
Relational and Non Relational
Databases: A Review

Nimesh Thakur, Nishi Gupta

Department of Mathematics, University Institute of Sciences, Chandigarh University,
Gharuan, Mohali, Punjab-140413, India

Email: 20msm3054@cuchd.in

Relational and non-relational databases are the two types of databases that are
used to store data and perform different operations on it. For data storage, they
use a variety of formats. In this paper, we’ll try to figure out what they’re all
about and what the main differences are. Databases serve as a data centre from
which information is collected and processed. Data science is a multidisciplinary
field that combines mathematics, statistics, and programming to research data.
For a data scientist, a basic understanding of databases is a must-have ability.
We’ll look at how a data scientist can make the most of different database types.

Keywords: Database; Big Data; Relational Database Systems; Internet Technologies; Non
Relational Database Systems;

1. INTRODUCTION

To put it another way, a database is a repository
of data where data is stored, accessed to perform
desired operations on data, and then unadulterated or
corrupted or new data is stored back.

As the name implies, a relational database establishes
relationships between data. Tables are used to store
data, and these tables are linked in some way. Such that
you can picture one table being connected to another
table, which is related to another table, and so on. This
paper will look at these connections and how they are
connected. Database management systems are software
for application-independently describing, storing, and
querying data. All database management systems
contain a storage and a management component[1].

Non-relational databases, also known as No-sql
databases, take a different approach to data organisa-
tion than relational databases, modelling data in ways
other than tabular relations. Non-relational databases
were created to address the limitations of relational
databases.

Data science is highly reliant on data, and a
data scientist must be able to perform desired data
operations. For relational databases, the Structured
Query Language (SQL) is the traditional user and
application programme interface, while mongo-db is
common for non-relational databases. As great volume
of data is generated over the last few years the demand
in storing, processing and analysing data efficiently has
increased and can’t be handled by traditional systems.
Therefore the term big data has been coined. The
term “big data” refers to data that is so large, fast
or complex that it’s difficult or impossible to process

using traditional methods. The act of accessing and
storing large amounts of information for analytics has
been around a long time[2]. As with the traditional
technologies, big data technologies are used for many
tasks, including data engineering[3].

2. BACKGROUND

From the mid-1960s on-wards, the availability of direct-
access storage (discs and drums) coincided with the
emergence of the term database.

A relational database is a tabular database that was
introduced by E.F. Codd at IBM in 1970 and allows
data to be reorganised and viewed in a variety of
ways[4].

Carlo Strozzi used the term NoSQL in 1998 to
describe his open-source relational database Strozzi
NoSQL, which did not expose the SQL interface but
was still relational. [two] His NoSQL RDBMS is dis-
tinct from the general definition of NoSQL databases
that emerged around 2009. Since the new NoSQL trend
”departs from the relational paradigm entirely,” accord-
ing to Strozzi, it should have been dubbed - The name
attempted to label the emergence of an increasing num-
ber of non-relational, distributed data stores, includ-
ing open source clones of Google’s Bigtable/MapReduce
and Amazon’s DynamoDB. While object-oriented lan-
guages succeeded in becoming the major force in pro-
gramming, object-oriented databases faded into obscu-
rity[5].Object relational mapping is a way to connect
object oriented paradigm with the data base . Object
relational mapping came in play which and this exposed
loopholes in traditional database system

, , ,

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 8, August - 2021 Page-117

3. REALTIONAL DATABASE

A relational database is a list of data items that are
linked together in some way. Tables with rows and
columns are used to store information in these objects.
A database table is made up of rows and columns. The
data is defined in the first column, which is called the
header column. Except for the header column, each
column has a datatype. Columns can’t have values that
aren’t part of the data type. Consider the following
example.

ID salary Name city age

001 20000 nim Mumbai 22

002 30000 tin Chennai 30

Each column header has an unique type and each
column contains similar values corresponding to thier
column type. A value that describes the object is
stored in the row. In this case, row values are often
referred to as entities. Column headers are referred to
as attributes. As you can see, each column contains a
similar value.

