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Abstract: 

In this paper, we will review the methods that used to handle longitudinal data in the case 

of marginal models when inferences about the population average are the primary focus 

[1] or when future applications of the results require the expectation of the response as a 

function of the current covariates [7]. We will review the generalized estimating equations 

method (GEE), quadratic inference functions (QIF), generalized quasi likelihood (GQL) 

and the generalized method of moments (GMM). These methods will be reviewed by 

discussing its advantages and disadvantages in more details. 

Keywords: Generalized estimating equations- Generalized Method of Moments- 

Generalized quasi likelihood-longitudinal count data- Quadratic inference functions. 

1.Introduction:

         In a longitudinal study, researchers conduct several observations for the same 

subjects over period of time.  Also, the benefit of a longitudinal study is that researchers 

can detect developments or changes in the characteristics of the target population at both 

the group and the individual level. The key here is that longitudinal studies extend beyond 

a single moment in time. As a result, they can establish sequences of events. Another major 

strength of the longitudinal design is that it avoids cohort effects, because the researcher 

examines one group of people over time, rather than comparing several different groups 

that represent different ages and generations. Longitudinal data also allow researchers to 

discuss how a single individual’s behavior changes with age. 
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          Sometimes referred to longitudinal data as panel data, the descriptor panel data 

comes from surveys of individuals. In this context “panel” is a group of individuals 

surveyed repeatedly over time. Historically, panel data methodology within economics 

had been largely developed through labor economics applications. Now, economic 

applications of panel data methods are not confined to survey or labor economics problems 

and the interpretation of the descriptor “panel analysis “is much broader. This type of data 

has several advantages over other types of data. There is more than single outcome for 

every subject, this allows investigator to separate between change over time within 

individuals, i.e. (aging effect)  and difference between subjects at baseline, i.e. (cohort 

effect). Each subject serves his own control, so variability becomes less because the intra-

subject variability is substantially less than inter-subject variability. Longitudinal studies 

involve using and collecting data for long periods of time, they can be helpful in 

determining patterns. It is possible to learn more about cause-and-effect relationships 

through these types of research studies and connections can be made more clearly. The 

observations are not independent, for longitudinal data since there are repeated 

measurements from the same individual over time. So, there is needed to model the 

variability in the data. Specifically, there are two likely sources of variation unique to 

longitudinal data [2]. 

- Random effects: Individuals sampled at random from a population may exhibit 

random variation between themselves. This variability would reflect natural 

heterogeneity among individuals because of underlying unmeasured or difficult to 

measure factors (such as genetic, environmental, or personality traits that are 

difficult to quantify). 

- Serial correlation: Repeated measurements from the same individual over time 

can be correlated. Further, measurements from a person at two adjacent time 

points (say, month 1 and month 2) are expected to be more correlated (i.e., more 

similar) than those from more distant time points (say, month 1 and month 5). 

  Longitudinal data have several types; binary–categorical–count- continues. In this paper, 

we will concentrate on longitudinal count data that is a type of data in which the observations 

can take only the non-negative integer values {0, 1, 2, ...} where these integers arise from 

counting rather than ranking. Count data are quite common in epidemiological studies. 

Statistical treatment of count data is distinct from binary data that take only two values usually 

represented by 0 and 1. It is differ from ordinal data that consist of integer, where the individual 

values fall on a specific scale and only the relative ranking is important. Count data have 

become popular dependent variables in studies in various areas, especially due to the growing 

of this data on human and social behavior. Examples include the number of crimes in each 

neighborhood, number of accidents at an intersection, number of Facebook comments, rider 

ship in bikes haring programs[9]. Several methods are used to find estimate of longitudinal 

count data, so we will review these methods in more details. 

2. Marginal Model

       The defining feature of marginal models is a regression model relating the mean response 

on each occasion, via a suitable link function, to the covariates. With a marginal model, the 

focus is on making inferences about population means. This model type of linear model that 

accounts for repeated response measures on the same subject. They extend the general linear 

model by allowing and accounting for non-independence among the observations from the 
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same subject by estimating one or more parameters that capture the covariance among the 

residuals. So rather than assuming a single constant variance and zero covariance for all 

residuals, observations from the same subject are allowed to have different variances and 

nonzero covariances. The pattern of variances and covariances is known as the covariance 

structure of the R matrix. 

