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Abstract-   Numerous restaurants fight for the best quality for clients in the increasingly competitive 

restaurant sector. A restaurant is a business that demands more attention to customer care through 

continually enhancing customer service. The situation has an effect on the restaurant's brand image, 

which is shaped by whether or not consumers are happy. Restaurant patrons may choose to benefit from 

others' experiences by evaluating restaurants based on a range of factors, including meal quality, service, 

ambience, discounts, and deservingness. Users may leave reviews and ratings of companies and services, 

or just comment on other reviews. From one standpoint, bad (negative) reviews may influence how 

potential consumers make purchasing decisions. Sentiment analysis is a technique for determining the 

emotional content of a text that may be used to evaluate product/service reviews. Additionally, we may 

categorise them as positive or negative emotions. Understanding how the general public feels about 

various entities and products enables more relevant marketing, recommendation systems, and market 

trend research. Prepossessed data is collected, and then categorization is performed using a confusion 

matrix. This study enables us to create a report on the public's perception of a particular restaurant. We 

developed a machine learning model and trained it using Bernoulli's Naive Bayes classifier. Additionally, 

we evaluated the classifier's performance on the test sample using evaluation matrices such as prediction, 

accuracy, recall, and F1 score. Customer review research has a significant influence on a business's 

growth strategy. 
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Ⅰ. Introduction 

According to the research, Schrauwen conducted Sentiment Analysis utilising the Naive Bayes method, 

Maximum Entropy, and a Decision Tree Classifier. Accuracy, Precision, and Recall are used to evaluate 

performance using the N-fold Cross Validation method. Another study compared the accuracy value 

before and after the feature selection technique was included using the Naive Bayes and Adaboost 

methods. By combining various approaches, the research achieves higher accuracy values than when only 

one method is used. Additionally, sentiment analysis research has been conducted using the Probabilistic 

Latent Semantic Analysis technique. The data is derived from the review's title, not the whole remark. His 

investigation revealed that the identification findings were 76 percent accurate. 

 

Customer happiness is a primary concern in marketing and consumer behavior research. As is the case 

with hotel consumers, when they receive exceptional service, they will spread the word through word of 

mouth. Text mining is the process of extracting data from a collection of regularly stored documents 

using analytical tools or guides. By analyzing several text mining viewpoints, information may be 
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generated that can be used to enhance revenues and services. Sentiment analysis is used to ascertain the 

author's feelings about a certain item. A review's sentiment analysis is an examination of a product's 

opinion. Sentiment analysis is based on the use of Natural Language Processing (NLP), text analysis, and 

certain computational components to extract or remove superfluous information in order to determine if a 

statement is negative or positive. In the prior centuries, Thomas Bayes created a technique called Naive 

Bayes, which combined probability and opportunity analysis. The Equation illustrates the Naive Bayes 

algorithm's operation. Naive Bayes forecasts future probabilities based on previously collected data or 

experience. One of the Naive Bayes Classification's characteristics is the presence of independent input 

variables that presume the presence of an articular feature from a class that is mutually independent of 

other features. 

 

Alec co utilized a variety of machine learning methods. Numerous machine learning methods are 

available, including Naive Bayes, Maximum entropy, and Support vector machine. Janice M. Weibe 

discussed the categorization of documents and sentences. He gathered evaluation data for a variety of 

product categories, including automobiles, banking, movies, and travel. He classified the terms as good or 

negative. Additionally, he computed the text's total positive or negative score. If the text has more 

positive than negative terms, it is deemed positive; otherwise, it is considered negative. Hu and Liu 

(2004) pioneered the development and implementation of a system that generates a feature-based 

summary from customer feedback. The suggested system carries out three functions: To extract product 

attributes from customer reviews, association rule mining is performed; WordNet is used to forecast the 

semantic orientations of opinion terms; and a feature-based summary is generated. Few methods for 

feature-based summarization have been suggested over the last two decades. The summarizers are used in 

a variety of areas, including product reviews, film reviews, local service evaluations, and hotel reviews. 

Ⅱ. Literature survey 

According to the research, Schrauwen conducted Sentiment Analysis utilising the Naive Bayes method, 

Maximum Entropy, and a Decision Tree Classifier. Accuracy, Precision, and Recall are used to evaluate 

performance using the N-fold Cross Validation method. Another study compared the accuracy value 

before and after the feature selection technique was included using the Naive Bayes and Adaboost 

methods. By combining various approaches, the research achieves higher accuracy values than when only 

one method is used. Additionally, sentiment analysis research has been conducted using the Probabilistic 

Latent Semantic Analysis technique. The data is derived from the review's title, not the whole remark. His 

investigation revealed that the identification findings were 76 percent accurate. 

