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Abstract

A connected dominating set D is said to be doubly-connected dominating set

if the subgraph induced by the set V − D is connected. In this paper, we have

defined a matrix called the doubly connected dominating matrix and obtained the

the corresponding spectra and energy. Further, we have obtained the chemical ap-

plicability of the doubly connected energy followed by the mathematical properties.
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1 Introduction

All graphs considered in this paper are finite, simple and undirected. In particular, these

graphs do not have loops. Let G = (V,E) be a graph with the vertex set V (G) =

{v1, v2, v3, ⋅ ⋅ ⋅ , vn} and the edge set E(G) = {e1, e2, e3, ⋅ ⋅ ⋅ , em}, that is ∣V (G)∣ = n

and ∣E(G)∣ = m. The vertex u and v are adjacent if uv ∈ E(G). The open(closed)

neighborhood of a vertex v ∈ V (G) is N(v) = {u : uv ∈ E(G)} and N [v] = N(v) ∪ {v}

respectively. The degree of a vertex v ∈ V (G) is denoted by dG(v) and is defined as

dG(v) = ∣N(v)∣. A vertex v ∈ V (G) is pendant if ∣N(v)∣ = 1 and is called supporting

vertex if it is adjacent to pendant vertex. Any vertex v ∈ V (G) with ∣N(v)∣ > 1 is called

internal vertex. If dG(v) = r for every vertex v ∈ V (G), where r ∈ ℤ
+ then G is called

r-regular. If r = 2 then it is called cycle graph Cn and for r = 3 it is called the cubic

graph. A graph G is unicyclic if ∣V ∣ = ∣E∣. A graph G is called a block graph, if every

block in G is a complete graph. For undefined terminologies we refer the reader to [16].
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A subset D ⊆ V (G) is called dominating set if N [D] = V (G). The minimum car-

dinality of such a set D is called the domination number (G) of G. A dominating set

D is connected if the subgraph induced by D is connected. The minimum cardinality of

connected dominating set D is called the connected dominating number c(G) of G. A

connected dominating set D is said to be doubly-connected dominating set if the sub-

graph induced by the set V − D is connected. The minimum cardinality of such set is

called the doubly connected domination number. It is denoted by cc(G). [27].

The energy E(G) of a graph G is equal to the sum of the absolute values of the

eigenvalues of the adjacency matrix of G. This quantity, introduced almost 30 years ago

[13] and having a clear connection to chemical problems [15], has in newer times attracted

much attention of mathematicians and mathematical chemists [3,8–12,20,22–24,28,30,31].

In connection with energy (that is defined in terms of the eigenvalues of the adjacency

matrix), energy-like quantities were considered also for the other matrices: Laplacian [15],

distance [17], incidence [18], minimum covering energy [1] etc. Recall that a great variety

of matrices has so far been associated with graphs [4, 5, 10, 29].

Recently in [25] the authors have studied the dominating matrix which is defined as :

Let G = (V,E) be a graph with V (G) = {v1, v2, ⋅ ⋅ ⋅ , vn} and let D ⊆ V (G) be a minimum

dominating set of G. The minimum dominating matrix of G is the n× n matrix defined

by AD(G) = (aij), where aij = 1 if vivj ∈ E(G) or vi = vj ∈ D, and aij = 0 if vivj /∈ E(G).

The characteristic polynomial of AD(G) is denoted by fn(G, �) := det(�I − AD(G)).

The minimum dominating eigenvalues of a graph G are the eigenvalues of AD(G).

Since AD(G) is real and symmetric, its eigenvalues are real numbers and we label them

in non-increasing order �1 ≥ �2 ≥ ⋅ ⋅ ⋅ ≥ �n. The minimum dominating energy of G is

then defined as

ED(G) =
n
∑

i=1

∣�i∣.

Motivated by dominating matrix, here we define the minimum doubly-connected dom-

inating matrix abbreviated as (c-dominating matrix). The c-dominating matrix of G is

the n× n matrix defined by ADcc(G) = (aij), where
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aij =

⎧



⎨



⎩

1, if vivj ∈ E;

1, if i = j and vi ∈ Dcc;

0, otherwise.

The characteristic polynomial of ADcc(G) is denoted by fn(G, �) := det(�I−ADcc(G)).