2.1 The three main parts for the marginal model 

I. The conditional expectation of each response, 𝐸(𝑌𝑖𝑗|𝑋𝑖𝑗) = 𝜇𝑖𝑗 , is assumed to depend

on the covariates through a known link function ℎ−1(. ), e.g., 𝑙𝑜𝑔𝑖𝑡(𝜇𝑖𝑗) orlog (𝜇𝑖𝑗),

ℎ−1(𝜇𝑖𝑗)= η𝑖𝑗=𝑋𝑖𝑗
′ 𝛽.

II. The conditional variance of each 𝑌𝑖𝑗, given 𝑋𝑖𝑗, is assumed to depend on the mean

according to

𝑉𝑎𝑟(𝑌𝑖𝑗)=∅𝑣(𝜇𝑖𝑗) 

where 𝑣(𝜇𝑖𝑗) is a known “variance function” (i.e., a known function of the mean, 𝜇𝑖𝑗 and ∅ is

a scale parameter that may be fixed and known or may need to be estimated. 

III. The conditional within-subject association among the vector of repeated responses,

given the covariates, is assumed to be a function of an additional vector of association

parameters, say α (and also depends upon the means, 𝜇𝑖𝑗. For example, the

components of α might represent the pairwise correlations or log odds ratios among

the repeated responses.

     Marginal models are a very natural way to extend generalized linear models to longitudinal 

responses. Marginal models specify a generalized linear model for the longitudinal responses 

at each occasion but also include a model for the within-subject association among the 

responses. A crucial aspect of marginal models is that the mean response and within-subject 

association are modeled separately. This separation of the modeling of the mean response and 

the association among responses has important implications for interpretation of the regression 

parameters in the model for the mean response. In particular, the regression parameters β in the 

marginal model have so-called population averaged interpretations. That described how the 

mean response in the population is related to the covariates. 

3. Different method for finding the estimate for longitudinal data

       We will review the methods that used to handle longitudinal data in the case of marginal 

models when inferences about the population average are the primary or when future 
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applications of the results require the expectation of the response as a function of the current 

covariates Section (3.1) will review the generalized estimating equations method (GEE), 

section (3.2) will review the quadratic inference functions (QIF), section (3.3) will review 

generalized quasi likelihood (GQL) and section (3.4) will review the generalized method of 

moments (GMM). 

3.1Generalized estimating equations method (GEE) 

       The generalized estimating equation was developed [6] from generalized linear models and 

quasi likelihood to deal with non-normal correlated longitudinal data. This method extended 

generalized linear models, which include simple linear regression, for two important cases. 

First, given a data set consisting of repeated measures, a GEE model allows the correlation of 

outcomes within an individual to be estimated and taken into appropriate account in the 

formulae which generate the regression coefficients and their standard errors. Secondly, GEE 

models permit the calculation of robust estimates for the standard errors of the regression 

coefficients.  Provided the basic linear regression relationship is correct and there is no 

correlation in the measured responses between individuals, robust standard errors ensure 

consistent inferences from a GEE model even if the chosen correlation structure is incorrect or 

if the strength of the correlation between repeated observations varies somewhat from 

individual to individual. This method provided the population-averaged estimates of the 

parameters. 

      The basic GEE strategy is to simply generalize the quasi-likelihood equations to the 

multivariate setting by replacing 𝑌𝑖 and µ𝑖 by their vector counterparts and using a weight

matrix 𝑊𝑖 . This yield

  ∑
∂μi

′

∂β
N
i=1  Ŵi (Yi − μ̂i) = 0       (1) 

𝜕µ𝑖

𝜕𝛽
 is defined as an ni × p matrix, whose jth row is 

𝜕µ𝑖𝑗

𝜕𝛽𝑇
 Although optimally it would take Wi 

=𝑉𝑖
−1 , in fact any positive definite and symmetric matrix can be used for Wi. If Wi = 𝑉𝑖

−1 , it

depends upon 𝛽. It provides a semi-parametric approach to longitudinal analysis of non- normal 

response. In practice, the working correlation matrix is usually unknown and must be estimated 

according to the following table.  