Kinds of data-type in Relational databases are-
Numeric data types such as int, tinyint, bigint, float,
real etc. Date and Time data types such as Date, Time,
Datetime etc. Character and String data types such as
char, varchar, text etc. Unicode character string data
types, for example nchar, nvarchar, ntext etc. Binary
data types such as binary, varbinary etc. Miscellaneous
data types – clob, blob, xml, cursor, table etc.

It would be best if we look at an example query for
creating a database -

CREATE TABLE Persons (
PersonID int ,
LastName varchar (255) ,
FirstName varchar (255) ,
Address varchar (255) ,
City varchar (255)

) ;

A table with the attributes PersonID, LastName,
FirstName, City, and Address is created using the
keywords build and table. When we insert values and
build a row, we’re making a person entity. As a result, a
row is often referred to as an entity. A semicolon often
appears at the end of a sentence to indicate that it has
come to an end.

It’s critical that we have distinct values to separate
this row from the others in the table. As a result, we’ll
need a column that distinguishes each row from the
others. This is accomplished in the Persons table by
the PersonId sector, which is special for each record.
This is referred to as the primary key. There should be
only one primary key in any relational database. Since
a primary key has to be unique it cannot be null and
the value is incremented by the database if specified.

The international Key is another important term.

The international key in one table is the primary key
in another. Since it binds two columns, a foreign key
is often known as a referential restriction. After the
primary key, a foreign key is typically produced. It
is possible for it to be null, and it is not immediately
auto generated. In your table, you may have several
international keys. Also there are different types of
relations among data entities.

Foreign and primary keys are two essential concepts
to consider when working with relational databases.

Databases consists of many tables and these table
are defined using entity-relation diagram. A completed
entity-relation diagram represents the overall, logical
plan of the database[6].

Types of relational ships

1. One-to-One Relationship - When each record in
one table is compared to just one record in
the other table, this is known as a one-to-one
relationship.

2. One-to-Many or Many-to-One Relationship - When
each record in one table can be linked to one or
more records in the other table, this is known as
a one-to-many or many-to-one relationship. The
most popular type of partnership discovered is this
one. Depending on how we look at it, a one-to-
many relationship can be defined as a many-to-one
relationship.

3. Relationship of Many-to-Many - When each record
of the first table can be related to one or more
records of the second table, and a single record
of the second table can be related to one or more
records of the first table, such a relationship occurs.

In the following example we will get an intuitive idea
of how these relationships work

Husband <−−−−−− one to one −−−−−−−> wi f e

team <−−−−−−− one to many −−−−−−−−> Players

student<−−−−−−many to many −−−−−−−−> s u b j e c t

Drawbacks of relational databases:

1. Impedance mismatch between the object-oriented
and the relational world.

2. The relational data model doesn’t fit in with every
domain.

3. Difficult schema evolution due to an inflexible data
model.

4. Weak distributed availability due to poor horizon-
tal scalability.

5. Performance hit due to joins, ACID transactions
and strict consistency constraints (especially in
distributed environments).

, , ,

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 8, August - 2021 Page-118

Relational and Non Relational Databases: A Review

4. NON-RELATIONAL DATABASE OR
NOSQL DATABASE

As previously mentioned, NoSql does not organise data
using a tabular schema of rows and columns. Non-
relational databases, on the other hand, use a storage
model that is specific to the database form. The term
”NoSQL” refers to data stores that don’t use SQL
to query their data and instead rely on a different
construct. Despite the fact that they support SQL-
compatible requests, NoSQL refers to a non-relational
database. On the other hand, query execution varies
greatly from that of the RDBMS.

Non-relational databases are often used when large
quantities of complex and diverse data need to be
organized. For example, a large store might have
a database in which each customer has their own
document containing all of their information, from
name and address to order history and credit card
information. Despite their differing formats, each of
these pieces of information can be stored in the same
document.

Non-relational databases are also quicker than
relational databases because a question doesn’t have to
look at several tables to get a response. Non-relational
databases are thus suitable for storing constantly
changing data or for applications that deal with a wide
range of data types. They can handle large volumes of
complex, unstructured data and help rapidly evolving
applications that include a dynamic database that can
change quickly.