 

Customer happiness is a primary concern in marketing and consumer behavior research. As is the case 

with hotel consumers, when they receive exceptional service, they will spread the word through word of 

mouth. Text mining is the process of extracting data from a collection of regularly stored documents 

using analytical tools or guides. By analyzing several text mining viewpoints, information may be 

generated that can be used to enhance revenues and services. Sentiment analysis is used to ascertain the 

author's feelings about a certain item. A review's sentiment analysis is an examination of a product's 

opinion. Sentiment analysis is based on the use of Natural Language Processing , text analysis, and 

certain computational components to extract or remove superfluous information in order to determine if a 

statement is negative or positive. In the prior centuries, Thomas Bayes created a technique called Naive 

Bayes, which combined probability and opportunity analysis. The Equation illustrates the Naive Bayes 
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algorithm's operation. Naive Bayes forecasts future probabilities based on previously collected data or 

experience. One of the Naive Bayes Classification's characteristics is the presence of independent input 

variables that presume the presence of an articular feature from a class that is mutually independent of 

other features. 

 

Alec co utilized a variety of machine learning methods. Numerous machine learning methods are 

available, including Naive Bayes, Maximum entropy, and Support vector machine. Janice M. Weibe 

discussed the categorization of documents and sentences. He gathered evaluation data for a variety of 

product categories, including automobiles, banking, movies, and travel. He classified the terms as good or 

negative. Additionally, he computed the text's total positive or negative score. If the text has more 

positive than negative terms, it is deemed positive; otherwise, it is considered negative. Hu and Liu 

(2004) pioneered the development and implementation of a system that generates a feature-based 

summary from customer feedback. The suggested system carries out three functions: To extract product 

attributes from customer reviews, association rule mining is performed; WordNet is used to forecast the 

semantic orientations of opinion terms; and a feature-based summary is generated. Few methods for 

feature-based summarization have been suggested over the last two decades. The summarizers are used in 

a variety of areas, including product reviews, film reviews, local service evaluations, and hotel reviews. 

Ⅲ. PROPOSED ALGORITHM 

 

 

The classification technique Naive Bayes is based on Bayes' theorem. The Naive Bayes Classifier's 

primary characteristic is a very strong  independence assumption between condition and event. When two 

distinct occurrences occur, Bayes's theorem allows the conditional probability to be decomposed as 

follows: 

 

P(A/B)=P(A)  P(B/A) 

             P(B) 

 

For text classification at the word feature level, the Naive Bayes assumption of attribute independence 

works effectively. When the number of characteristics is large, the independence assumption enables each 

attribute's parameters to be learnt independently, considerably simplifying the learning process. 

 

3.1. Data collection 

 

In this study, we utilized the reference dataset "Restaurant Reviews.tsv" for analyzing restaurant reviews. 

These evaluations are written in simple language and contain some slang and colloquial language. It 

includes both good and negative evaluations that are unique from one another. Classification models may 

be taught to understand the user's sentiment. We gathered data from 1,000 reviews of a restaurant and 

their associated feelings. There are two columns in this dataset. The first column contains text data 

denoted by the term "Review," while the second column has binary values denoted by the term "Liked." 

For example, if a review is favorable to the restaurant, as in a positive review, the associated mood is 

specified as "1". On the other hand, if a review is unfavorable to restaurants, like in a negative review, it 

is classified as "0." 
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data = pd.read_csv('Restaurant_Reviews.tsv', sep='\t', quoting=3) 

 

Architecture : 

 

 

 
 

Figure 1. Architecture 

 

3.2. Data preprocessing 

 

Given that we are analyzing text data for sentiment analysis, data preparation is critical to ensure that the 

model understands the input. Text data is densely packed with noise. As a result, it's difficult to sanitize 

the texts intelligently. Pre-processing data considerably decreases the size of the input text documents. It 

occurs in a series of steps. Each review begins with a preprocessing phase that eliminates all ambiguous 

information, such as stop words, numeric, and special characters. We imported the NLTK library and 

from it, stop words and Porter Stemmer for eliminating stop words, numeric, and special characters. 

NLTK (Natural Language Toolkit) is the industry-standard Python framework for working with human 

language data. It provides intuitive interfaces to over 50 corpora and lexical resources, including 

WordNet, as well as a suite of text processing libraries for classification, tokenization, stemming, tagging, 

parsing, and semantic reasoning, as well as wrappers for industrial-strength natural language processing 

libraries. 
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3.2.1.Importing Regular Expression:  

 

A regular expression is a collection of characters that are mostly used to search for and replace patterns 

inside a string. When a machine stores a written language, it is often represented as a series  of characters. 

