r sin θ, and y = f − r cos θ. The potential functions are (cf. Das and Mandal [30])

φIs
n =

cos nθ

rn
+

1

(n− 1)!

∫

⌣
∞

0
kn−1{A(0)

n (k)eky +B(0)
n (k)e−ky} cos kxdk, (4.1)

φIIs
n =

1

(n− 1)!

∫

⌣
∞

0
kn−1C(0)

n (k)eky cos kxdk, (4.2)
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φIa
n =

sinnθ

rn
+

1

(n− 1)!

∫

⌣
∞

0
kn−1{A(1)

n (k)eky +B(1)
n (k)e−ky} sin kxdk, (4.3)

φIIa
n =

1

(n− 1)!

∫

⌣
∞

0
kn−1C(1)

n (k)eky sin kxdk, (4.4)

where,

A(j)
n (k) =

1

2
{k(Dk4 + 1− ǫK) +K}e−kh

×
(−1)n+j+1 ((1− ρ)k − (1 + ρ)K) ekf − (1− ρ)(k −K)e−kf

H(k)
, (4.5)

B(j)
n (k) =

1

2

(−1)n+j+1{k(Dk4 + 1− ǫK) +K}(1− ρ)(k −K)ek(f−h)

H(k)

−
1

2

(1− ρ)(k −K){k(Dk4 + 1− ǫK)−K}e−k(f−h)

H(k)
, (4.6)

C(j)
n (k) = −ρK

×

[

(−1)n+j+1{k(Dk4 + 1− ǫK) +K}ek(f−h) − {k(Dk4 + 1− ǫK)−K}e−k(f−h)
]

H(k)
, (4.7)

where j = 0, 1, the contour is intended below the poles k = λ1 and k = λ2, in the complex
k plane.

A power series expansion can be obtained from (4.1) and (4.3) as (cf. Das and Mandal
[30]),

φIs
n =

cos nθ

rn
+

∞
∑

m=0

Es
nmr

m cosmθ, (4.8)

and

φIa
n =

sinnθ

rn
+

∞
∑

m=0

Ea
nmr

m sinmθ, (4.9)

where,

Es
nm =

1

(n− 1)!m!

∫

⌣
∞

0
kn+m−1

(

(−1)mA(0)
n (k)ekf +B(0)

n (k)e−kf
)

dk, (4.10)

Ea
nm =

1

(n− 1)!m!

∫

⌣
∞

0
kn+m−1

(

(−1)m+1A(1)
n (k)ekf +B(1)

n (k)e−kf
)

dk. (4.11)

Incident wave due to a wave number λj, j = 1, 2:
The incident wave potential φI

inc = eiλjxgj(y) has the expansion about r = 0 as,

φI
inc =

∞
∑

m=0

(λjr)
m

m!

[

{(−1)mM
λj

1 e−λj(h−f) +M
λj

2 eλj(h−f)} cosmθ+

i{(−1)m+1M
λj

1 e−λj(h−f) +M
λj

2 eλj(h−f)} sinmθ
]

, (4.12)
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where,

M
λj

1,2 =
{(1− ρ)λj −K}{λj(Dλ4

j + 1− ǫK)±K}

Kρ{λj(Dλ4
j + 1− ǫK) coshλjh−K sinh λjh}

. (4.13)

The velocity potential φIs
λj

and φIa
λj

is expanded as in (3.13) and (3.14)(φII replace by φI).

Now applying body boundary condition
∂φI

λj

∂r
= 0 on r = a and using the orthogonal

properties of trigonometric functions we get the two infinite systems of linear equations
are,

αm−
∞
∑

n=1

an+mEs
nmαn =

(λja)
m

m!

[

(−1)mM
λj

1 e−λj(h−f) +M
λj

2 eλj(h−f)
]

, m = 1, 2, · · · (4.14)

βm −
∞
∑

n=1

an+mEa
nmβn = i

(λja)
m

m!

[

(−1)m+1M
λj

1 e−λj(h−f) +M
λj

2 eλj(h−f)
]

.m = 1, 2, · · ·

(4.15)
Again this system can be solved by truncation. For a submerged horizontal circular
cylinder in finite depth water and an incident wave of amplitude A, the vertical exciting
force is given by,

XV = ρgA
∫ π

−π
φIs
n (a, θ) cos θadθ.

Using orthogonality of the trigonometric functions we have,

XV = 2πρgAaα1. (4.16)

Similarly, the horizontal exciting force is given by,

XH = 2πρgAaβ1. (4.17)

Numerical Results

Figures 6, 7 show the non-dimensional vertical forces and 8, 9 show the non-dimensional
horizontal forces on the cylinder in upper layer due to an incident wave of wave number
λ1 and Fig.10, 11 for vertical forces, Fig.12, 13 for horizontal forces corresponding to λ2.
From Fig6. it is observed that for the vertical forces for different values of D/a4 first
increase with decreases of D/a4 and after a moderate values of the curve decrease with
decreases of D/a4. In Fig.10, We see that the vertical forces due to an incident wave of
wave number λ2 have similar features but smaller than the case of incident wave of wave
number λ1. In Fig.7 and 11 it is seen that the vertical forces for both the cases increase
when the depth of centre of the submerged circular cylinder decreases i.e. for nearer to
the ice-cover surface. Also it is observed that the forces are oscillatory in nature due to an
interaction of the incident wave between the boundary of the circular cylinder, ice-cover
surface and interface between two-layer.
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of wave number λ
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Fig 10. Vertical forces due to an incident wave
of wave number λ
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Fig.8 and 12 show the horizontal forces for different values of D/a4 due to an incident
wave of wave number λ1 and λ2 respectively. These show the effect of the flexural rigidity
of the ice-sheet and also observed that when D/a4 = .001, ǫ/a = .001, the forces are
similar to the case of free surface two-layer fluid. Fig.9 and 13 show the horizontal forces
for different values of f/a. For both the cases, it is observed that the forces increase with
the increase of f/a. Also it is noted that from the figures the forces in the lower layer are
smaller than that for upper layer for any value of D/a4.

4. Conclusion

The problem of hydrodynamic forces on the submerged circular cylinder is extended
here for a two-layer fluid. The lower is of infinite depth and the upper layer is of finite
depth with an ice-cover surface, modelled as a thin elastic plate. Numerical results for the
vertical and the horizontal forces on the cylinder are obtained. The method of multipoles
has been shown to be an extremely powerful method for solving this problem involving
submerged circular cylinder. The vertical forces on the cylinder in lower layer and also
vertical and horizontal forces on the cylinder in upper layer are depicted graphically
against the wave number in a number of figures. When D/a4 = 0.001 and ǫ/a = 0.001,
the forces are coincided with the curves for the case of two-layer fluid with free surface.
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