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Abstract

A connected dominating set D is said to be doubly-connected dominating set
if the subgraph induced by the set V' — D is connected. In this paper, we have
defined a matrix called the doubly connected dominating matrix and obtained the
the corresponding spectra and energy. Further, we have obtained the chemical ap-
plicability of the doubly connected energy followed by the mathematical properties.
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1 Introduction

All graphs considered in this paper are finite, simple and undirected. In particular, these
graphs do not have loops. Let G = (V| E) be a graph with the vertex set V(G) =
{v1,v9,v3,- -+ ,u,} and the edge set E(G) = {ej,eq, €3, -+ ,en}, that is |[V(G)| = n
and |E(G)| = m. The vertex u and v are adjacent if uv € E(G). The open(closed)
neighborhood of a vertex v € V(G) is N(v) = {u : wv € E(G)} and N[v] = N(v) U {v}
respectively. The degree of a vertex v € V(G) is denoted by dg(v) and is defined as
dg(v) = |N(v)|. A vertex v € V(G) is pendant if |[N(v)| = 1 and is called supporting
vertex if it is adjacent to pendant vertex. Any vertex v € V(G) with |[N(v)| > 1 is called
internal vertex. If dg(v) = r for every vertex v € V(G), where r € ZT then G is called
r-regular. If » = 2 then it is called cycle graph C,, and for r = 3 it is called the cubic
graph. A graph G is unicyclic if |V| = |E|. A graph G is called a block graph, if every

block in G is a complete graph. For undefined terminologies we refer the reader to [16].
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A subset D C V(G) is called dominating set if N[D] = V(G). The minimum car-

dinality of such a set D is called the domination number v(G) of G. A dominating set
D is connected if the subgraph induced by D is connected. The minimum cardinality of
connected dominating set D is called the connected dominating number ~.(G) of G. A
connected dominating set D is said to be doubly-connected dominating set if the sub-
graph induced by the set V' — D is connected. The minimum cardinality of such set is

called the doubly connected domination number. It is denoted by v..(G). [27].
The energy F(G) of a graph G is equal to the sum of the absolute values of the

eigenvalues of the adjacency matrix of G. This quantity, introduced almost 30 years ago
[13] and having a clear connection to chemical problems [15], has in newer times attracted
much attention of mathematicians and mathematical chemists [3,8-12,20,22-24,28,30,31].

In connection with energy (that is defined in terms of the eigenvalues of the adjacency
matrix), energy-like quantities were considered also for the other matrices: Laplacian [15],
distance [17], incidence [18], minimum covering energy [1] etc. Recall that a great variety

of matrices has so far been associated with graphs [4,5,10,29].

Recently in [25] the authors have studied the dominating matrix which is defined as :
Let G = (V, E) be a graph with V(G) = {vy,va, -+ ,v,} and let D C V(G) be a minimum
dominating set of G. The minimum dominating matrix of GG is the n x n matrix defined

by Ap(G) = (ai;), where a;; = 1ifv,v; € E(G) orv; = v; € D, and a;; = 0if v;u; ¢ E(G).

The characteristic polynomial of Ap(G) is denoted by f,(G, u) := det(ul — Ap(Q)).
The minimum dominating eigenvalues of a graph G are the eigenvalues of Ap(G).
Since Ap(G) is real and symmetric, its eigenvalues are real numbers and we label them
in non-increasing order gy > po > --+ > p,. The minimum dominating energy of G is

then defined as

Motivated by dominating matrix, here we define the minimum doubly-connected dom-
inating matrix abbreviated as (c-dominating matrix). The c-dominating matrix of G is

the n x n matrix defined by Ap..(G) = (a;;), where
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a;; =4« 1, ifi=7and v; € Dy;
0, otherwise.
The characteristic polynomial of Ap_.(G) is denoted by f,,(G, A) := det(A\]—Ap,.(G)).
The doubly-connected-dominating eigenvalues of a graph G are the eigenvalues of
Ap..(G). Since Ap,.(G) is real and symmetric, its eigenvalues are real numbers and

we label them in non-increasing order Ay > Xy > --- > \,. The doubly-connected-

dominating energy of GG is then defined as

Ep.(G) = ; | Ail.

To illustrate this, consider the following examples:

Figure 1.