The doubly-connected-dominating eigenvalues of a graph G are the eigenvalues of

ADcc(G). Since ADcc(G) is real and symmetric, its eigenvalues are real numbers and

we label them in non-increasing order �1 ≥ �2 ≥ ⋅ ⋅ ⋅ ≥ �n. The doubly-connected-

dominating energy of G is then defined as

EDcc(G) =
n
∑

i=1

∣�i∣.

To illustrate this, consider the following examples:

bc

bc

bc

b c

bc

G :

a

b

cd

e

Figure 1.

Example 1. Let G be a graph with vertices {a, b, c, d, e} and let its minimum doubly-

connected dominating set be Dcc = {a, b, c}. Then

ADcc
(G) =

⎛

⎜

⎜

⎜

⎜

⎝

1 1 0 0 0
1 1 1 0 0
0 1 1 0 1
0 1 0 0 1
0 0 1 1 0

⎞

⎟

⎟

⎟

⎟

⎠

The characteristic polynomial of ADcc
(G) is �5− 3�4− �3+6�2− 2� = 0. The minimum

doubly-connected dominating eigenvalues are �1 = 2.61803, �2 = 1.41421, �3 = 0.38196,

�4 = 0.000 and �5 = −1.41421.

Therefore, the minimum doubly-connected dominating energy is EDcc
(G) = 5.8355.

In this paper, we are interested in studying the mathematical aspects of the c-

dominating energy of a graph. This paper has organized as follows: The section 1,
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contains the basic definitions and background of the current topic. In section 2, we show

the chemical applicability of c-dominating energy for molecular graphs G. The section

3, contains the mathematical properties of c-dominating energy. In the last section, we

have characterized, trees, unicyclic graphs and cubic graphs and block graphs with equal

minimum dominating energy and c-dominating energy. Finally, we conclude this paper

by posing an open problem.

2 Chemical Applicability of EDcc
(G)

We have used the doubly-dominating energy for modeling eight representative physical

properties like boiling points(bp), molar volumes(mv) at 20∘C, molar refractions(mr) at

20∘C, heats of vaporization (hv) at 25∘C, critical temperatures(ct), critical pressure(cp)

and surface tension (st) at 20∘C of the 74 alkanes from ethane to nonanes. Values

for these properties were taken from http://www.moleculardescriptors.eu/dataset.htm.

The doubly-dominating energy EDcc
(G) was correlated with each of these properties and

surprisingly, we can see that the EDcc
has a good correlation with the critical temperature

of alkanes with correlation coefficient r = 0.896.

The following structure-property relationship model has been developed for the doubly

connected-dominating energy EDcc
(G).

ct = 135.128 + [E(Dcc)(G)]4.317 (1)

ct = 10.791[E(Dcc)(G)]2 − 0.0101[E(Dcc)(G)] + 70.999 (2)

ct = −53.591 + ln[E(Dcc)(G)]100.568 (3)
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Figure 3: Correlation of EDcc
(G) with critical temperature of alkanes.

3 Mathematical Properties of Doubly Connected-Dominating

Energy of Graph

We begin with the following straightforward observations.

Observation 1. Note that the trace of ADcc(G) = cc(G).

Observation 2. Let G = (V,E) be a graph with cc-set Dcc. Let fn(G, �) = c0�
n +

c1�
n−1 + ⋅ ⋅ ⋅+ cn be the characteristic polynomial of G. Then

1. c0 = 1,

2. c1 = −∣Dcc∣ = −cc(G).

Theorem 3. If �1, �2, ⋅ ⋅ ⋅ , �n are the eigenvalues of ADcc(G), then

1.
n
∑

i=1

�i = cc(G)

2.
n
∑

i=1

�2
i = 2m+ cc(G).

Proof.

1. Follows from Observation 1.
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2. The sum of squares of the eigenvalues of ADcc(G) is just the trace of ADcc(G)2.

Therefore
n

∑

i=1

�2
i =

n
∑

i=1

n
∑

j=1

aijaji

= 2
∑

i<j

(aij)
2 +

n
∑

i=1

(aii)
2

= 2m+ cc(G).

We now obtain bounds for EDcc(G) of G, similar to McClelland’s inequalities [21] for

graph energy.