Each word is a string. A string is a collection of words. Complete texts Additionally, there are strings, 

which include special characters for space and newlines. Occasionally, strings are prepared, for example, 

a "date string" such as 2002-06-23. Formatting whole texts is possible. For example, an email message 

with header fields followed by the message content. Texts may contain "markup," such as 

<abbrev>Phila</abbrev>, that contains information about the interpretation or display of certain sections 

of text. Thus, strings are common in language processing because they frequently include significant 

structures.    

 

3.2.2.Stop-word elimination:  

 

Stop-words are functional terms that appear often in the text's language (for example, "a," "the," "an," and 

"of" in the English language), making them unusable for categorization. We reduce stop-words by 

utilizing the Natural Language Toolkit  package. We don't want these terms to eat up important storage 

space or processing time in our database. This is simply accomplished by keeping a list of words that you 

regard as stop words. In Python, NLTK  stores a list of stopwords in 16 distinct languages. 

 

 

3.2.3.Stemming:  

 

Stemming is the process of reducing inflected words to their root (or stem) in information retrieval, such 

that similar terms map to the same stem. This approach decreases the number of words linked with each 

document organically, therefore reducing the feature space. In our tests, we employ a Porter stemming 

algorithm implementation. For instance, the English word "generalizations" would be stemmed as 

"generalizations → generalization → generalize → general → gener". 

 

3.3. Bag of word model 

 

A method for representing text data for machine learning algorithms, and the bag-of-words model aids us 

in this endeavor. The bag-of-words paradigm is straightforward to comprehend and use. It is a technique 

for extracting textual characteristics for use in machine learning algorithms. In machine learning, the act 

of transforming natural language processing text into numbers is referred to as vectorization. Potential 

features are extracted and translated into numerical format from the cleaned dataset. Vectorization is a 

method that converts textual input to numerical data. A matrix is generated via vectorization, with each 

column representing a feature and each row representing an individual review. In the first major phase of 

natural language processing, we not only cleaned all the reviews, but also built a corpus. Corpus is a term 

that refers to collections of texts. Our model corresponds to a corpus of 1000 cleansed reviews. We 

constructed the model bag from the corpus. The bag of models contains all of the corpus's distinct words. 

There are 1000 reviews in our corpus, and each review has one column for each unique term. Because 

1000 reviews contain a large number of unique words, they have a large number of columns. We created 

a table with all the columns and a row count of 1000. We may simply eliminate duplicate values and data 
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redundancy by utilizing the Bag of Models. Each cell contains a number, which represents the frequency 

with which the relevant column appears in the review. For instance, the first column has the phrase "wow 

love location," which results in a value of 1 for the "wow" cell. However, the second row contains no 

instances of "wow," resulting in a value of "0" for the "wow" cell in the second row. This is the method 

through which the Bag Model was created. 

 

 

 

3.4. Splitting Dataset 

 

Splitting the data set into two halves is a critical component of the Machine Learning model. 

 

3.4.1. Training Set  

3.4.2.Evaluation Set 

 

Machine Learning's primary objective is to generalize beyond the data examples used to train models. We 

wish to test the model to determine the quality of its pattern generalization on un-trained data. However, 

because future instances will have unknown target values and we will be unable to verify the accuracy of 

our predictions for future instances at this time, we will need to use some of the data for which we already 

know the answer as a proxy for future data, which will be referred to as our Test Set. When dealing with 

big datasets, the most common method is to divide them into training and test subsets, often with a ratio 

of 70-80% for training and 20-30% for testing. The Train test split function, which is loaded from the 

scikit-learn package, does this splitting randomly. 

3.4.1.Training Set : 

We've incorporated 80% of the data from 1000 reviews into our train set. Both the independent variable 

(x_train) and the dependent variable (y_train) are known in the training set. 

3.4.2.Testing Set : 

The test set contains 20% of the data from 1000 reviews, where the dependent variable is denoted by 

(x_test) and the independent variable is denoted by (y_test). 

 

Splitting: 

 

from sklearn.model_selection import train_test_split 

 

x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.2, random_state = 0) 

 

3.5. Fitting Algorithm to Training Dataset  

 

Classification is a type of supervised learning, which occurs when a training set of properly recognized 

observations is provided. A classifier is an algorithm that performs classification, particularly in a 

concrete implementation. Occasionally, the word "classifier" refers to the mathematical function 

implemented by a classification algorithm that categorizes incoming data. It might be challenging to 

identify an excellent, or even a well-performing, machine learning method for a given dataset. We used 

trial and error to determine which algorithm produces the best results. We will demonstrate and discuss 
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the effectiveness of Bernoulli's Naive Bayes classifier in predicting whether restaurant reviews are 

positive or negative. 