Example 1. Let G be a graph with vertices {a, b, ¢, d, e} and let its minimum doubly-

connected dominating set be D.. = {a,b,c}. Then

11000
11100
Ap.(G)=]0110 1
01001
00110

The characteristic polynomial of Ap_ (G) is A\> —3A* — A3 +6A? — 2\ = 0. The minimum
doubly-connected dominating eigenvalues are \; = 2.61803, \y = 1.41421, A3 = 0.38196,
Ay = 0.000 and A5 = —1.41421.

Therefore, the minimum doubly-connected dominating energy is Ep,_ (G) = 5.8355.

In this paper, we are interested in studying the mathematical aspects of the c-

dominating energy of a graph. This paper has organized as follows: The section 1,
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the chemical applicability of c-dominating energy for molecular graphs G. The section
3, contains the mathematical properties of c-dominating energy. In the last section, we
have characterized, trees, unicyclic graphs and cubic graphs and block graphs with equal
minimum dominating energy and c-dominating energy. Finally, we conclude this paper

by posing an open problem.

2 Chemical Applicability of Fp_(G)

We have used the doubly-dominating energy for modeling eight representative physical
properties like boiling points(bp), molar volumes(mv) at 20°C', molar refractions(mr) at
20°C', heats of vaporization (hv) at 25°C, critical temperatures(ct), critical pressure(cp)
and surface tension (st) at 20°C' of the 74 alkanes from ethane to nonanes. Values
for these properties were taken from http://www.moleculardescriptors.eu/dataset.htm.
The doubly-dominating energy Fp_ (G) was correlated with each of these properties and
surprisingly, we can see that the Ep_ has a good correlation with the critical temperature
of alkanes with correlation coefficient r = 0.896.

The following structure-property relationship model has been developed for the doubly

connected-dominating energy Ep_ (G).

ct = 135128 + [E(D,.)(G)]4.317 (1)
ct = 10.791[E(D.)(G)]* — 0.0101[E(D..)(G)] + 70.999 (2)
ct = —53.591 +In[E(D..)(G)]100.568 (3)
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Figure 3: Correlation of Ep_ (G) with critical temperature of alkanes.

3 Mathematical Properties of Doubly Connected-Dominating
Energy of Graph

We begin with the following straightforward observations.
Observation 1. Note that the trace of Ap..(G) = v.c(G).

Observation 2. Let G = (V, E) be a graph with vy.c-set D.c. Let f,(G,\) = coA™ +
A"+ .o+ ¢, be the characteristic polynomial of G. Then

1. Co = 1,
2. ¢y = —|D.c| = —7.¢(G).
Theorem 3. If A\, Ao, - -+ , A, are the eigenvalues of Ap..(G), then

1. Zn: Ai = 7.¢(Q)
i=1

2. 3 M =2m + 7.c(G).
i=1

Proof.

1. Follows from Observation 1.
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Therefore

n n n
2
DN = Y ayay
i=1 i=1 j=1
n

= 2) (ay) + ) (@)

i<j i=1

= 2m+ 7.c(G).

O

We now obtain bounds for Ep_.(G) of G, similar to McClelland’s inequalities [21] for

graph energy.

Theorem 4. Let G be a graph of order n and size m with v..(G) = k. Then

Ep..(G) < /n(2m+k). (4)

Proof. Let \y > Ao > --- > A, be the eigenvalues of Ap_.(G). Bearing in mind the

Cauchy-Schwarz inequality,

(£0) = (80) ()

we choose a; = 1 and b; = |\;|, which by Theorem 3 implies

n 2
B, = (Zw)
=1
()
=1
= nzn:)\f
=1

— 22m+ k).

IN

O

Theorem 5. Let G be a graph of order n and size m with v.c(G) = k. Let \y > Ay >

- >\, be a non-increasing arrangement of eigenvalues of Ap..(G). Then

Ep.o(G) = +/2mn+nk —a(n)(|M] - [A])? ()

where a(n) = n[2](1 — £[2]), where [x] denotes the integer part of a real number k.
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constants a,b, A and B, so that for each 7, 1 =1,2,--- ,n,a <a; < Aand b < b; < B.

Then the following inequality is valid (see [6]).