Theorem 4. Let G be a graph of order n and size m with cc(G) = k. Then

EDcc(G) ≤
√

n(2m+ k). (4)

Proof. Let �1 ≥ �2 ≥ ⋅ ⋅ ⋅ ≥ �n be the eigenvalues of ADcc(G). Bearing in mind the

Cauchy-Schwarz inequality,
(

n
∑

i=1

aibi

)2

≤

(

n
∑

i=1

ai

)2( n
∑

i=1

bi

)2

we choose ai = 1 and bi = ∣�i∣, which by Theorem 3 implies

E2
Dcc

=

( n
∑

i=1

∣�i∣

)2

≤ n

( n
∑

i=1

∣�i∣
2

)

= n
n

∑

i=1

�2
i

= 2(2m+ k).

Theorem 5. Let G be a graph of order n and size m with cc(G) = k. Let �1 ≥ �2 ≥

⋅ ⋅ ⋅ ≥ �n be a non-increasing arrangement of eigenvalues of ADcc(G). Then

EDcc(G) ≥
√

2mn + nk − �(n)(∣�1∣ − ∣�n∣)2 (5)

where �(n) = n[n
2
](1− 1

n
[n
2
]), where [x] denotes the integer part of a real number k.
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Proof. Let a1, a2, ⋅ ⋅ ⋅ , an and b1, b2, ⋅ ⋅ ⋅ , bn be real numbers for which there exist real

constants a, b, A and B, so that for each i, i = 1, 2, ⋅ ⋅ ⋅ , n, a ≤ ai ≤ A and b ≤ bi ≤ B.

Then the following inequality is valid (see [6]).

∣ n
n

∑

i=1

aibi −
n

∑

i=1

ai

n
∑

i=1

bi ∣ ≤ �(n)(A− a)(B − b), (6)

where �(n) = n[n
2
](1 − 1

n
[n
2
]). Equality holds if and only if a1 = a2 = ⋅ ⋅ ⋅ = an and

b1 = b2 = ⋅ ⋅ ⋅ = bn.

We choose ai := ∣�i∣, bi := ∣�i∣, a = b := ∣�n∣ and A = B := ∣�1∣, i = 1, 2, ⋅ ⋅ ⋅ , n, inequality

(4) becomes

∣n
n

∑

i=1

∣�i∣
2 −

( n
∑

i=1

∣�i∣

)2

∣ ≤ �(n)(∣�1∣ − ∣�n∣)
2. (7)

Since EGcc(G) =
n
∑

i=1

∣�i∣,
n
∑

i=1

∣�i∣
2 =

n
∑

i=1

∣�i∣
2 = 2m + k and EDcc(G) ≤

√

n(2m+ k), the

inequality (5) becomes

n(2m+ k)− (EDcc)
2 ≤ �(n)(∣�1∣ − ∣�n∣)

2

(EDcc)
2 ≥ 2mn + nk − �(n)(∣�1∣ − ∣�n∣)

2.

Hence equality holds if and only if �1 = �2 = ⋅ ⋅ ⋅ = �n.

Corollary 6. Let G be a graph of order n and size m with cc(G) = k. Let �1 ≥ �2 ≥

⋅ ⋅ ⋅ ≥ �n be a non-increasing arrangement of eigenvalues of ADcc(G). Then

EDcc(G) ≥

√

2mn + nk −
n2

4
(∣�1∣ − ∣�n∣)2. (8)

Proof. Since �(n) = n[n
2
](1− 1

n
[n
2
]) ≤ n2

4
, therefore by (3), result follows.

Theorem 7. Let G be a graph of order n and size m with c(G) = k. Let �1 ≥ �2 ≥

⋅ ⋅ ⋅ ≥ �n be a non-increasing arrangement of eigenvalues of ADcc(G). Then

EGcc(G) ≥
∣�1∣∣�2∣n+ 2m+ k

∣�1∣+ ∣�n∣
. (9)

Proof. Let a1, a2, ⋅ ⋅ ⋅ , an and b1, b2, ⋅ ⋅ ⋅ , bn be real numbers for which there exist real

constants r and R so that for each i, i = 1, 2, ⋅ ⋅ ⋅ , n holds rai ≤ bi ≤ Rai. Then the

following inequality is valid (see [11]).

n
∑

i=1

b2i + rR
n

∑

i=1

a2i ≤ (r +R)
n

∑

i=1

aibi. (10)
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Equality of (8) holds if and only if, for at least one i, 1 ≤ i ≤ n holds rai = bi = Rai.