The parts that follow explain the various types of
non-relational or NoSQL databases.

4.1. Document data stores

In an organisation known as a log, a document data
store maintains a collection of named string fields
and object data values. Data is usually stored in
the form of JSON documents in these data stores.

key Document

001921 { name: {first:
”Alan”, last: ”Tur-
ing” }, birth:
new Date(’Jun
23, 1912’), death:
new Date(’Jun
07, 1954’), con-
tribs: [”Turing
machine”, ”Turing
test”, ”Turingery”
], views : Number-
Long(1250000)

Data

is organised into columns and rows in a columnar or
column-family data store. In its most basic form, a
column-family data store may resemble, at least con-
ceptually, a relational database. An example of two

column families, Identity and Contact Details, is shown
in the diagram below.

customer ID column Family :
Identity

001 First Name : nim
Last Name :tin

002 First Name : kyo
Last Name :pan

customer ID column Family :
contact Info

001 phone number :
9167519 email:
nim@gmail.com

002 phone number :
kyo Last Name
:pan

4.2. Key/value data stores

The key-value store is the simplest of the NoSQL stores,
and it is simply a list of key-value pairs stored within
an entity, as the name implies. Key-value databases
are highly partitionable and allow horizontal scaling at
scales that other types of databases cannot achieve[7].

4.3. Graph data stores

A graph data store keeps track of two types of data:
nodes and edges. Nodes represent entities, while
edges define the connections between them. Similar to
columns in a table, nodes and edges may have properties
that provide details about them. The essence of the
relationship can also be shown by the orientation of the
edges.

The goal of a graph data store is to allow an
application to run queries that traverse the network of
nodes and edges quickly and analyse the relationships
between entities.

4.4. Time series data store

A time series data store is designed specifically for this
form of data, which is a collection of values ordered by
time. Since they usually receive vast quantities of data
in real time from a wide variety of sources, time series
data stores must be able to handle a large number of
writes.Having access to detailed, feature rich time-series
data has become one of the most valuable commodities
in our information-hungry world[8].

4.5. Object data store

Large binary objects or blobs, such as images, text files,
video and audio sources, large device data objects and

, , ,

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 8, August - 2021 Page-119

records, and virtual machine disc images, are stored
and retrieved using object data stores. The stored
data, some metadata, and a specific ID for accessing the
object make up an object. Object stores are designed
to handle large files independently while still providing
a large volume of overall capacity to accommodate all
files.

Object storage is a relatively new option for data
storage, optimized for general binary or unstructured
data, often multimedia[9].

5. CASE STUDY

Apache HBase is a NoSQL database that runs as
a distributed and flexible large data store on top
of Hadoop. This means that HBase will use the
Hadoop Distributed File System (HDFSdistributed
)’s computing paradigm and learn from Hadoop’s
MapReduce programming model. It’s designed to run
on a cluster of commodity hardware and host massive
tables with billions of rows and theoretically millions
of columns. However, HBase is a powerful database in
and of itself, combining real-time query functionality
with the speed of a key/value store and offline or batch
processing through MapReduce.

HBase is not a relational database and requires a
different approach to modeling your data. HBase
actually defines a four-dimensional data model

1. Row key
2. Column qualifier
3. Column family
4. Version

A single row can be accessed using the row key and is
made up of one or more column families. Each column
family has one or more column qualifiers (referred to
as ”columns” in Figure 1), and each column may have
several copies. You’ll need to know the row key, column
kin, column qualifier, and version to get to a specific
piece of info.

When creating an HBase data model, it’s a good idea
to consider how the data will be used. HBase data can
be accessed in two ways:

1. Through their row key or via a table scan for a
range of row keys

2. In a batch manner using map-reduce

HBase’s dual-approach to data access is one of its
most powerful features. Often, saving data in Hadoop
ensures that it is suitable for offline or batch processing
(which it excels at), although not inherently for real-
time access. HBase solves this by serving as both a
key/value store for real-time analysis and a map-reduce
engine for batch processing.