Table (1) Working Correlation Structures and Estimators 

Structure Working Correlation Estimator 

Independent Corr(𝑌𝑖𝑗, 𝑌𝑖𝑘)={
1  𝑗 = 𝑘
0      𝑗 ≠ 𝑘

The working correlation is not 

estimated in this case 

Exchangeable Corr(𝑌𝑖𝑗, 𝑌𝑖𝑘)={
1     𝑗 = 𝑘
𝛼  𝑗 ≠ 𝑘

𝛼̂=
1

(𝑁∗−𝑝)∅
∑ ∑ 𝑒𝑖𝑗𝑒𝑖𝑘𝑗<𝑘
𝑁
𝑖=1   , 

𝑁∗=0.5∑ 𝑛𝑖(𝑛𝑖 − 1)
𝑁
𝑖=1

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 8, August - 2021 Page-198



Unstructured Corr(𝑌𝑖𝑗, 𝑌𝑖𝑘)={
1  𝑗 = 𝑘
  𝛼𝑗𝑘   𝑗 ≠ 𝑘

 𝛼̂𝑗𝑘=
1

(𝑘−𝑝)∅
∑ 𝑒𝑖𝑗𝑒𝑖𝑘
𝑁
𝑖=1

Autoregressive 

AR(1) 
Corr(𝑌𝑖𝑗, 𝑌𝑖𝑘)=𝛼𝑡   ,   t=0,1,2,…,𝑛𝑖-j

𝛼̂=
1

(𝐾1−𝑝)∅
∑ ∑ 𝑒𝑖𝑗𝑒𝑖𝑗+1𝑗<𝑛𝑖−1
𝑁
𝑖=1  , 

𝐾1=∑ (𝑛𝑖 − 1)
𝑁
𝑖=1

Source:Salama et al(2016). 

where: 𝑒𝑖𝑗 is the standardized Pearson residual:

𝑒𝑖𝑗 =
𝑦𝑖𝑗−𝑢𝑖𝑗

√ 𝑣(𝑢𝑖𝑗) (1−ℎ𝑖𝑗)
                                                                                                                          (2)

ℎ𝑖𝑗 : The elements of the "hat" matrix for all i, j and ∅ is the dispersion parameter is estimated

by: 

𝜙̂=
1

𝑁−𝑃
∑ ∑ 𝑒𝑖𝑗

2𝑛𝑖
𝑗=1

𝑁
𝑖=1     (3) 

where N=∑ 𝑛𝑖
𝑁
𝑖=1 is the total number of measurements and p is the number of regression

parameters. Then to find the covariance matrix for 𝛽̂ the sandwich estimator will be used to get 

it as follow.  

⌈∑ 𝐷𝑖
′𝑁

𝑖=1 𝑉𝑖
−1𝐷𝑖⌉

−1
𝑀̂⌈∑ 𝐷𝑖

′𝑁
𝑖=1 𝑉𝑖

−1𝐷𝑖⌉
−1

    (4) 

with 

𝑀̂=∑ 𝐷𝑖
′𝑁

𝑖=1 𝑉𝑖
−1𝐶𝑜𝑣(𝑌𝑖) 𝑉𝑖

−1𝐷𝑖

3.1.1Advantages of generalized estimating equations (GEE): 

- Computationally more simple than MLE for categorical data, since estimation in GEEs 

is carried out with quasi-likelihood methods which is computationally easier than full-

likelihood methods. 

- Only requires the correct specification of marginal mean and variance as well as the 

link function which connects the covariates of interest and marginal means. 

- The parameter estimates are consistent and asymptotically normally distributed even 

when the “working” correlation structure of responses is mis-specified [11]. 

3.1.2 Limitations for generalized estimating equations (GEE): 

- There is no likelihood function since the GEE does not specify completely the joint 

distribution. 

- Empirical based standard errors underestimate the true ones, unless very large sample 

size. 
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- Misspecification of the correlation structure may lead to a great loss of efficiency 

although consistency remains holds. 

- This method is very sensitive to outliers or contaminated data which is worrisome in 

practice. 

        Under mis-specification of  the correlation coefficient, it was pointed [11] estimates that 

obtained by the method of moments , the asymptotic estimates of the parameter (𝛼) which 

specifies the working correlation matrix may not be well defined or exist so the correlation 

coefficient estimates did not converge to the true values. Furthermore, for discrete random 

vectors, the correlation matrix was usually complicated, and it was difficult to attain 

multivariate distributions with specified correlation structures. These limitations lead 

researchers to work on this area to develop new methodologies. Several alternative approaches 

for estimating the correlation coefficients have been proposed. Correctly specifying “working” 

correlation structure can enhance the efficiency of the parameter estimates when the sample 

size is not large enough. Therefore, how to select intra-subject correlation matrix plays a vital 

role in GEE with improved finite-sample performance; also, the variance function is another 

potential factor affecting the goodness-of-fit of GEE. Correctly specified variance function can 

assist in the selection of covariates and an appropriate correlation structure. Different criteria 

might be needed due to the goal of model selection. Although the GEE provides a consistent 

estimator regardless of whether the working correlation is correctly specified or not, the 

estimator can be inefficient under mis-specified correlation structures. 