 

 

from sklearn.naive_bayes import BernoulliNB 

 

BEclassifier = BernoulliNB(alpha=0.8) 

 

BEclassifier.fit(x_train, y_train) 

 

3.6.  Prediction of the Result  

 

The Machine Learning system utilizes the training data to train models to recognize patterns, and the test 

data to assess the trained model's prediction ability. The machine learning system measures predictive 

performance by comparing predicted values on the evaluation data set to real values  using a number of 

criteria. We will use Bernoulli's Naive Bayes method to forecast the test outcome in terms of the value of 

y_pred_be. 

 

y_pred_be = BEclassifier.predict(x_test) 

 

3.7. Evaluation Metrics 

 

True Positive (TP):  

A true positive (TP) is an outcome for which the model accurately predicts the positive class. 

 

True Negative (TN):  

A true negative (TN) is an outcome for which the model accurately predicts the negative class. 

 

False Positive (FP):  

A false positive occurs when the model forecasts a positive class erroneously. 

 

False-Negative (FN):  

A false negative occurs when the model forecasts a negative class erroneously. 

 

Precision: 

It is the ratio of genuine positives to false positives and vice versa. This value indicates the proportion of 

correctly recognized items in a class. 

 

Precision (P) = TP / (TP+FP)  

 

Recall: 

It's the proportion of true positives to the total number of true positives and false negatives. This defines 

how many items in a class are incorrectly categorized. 

 

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 8, August - 2021 Page-652



Recall (R) = TP / (TP+FN)  

 

Accuracy: 

It's calculated by multiplying the sum of all True positives and True Negatives by the total number of test 

cases. This metric assesses the overall accuracy of the classifier. 

 

Accuracy = (TP+TN) / (TP+TN+FP+FN)  

 

Confusion Matrix:  

  

One technique for evaluating the performance of classifiers is to use a confusion matrix, in which the 

number of properly classified examples equals the sum of the matrix's diagonals; all other instances are 

wrongly categorised. When referring to the counts calculated in the confusion matrix, the following 

terminology is frequently used. 

 

from sklearn.metrics import accuracy_score 

 

from sklearn.metrics import confusion_matrix 

 

from sklearn.metrics import classification_report 

 

print(accuracy_score(y_test, y_pred_be)) 

 

print(confusion_matrix(y_test, y_pred_be)) 

 

print(classification_report(y_test, y_pred_be)) 

 

Ⅳ. RESULT 

 

In the beginning, we analyzed the "Restaurant Review.tsv" file, which contains 1000 restaurant reviews. 

The overall number of positive and negative reviews is the same in this case, implying that 500 are 

favorable and 500 are negative. Operations like Data collection, Data Preparation, Bag of words model, 

Fitting Algorithm to Training Dataset are performed, and then Bernoulli's Naive Bayes technique is used 

to categorize a review as positive or negative, yielding an accuracy score of 77.5 percent. 

 

 

Accuracy Score: 

 

 
Figure 2. Accuracy Score 
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Confusion Matrix: 

 

 
Figure 3. Confusion Matrix 

 

Classification Report: 

 

 
Figure 4. Classification Report 

 

 

Ⅴ. CONCLUSION 

 

After analysing a huge corpus of reviews, we conclude that Bernoulli's NB model outperforms competing 

methods on nearly every assessment criteria. Fitting and predicting the output takes relatively little time, 

which is why it may be utilised for real-time classification systems. We propose Bernoulli's Naive Bayes 

Classifier Model for sentiment analysis in this thesis. This model may be used to analyse the sentiment of 

any type of text data, including tweets, brand/product reviews, and vacation destination reviews. This 

model was tested on a dataset of 1000 restaurant reviews. 

Sentiment analysis is critical for customers and service providers alike. Now, in the modern era of the 

internet and globalisation, both customers and service providers are curious about the general public's 

view of a certain brand/product/location, etc. It benefits the service provider since it includes a business 

component, but it also benefits customers because it assists them in selecting the finest product. We have 

concluded from our thesis work that the Bernoulli NB Classifier is an excellent machine learning model 

for sentiment analysis. It improves sentiment analysis prediction. It is a significant difficulty in the field 

of sentiment analysis to analyse a sarcastic review/text. A machine might be capable of detecting sarcasm. 

Future studies might concentrate on sarcastic expressions, which are notoriously difficult to comprehend, 

both for humans and computers. Another difficult issue is detecting spam content in user reviews. Finally, 

a review is designated as one of several kinds. 
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Future Scope - 

 

Because the reviews are created with a mixture of real-life review data and sarcastic phrases, review 

mining is a difficult process. Furthermore, sentiment classification may be done at three levels. Only 

document-level sentiment classification is performed by this system. Following that, this system uses 

purely statistical approaches to get an edge. The accuracy of the results might be enhanced by combining 

the use of semantic resources such as WordNet and SentiWordNet with a statistical method. Furthermore, 

because this method only examines the sentiment classification of subjective comments, a subjectivity 

function that can identify whether a statement is an objective  or subjective may be added. 
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