\nZaibi—ZaiZbi\ < a(n)(A—a)(B—-Db), (6)

where a(n) = n[2](1 — £[2]). Equality holds if and only if a; = as = -+ = a,, and

by =by=---=b,.
We choose a; := |\, b; := | Ni], a =b:= |\, and A = B := |\1],i = 1,2,--- | n, inequality

(4) becomes

Y () 1< ataiul - )

Since Eg.o(G) = 3N SN2 = SN2 = 2m + k and Ep,o(G) < /n(2m + k), the
=1 i=1 i=1

inequality (5) becomes

n(2m +k) = (Ep.e)® < a@)(M] = [A])?
(Ep..)* > 2mn+nk —a)( ] — |2
Hence equality holds if and only if A\ = Ay =+ = A,. O

Corollary 6. Let G be a graph of order n and size m with v.c(G) = k. Let A\; > Ay >

-+ >\, be a non-increasing arrangement of eigenvalues of Ap..(G). Then

2
Ep..(G) > \/2mn + nk — nz(\)\l\ — [Anl])?. (8)
Proof. Since a(n) = n[2](1 — £[2]) < 1—2, therefore by (3), result follows. O

Theorem 7. Let G be a graph of order n and size m with v.(G) = k. Let \y > Xy >

- >\, be a non-increasing arrangement of eigenvalues of Ap..(G). Then

(Al As|n + 2m + K

Eq..(G) > 9
6.(G) e )
Proof. Let ay,as,--- ,a, and by, by, -+ b, be real numbers for which there exist real
constants 7 and R so that for each 7, ¢ = 1,2,--- ,n holds ra; < b; < Ra;. Then the

following inequality is valid (see [11]).

Zn:bf+rRzn:af < (7’+R)Zn:aibi. (10)
=1 =1 =1
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For b; := |\, a; :=1r:= |\, and R := |\{|, i =1,2,---,n inequality (8) becomes

DI AL DT < (Ml + ) Y I (11)
i=n 1=1 1=1

Since Z I\il? = Z A2 =2m + k, Z |\i| = Ep,.(@), from inequality (9),
Hence the result. O

Theorem 8. Let G be a graph of order n and size m with v..(G) = k. If§ = |detAp, (G)|,
then

Ep..(G) > \/Qm +k+n(n—1)¢n. (12)

Proof.

(Ep Q) = (Z |Ai|)2

i=1
- Z|AI"’+ZIAHAI.
i#]

Employing the inequality between the arithmetic and geometric means, we obtain

1 n(nl—l)
s X = (TTI)

i#] i#]
Thus,

1

I c=y)
(Bp.)? > ZM 2 tnin—1) (HM Dy |)

i#]

TT e 1) o

i#]

> Z|>\|2+nn—1

/‘\

— 2m+k+n(n— 1),
U

Lemma 9. If A\ (G) is the largest minimum doubly-connected dominating eigenvalue of

Ap.o(@), then A, > 2m43ecG)
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Therefore, A\(Ap,(G)) > 221 = 2m+:/1c6(G)' -

Next, we obtain Koolen and Moulton’s [19] type inequality for Ep,.(G).

Theorem 10. If G is a graph of order n and size m and 2m + ~.c(G) > n, then

Ep(G) < 2””—%C(G)+\/<n—1>[<2m+%c<c:>>— (2””—”@)] (13)

n n

Proof. Bearing in mind the Cauchy-Schwarz inequality,

(£on) = (80) (B0)

Put a; = 1 and b; = |\;| then

(Zz::aibi)z < (n—1) (Zb)
(EpelG) = M) < (n—1)@m+7(G) - )

Epo(@) < A+y/(n—1)@m+(G) - 2).

Let

f@) = z4+/(n—1)2m+ c(G) — 22). (14)

For decreasing function

~
—~
&
IN

]

IA
o

2m + v.¢(G)
—

Since (2m + k) > n, we have /22:(@) < 2mi2ee@) < ) Also f()y) < f(m%@)

Lo Epo(G) < f(\) < f(2m+%c<G>)

ie Ep..(G) < f(mn(@)
Hence by (12), the result follows. O
We conclude this paper by posing the following open problem for the researchers:
Open Problem: Construct non- cospectral graphs with unequal dominating, connected

dominating and total dominating energy with respect to doubly-connected dominating

energy.
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