3.1.3 The selection of “working” correlation structure 

       The methods was reviewed[13] that can be used to select the correct working correlation 

structure. the adequacy of “working” correlation structure can be examined through  

Γ = (𝐷𝑖
′𝑉𝑖
−1𝐷𝑖)

−1𝑀̂𝐿𝑍     (5) 

     where 

𝑀̂𝐿𝑍 =∑ 𝐷𝑖
′𝑉𝑖
−1𝐶𝑜𝑣(𝑌𝑖)𝑉𝑖

−1𝐷𝑖
𝐾
𝑖=1

       and 

Cov((𝑌𝑖)=𝑟̂𝑖𝑟̂𝑖′   with    𝑟̂𝑖= 𝑌𝑖 − 𝜇𝑖 is an estimator of the variance covariance matrix of  𝑌𝑖 . The

statistic RJ(R)=√(1 − 𝑅𝐽1)2 + (1 − 𝑅𝐽2)2   where RJ1 = trace(Γ)/p and  RJ2 = trace(Γ2)/p  

respectively. If the “working” correlation structure R is correctly specified RJ1 and RJ2 will be 

thus close to 1, leading to RJ(R) approaching 0. Thus RJ1, RJ2, and RJ(R) can all be used for 

correlation structure selection. A criterion was proposed[10] for selecting “working” 

correlation   structure based   on the minimization of the generalized error sum of squares (ESS) 

given as follow: 

ESS =  ∑ (𝐾
𝑖=1 𝑌𝑖 − 𝜇𝑖)′ 𝑉𝑖

−1(𝑌𝑖 − 𝜇𝑖)

= ∑ 𝑍𝑖
′𝐾

𝑖=1 (𝛽)𝑅𝑖
−1(𝑎)𝑍𝑖(β)

where 
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𝑍𝑖(β)=𝐴
1/2(𝑌𝑖 − 𝜇𝑖)

The criterion is defined by 

         SC=
ESS

(N−p−q)

where N=∑ 𝑛𝑖
𝐾
𝑖=1  is the total number of observations ,𝑝 is the number of regression parameters,

and q is the number of correlation coefficients within the “working” 

correlation structure. Another extended criterion from SC was proposed by Carey and 

Wang(2011), where the Gaussian pseudolikelihood (GP) is adopted, and it is  given by : 

GP (R)= - 0.5×∑ (𝐾
𝑖=1 𝑌𝑖 − 𝜇𝑖)′𝑉𝑖

−1(𝑌𝑖 − 𝜇𝑖) + log (|𝑉𝑖|)

where a better “working” correlation structure yields a larger GP. In their work, they also 

showed that GP criterion held better performance than RJ via simulation. Besides those criteria 

mentioned above, there are more criteria that can be used to decide which correlation matrix 

(R) can be used. 

3.2 Quadratic inference functions (QIF) 

       To overcome some of the difficulties in the use of the GEE method, many improvements 

have been proposed in the literature. Among these improvements, the quadratic inference 

function a method was introduced [8] of quadratic inference functions(QIF) that does not 

involve direct estimation of the correlation parameter, and remains optimal even if the working 

correlation structure is mis-specified. The method does not need direct estimation of the 

correlation parameter. The idea is to represent the inverse of the working correlation matrix by 

the linear combination of basis matrices, a representation that is valid for the working 

correlations most commonly used. To find the joint estimation of 𝜷 and 𝒗, the joint estimating 

equations was developed by employing the first two moments of the response variable as: 

∑
𝜕𝜇𝑖

′

𝜕£
𝑛
𝑖=1 𝐴

𝑖

−
1

2𝑅(𝛼)𝑖
−1𝐴

𝑖

−
1

2(𝑓𝑖 − µ𝑖) = 0         (6) 

         This method has received some attention in the recent years, as it improved on the GEE 

method in several aspects simultaneously: 

- The QIF provides statistical inference under the same model assumptions as the GEE 

requires. Like the GEE method, a mis-specified working correlation does not affect the 

consistency of the regression parameter estimation. It provides a robust sandwich 

estimator for the variance of the regression parameter estimator. When the working 

correlation structure is correctly specified, both the QIF and GEE are equally efficient. 