For bi := ∣�i∣, ai := 1 r := ∣�n∣ and R := ∣�1∣, i = 1, 2, ⋅ ⋅ ⋅ , n inequality (8) becomes

n
∑

i=n

∣�i∣
2 + ∣�1∣∣�n∣

n
∑

i=1

1 ≤ (∣�1∣+ ∣�n∣)

n
∑

i=1

∣�i∣. (11)

Since
n
∑

i=1

∣�i∣
2 =

n
∑

i=1

�2
i = 2m+ k,

n
∑

i=1

∣�i∣ = EDcc(G), from inequality (9),

2m+ k + ∣�1∣∣�n∣n ≤ (�1 + �n)EDcc(G)

Hence the result.

Theorem 8. Let G be a graph of order n and size m with cc(G) = k. If � = ∣detADc
(G)∣,

then

EDcc(G) ≥

√

2m+ k + n(n− 1)�
2
n . (12)

Proof.

(EDcc(G))2 =

( n
∑

i=1

∣�i∣

)2

=
n

∑

i=1

∣�i∣
2 +

∑

i∕=j

∣�i∣∣�j∣.

Employing the inequality between the arithmetic and geometric means, we obtain

1

n(n− 1)

∑

i∕=j

∣�i∣∣�j∣ ≥

(

∏

i∕=j

∣�i∣∣�j∣

)
1

n(n−1)

.

Thus,

(EDcc)
2 ≥

n
∑

i=1

∣�i∣
2 + n(n− 1)

(

∏

i∕=j

∣�i∣∣�j∣

) 1
n(n−1)

≥

n
∑

i=1

∣�i∣
2 + n(n− 1)

(

∏

i∕=j

∣�i∣
2(n−1)

) 1
n(n−1)

= 2m+ k + n(n− 1)�
2
n .

Lemma 9. If �1(G) is the largest minimum doubly-connected dominating eigenvalue of

ADcc(G), then �1 ≥
2m+cc(G)

n
.
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Proof. Let X be any non-zero vector. Then we have �1(A) = max
X ∕=0

{X′AX
X′X

}, see [16].

Therefore, �1(ADc
(G)) ≥ J ′AJ

J ′J
= 2m+cc(G)

n
.

Next, we obtain Koolen and Moulton’s [19] type inequality for EDcc(G).

Theorem 10. If G is a graph of order n and size m and 2m+ cc(G) ≥ n, then

EDcc(G) ≤
2m+ cc(G)

n
+

√

(n− 1)

[

(2m+ cc(G))−

(

2m+ cc(G)

n

)2]

. (13)

Proof. Bearing in mind the Cauchy-Schwarz inequality,
(

n
∑

i=1

aibi

)2

≤

(

n
∑

i=1

ai

)2( n
∑

i=1

bi

)2

.

Put ai = 1 and bi = ∣�i∣ then
( n
∑

i=2

aibi

)2

≤ (n− 1)

( n
∑

i=2

bi

)2

(EDcc(G)− �1)
2 ≤ (n− 1)(2m+ c(G)− �2

1)

EDcc(G) ≤ �1 +
√

(n− 1)(2m+ c(G)− �2
1).

Let

f(x) = x+
√

(n− 1)(2m+ cc(G)− x2). (14)

For decreasing function

f ′(x) ≤ 0

⇒ 1−
x(n− 1)

√

(n− 1)(2m+ cc(G)− x2)
≤ 0

x ≥

√

2m+ cc(G)

n
.

Since (2m+ k) ≥ n, we have
√

2m+cc(G)
n

≤ 2m+cc(G)
n

≤ �1. Also f(�1) ≤ f

(

2m+cc(G)
n

)

.

i.e EDcc(G) ≤ f(�1) ≤ f

(

2m+cc(G)
n

)

.

i.e EDcc(G) ≤ f

(

2m+cc(G)
n

)

Hence by (12), the result follows.

We conclude this paper by posing the following open problem for the researchers:

Open Problem: Construct non- cospectral graphs with unequal dominating, connected

dominating and total dominating energy with respect to doubly-connected dominating

energy.
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versity Press (1997).

[11] J. Diaz and F. Metcalf, Stronger forms of a class of inequalities of G. Pólya-G.Szegö
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