The meaning is the set of column families, and the
key is the row key we discussed earlier (that have their
associated columns that have versions of the data). You
can get the value associated with a key; in other words,

you can ”get” the row associated with a row key, or you
can ”get” a series of rows by providing the beginning
row key and ending row key, which is known as a table
check. In a real-time question, you can’t look up values
in columns, which brings up a significant point: design
of a row key.

6. CONCLUSIONS

Data is stored in both relational and non-relational
databases, and neither can do something that the
other can’t. When comparing relational and non-
relational databases, it’s important to remember that
these two kinds of databases are both useful in their own
right—but for various purposes and usage cases. There
is no one-size-fits-all database, and both relational and
non-relational databases have their uses.

Instead of the Structure Query Language (SQL)
used by relational databases, the NoSQL database
uses Object-relational-mapping (ORM). The concept of
ORM is the ability to write queries using your preferred
programming language. Some of the more popular
ORMs are Java, Javascript, .NET and PHP.

Relational databases are good for structured data,
whereas NoSQL databases are good for unstructured
data. NoSQL is capable of storing vast volumes of data
with minimal structure. NoSQL databases are more
scalable than relational databases.

Most application development today is done in
object-oriented programming languages, which leads to
a common criticism of the SQL data model: if data is
stored in relational tables, an awkward translation layer
is required between the objects in the application code
and the database model of tables, rows, and columns.
The disconnect between the models is sometimes called
an impedance mismatch[10].

As a result, Nosql has the scalability and versatility
to adapt to evolving market needs. MySql, Oracle,
Sqlite, Postgres, and MS-SQL are examples of SQL
databases. MongoDB, BigTable, Redis, RavenDb,
Cassandra, Hbase, Neo4j, and CouchDb are examples
of NoSQL databases.

It is said that RDBMS is vertical scalable whereas
NoSQL is both horizontally and vertically scalable.
SQL databases are best fit for heavy duty transactional
type applications and are secure.

Depending upon the type of data you are working
with, you can pick one over the other.

REFERENCES

[1] Andreas Meier, Michael Kaufmann. Models, Languages,
Consistency Options and Architectures for Big Data
Management. 2019.

[2] SAS, Big Data What it is and why it matters.
https://www.sas.com/en in/insights/big-data/what-
is-big-data.html

[3] Foster Provost and Tom Fawcett,”Data Science
and its Relationship to Big Data and Data-Driven

, , ,

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 8, August - 2021 Page-120

Relational and Non Relational Databases: A Review

Decision Making” Big DataVol. 1, No. 1 (2013)
https://doi.org/10.1089/big.2013.1508 20 July 2021

[4] wikipedia, Relational Database.
https://en.wikipedia.org/wiki/Relational database.

[5] Fowler, M., Sadalage, P. J. (2012). NoSQL Distilled:
A Brief Guide to the Emerging World of Polyglot
Persistence. (n.p.): Pearson Education.

[6] Harrington, J. L. (2002). Relational Database Design
Clearly Explained, Second Edition (The Morgan Kauf-
mann Series in Data Management Systems). Nether-
lands: Morgan Kaufmann Publishers.

[7] Amazon, What Is a Key-Value Database.
https://aws.amazon.com/nosql/key-value/

[8] Timescale, What the heck is time-series data
(and why do I need a time-series database)?
https://blog.timescale.com/blog/what-the-heck-is-
time-series-data-and-why-do-i-need-a-time-series-
database-dcf3b1b18563/

[9] IBM, Object storage benefits, myths and
options.https://www.ibm.com/blogs/cloud-
computing/2017/02/01/object-storage-benefits-myths-
and-options/

[10] Kleppmann, M. (2017). Designing Data-Intensive
Applications: The Big Ideas Behind Reliable, Scalable,
and Maintainable Systems. United States: O’Reilly
Media.

ACKNOWLEDGEMENTS

I would like to express my special thanks of gratitude
to my mentor Nishi Gupta for her exemplary guidance,
monitoring and constant encouragement throughout
the process.

, , ,

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 8, August - 2021 Page-121