However, when the working correlation structure is mis-specified, the QIF is more 

efficient than the GEE, especially when time-varying covariates are included in the 

analysis. 

- The QIF provides a goodness-of-fit test for checking the validity of the assumption for 

the first moment mean model. This is a crucial condition for the estimation consistency 

that the GEE requires but is unable to validate easily. Several summary statistics was 

introduced[4] similar to those considered in the GLMs under the independence working 

correlation 

- The QIF is robust against outliers or contaminated data since it has been proved to have 

a bounded influence function. 
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      To obtain the estimators of β and 𝒗, specification of the working correlation structure and 

estimation of α in R(α) are required prior to solving equation. To handle this problem, A class 

of basis matrices was employed [8]  to represent the inverse of𝑅−1. The QIF is derived by

observing that the inverse of the working correlation matrix can be approximated by a linear 

combination of several basis matrices. The QIF is derived by observing that the inverse of the 

working correlation matrix can be approximated by a linear combination of several basis 

matrices: 

𝑅−1 ≈∑𝛼𝑙

𝑘

𝑙=0

𝑀𝑙

Where 𝑀0 is the identity matrix, 𝑀1,…, 𝑀𝑘 are known basis matrices with 0 or 1 as components

and 𝛼0,…, 𝛼𝑘 are unknown coefficients. The above expression holds exactly for some common

working correlation structures. In practical implementation, one must choose the basis for the 
inverse of the correlation matrix, determine the magnitude of λ, and calculate the standard 
error and confidence interval of the resulting estimator. 

3.2.1 Choice of the basis for the inverse of the correlation matrix 

Qu and Li (2006) discussed the choice of basis matrices, if the working correlation is 

exchangeable, then 𝑅−1=𝛼0𝑀0 + 𝛼1𝑀1 where 𝑀1is 0 on the diagonal and 1 elsewhere. If it is
an Auto Regrassive1 (AR1) working correlation, 𝑅−1=𝛼0𝐼 + 𝛼1𝑀1

∗ + 𝛼2𝑀2
∗ where 𝑀1

∗ has 1

on the sub-diagonal and 0 elsewhere and 𝑀2
∗ has 1 on the two corner components of the

diagonal. The advantage of this approach is that it does not require estimation of linear 
coefficients 𝑎𝑗

′𝑠 which can be viewed as nuisance parameters, since the generalized estimating

equation is a linear combination of elements of the estimating functions. Depending on the 
above linear combination of the elements of the following extended score vector: to find the 
estimate of 𝜷 and v that depend on minimize  𝑄𝑛(𝛽, 𝑣) that take the following formula: 

𝑄𝑛(𝛽, 𝑣) =n  𝑔̅𝑛(𝜷,v)𝐶𝑛
−1(𝛽, 𝑣) 𝑔̅𝑛(𝜷,v)

where 

𝑔̅𝑛(𝜷,v)= 
1

𝑛
∑ 𝑔𝑖
𝑛
𝑖=1 (𝛽, 𝑣) =

1

𝑛

(

 
 
∑

𝜕𝜇𝑖
′

𝜕(𝛽,𝑣)
𝑛
𝑖=1 𝐴

𝑖

−
1

2𝑀1𝐴𝑖
−
1

2(𝑌𝑖 − 𝜇̂𝑖)

⋮

∑
𝜕𝜇𝑖

′

𝜕(𝛽,𝑣)
𝑛
𝑖=1 𝐴

𝑖

−
1

2𝑀𝑚𝐴𝑖
−
1

2(𝑌𝑖 − 𝜇̂𝑖))

 
 

      (7)      

and  

𝐶𝑛
−1(𝜷, 𝒗) =  

1

𝑛
∑ 𝑔𝑖(𝛽, 𝑣)
𝑛
𝑖=1 𝑔𝑖

′(𝛽, 𝑣)

The QIF estimator (β̂, v̂)=argmin Qn(β, v) and the asymptotic covariance matrix for the

statistical inference on (β, v) can be estimated using the following equation: 

∑̂=[{
𝟏

𝒏
 ∑

𝝏𝒈𝒊(𝜷,   𝒗)

𝝏(𝜷,   𝒗)
𝒏
𝒊=𝟏 }′ {

𝟏

𝒏
∑ 𝒈𝒊(𝜷̂,𝒗̂)
𝒏
𝒊=𝟏 𝒈𝒊

′(𝜷̂, 𝒗̂)}−𝟏{
𝟏

𝒏
 ∑

𝝏𝒈𝒊(𝜷,   𝒗)

𝝏(𝜷,   𝒗)
𝒏
𝒊=𝟏 }]−𝟏  (8) 
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3.2.2 This method has important limitations in application 

- It needs to specify that the inverse of the working correlation is a linear combination 

of several basis matrices. 

- There is no idea which working correlation structure is the most appropriate, then it 

must be chosen in an ad hoc manner.  

- No matter how chosen, the dimension of the extended score vector is m𝞪; where m is 

the number of basis elements and 𝞪 is the number of parameters. 

3.3 Generalized quasi likelihood (GQL) 

       This approach was developed[12]to estimate β, where the generalized quasi-likelihood 

estimator of 𝜷 is the root of the score equation: 

∑ 𝐷𝑖
𝑇𝑁

𝑖=1 ∑𝑖(𝜌)
−1(𝑓𝑖 − 𝜇𝑖)        (9) 

where𝑓𝑖 = ( ∑𝑖(𝜌)
−1 is the true covariance matrix of 𝑦𝑖 that can be expressed as

∑𝑖(𝜌)
−1=𝐴

𝑖

1

2 C(𝜌)  𝐴
𝑖

1

2   with 𝐴𝑖=𝑑𝑖𝑎𝑔(𝜎𝑖1, … , 𝜎𝑖𝑗) and C(𝜌) as the true correlation matrix of Yi,

ρ being a correlation index parameter. To overcome the difficulty of unknown C(ρ) in practice 

a general stationary auto-correlation structure has been suggested given by 

C(ρ)= C(𝜌1, 𝜌2, … , 𝜌𝑗−1)=(

1 𝜌1 𝜌2 . . 𝜌𝑇−1
𝜌1 1 𝜌1 . . 𝜌𝑇−2
∶ ∶ ∶ ∶ ∶

𝜌𝑇−1 𝜌𝑇−2 𝜌𝑇−3 . . 1

) 

where for l = 1, 2, ..., T – 1, ρl, represents the lag l autocorrelation. The GQL estimate of   is 

then computed by solving the above equation. In practice 𝜌 is un known therefore the lag 

correlations can be consistently estimated by using the well known method of moments. For  l 

= |j – j'|, j≠ j' and j, j' = 1, 2, ..., T the autocorrelation of lag l, ρl, is estimated by the method of 

moments as: 

𝜌̂𝑙=
∑ ∑ 𝑦̆𝑖𝑡𝑦̆𝑖𝑡+𝑙/𝑁(𝑇−1)

𝑇−𝑙
𝑡=1

𝑁
𝑖=1

∑ ∑  𝑦̆𝑖𝑡
2 /𝑁𝑇𝑇−1

𝑡=1
𝑁
𝑖=1

where 𝑦̆𝑖𝑡  is the standardized residual, defined as 𝑦̆𝑖𝑡 =
𝑦𝑖𝑡−𝜇𝑖𝑡

𝜎𝑖𝑡
1/2  . Let 𝛽̂𝐺𝑄𝐿 denote this estimator, 

which is consistent for β. Under some mild conditions, it can be shown that 𝛽̂𝐺𝑄𝐿 has the 

asymptotic covariance matrix 𝑉𝐺
∗ given by:

𝑉𝐺
∗= lim

𝑁→∞
{ ∑

𝜕𝜇𝑖
′

𝜕𝛽
𝑁
𝑖=1 𝐴

𝑖

1

2𝐶−1(𝜌1, … , 𝜌𝑛−1)𝐴𝑖

1

2 𝜕𝜇𝑖

𝜕𝛽
}
−1

  (10) 

Through a simulation study it is showed[12] that GQL performs the best in estimating both the 

regression and the true correlation parameters, even though the longitudinal correlations are 

estimated separately by the method of moments. 

3.4Generalized Method of Moments (GMM) 

        Another approach that could be used to estimate parameters for marginal 

models of correlated data is to apply generalized method of moment’s estimation (GMM)[3]. 
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This method, like the Generalized Estimating Equations, accounts for correlation inherent in 

the data due to repeated measurements taken on the same subjects. Unlike GEE, GMM relies 

on the use of moment conditions, expressions with zero expectation, rather than on the 

derivation of the likelihood or quasi-likelihood functions. GMM depends on minimizing a 

quadratic form, 𝐽𝑡(𝛽), over the parameters [3, 5].

𝐽𝑡(𝛽)=𝐺𝑁⃛(𝛽)
𝑇 𝑊𝑁𝐺𝑁⃛(𝛽)  (12) 

where WN is a weight matrix, a positive semidefinite matrix. The vector GN⃛ in the above

equation is the average of moment conditions for all N subjects: 

𝐺𝑁⃛ =
1

𝑁
∑ 𝑔(𝑌𝑖 , 𝑋𝑖, 𝛽0
𝑁
𝑖=1 ), 

where Yi is the vector of responses for subject i, Xi is the vector of covariates for subject i, β0
is the vector of true parameters. When time-dependent covariates are present, the vector 

𝑔𝑖(𝑌𝑖 , 𝑋𝑖) is composed of only the moment conditions that are considered “valid” for subject i,

defined [5]as satisfying the expression: 

𝐸[𝑔𝑖(𝑌𝑖 , 𝑋𝑖)]=0

Using moment conditions that were products of derivative and residual terms at different 

times[5]: 

𝑔𝑖 =
𝜕𝑢𝑖𝑠

𝜕𝛽𝑗
(𝑦𝑖𝑡 − 𝑢𝑖𝑡)

𝑊𝑁=𝑉̂𝑁
−1=𝐶𝑜𝑣−1(𝑔𝑖)

In obtaining the covariance matrix used to construct the quadratic form, 𝐽𝑡(𝛽), for obtaining

GMM parameter estimates, additionally suggested the use of an iterative procedure in which 

an initial consistent GEE estimator β0 is used to obtain 𝑐𝑜𝑣(𝑔(𝑌𝑖 , 𝑥𝑖𝑡 , 𝛽0)
−1, then estimating

GMM β yielding an estimator that is as asymptotically efficient as the traditional 2-Step GMM 

estimator and has consistent asymptotic variance [3, 5], given by: 

{(
1

𝑁
∑
𝑔(𝑌𝑖, 𝑋𝑖𝑡 , 𝛽)

𝜕𝛽

𝑁

𝑖=1

)

𝑇

𝑽̂𝑵
−𝟏 (

1

𝑁
∑
𝑔(𝑌𝑖 , 𝑋𝑖𝑡 , 𝛽)

𝜕𝛽

𝑁

𝑖=1

)}

−1

where  
g(Yi,Xit,β)

∂β
 is evaluated at β= 𝛽̂𝐺𝑀𝑀 

3.4.1 GMM estimators have become widely used for the following reasons: 

- GMM estimators have large sample properties that are easy to characterize in ways that 

facilitate comparison. A family of such estimators can be studied a priori in ways that 

make asymptotic efficiency comparisons easy. The method also provides a natural way 

to construct tests which take account of both sampling and estimation error. 

- In practice, researchers find it useful that GMM estimators can be constructed without 

specifying the full data generating process (which would be required to write down the 

maximum likelihood estimator). This characteristic has been exploited in analyzing 

partially specified economic models, in studying potentially mis-specified dynamic 
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models designed to match target moments, and in constructing stochastic discount 

factor models that link asset pricing to sources of macroeconomic risk. 

- The method uses assumptions about specific moments of the random variables instead 

of assumptions about the entire distribution, which makes GMM more robust than ML, 

at the cost of some efficiency. The assumptions are called moment conditions 

- The generalized method of moments was used [5] to make optimal use of the estimating 

equations that are made available by the covariates for marginal regression analysis of 

longitudinal data with time-dependent covariate. 

4. Conclusion

There are different methods to Handel marginal model for longitudinal count data when 

inferences about the population average are the primary focus, but every method need some 

condition that should be considered to handle the data for example the generalized estimating 

equations and the generalized methods of moments both accounts for correlation inherent in 

the data due to repeated measurements taken on the same subjects. But GMM relies relies on 

the use of moment conditions, expressions with zero expectation, rather than on the derivation 

of the likelihood or quasi-likelihood functions.   The quadratic inference function was 

introduced this method does not involve direct estimation of the correlation parameter, it only 

depends on specific basis and remains optimal even if the working correlation structure is mis-

specified. 
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