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Abstract: Recently, several methods have been introduced to generate neo-
teric distributions with more �exibility, like T-X, T-R [Y] and alpha power.
The T-Inverse exponential [Y] neoteric family of distributons is proposed in
this paper utilising the T-R [Y] method. A generalised inverse exponential
(IE) distribution family has been established. The distribution family is gen-
erated using quantile functions of some di�erent distributions. A number of
general features in the T-IE [Y] family are examined, like mean deviation,
mode, moments, quantile function, and entropies. A special model of the
T-IE [Y] distribution family was one of those old distributions. Certain dis-
tribution examples are produced by the T-IE [Y] family. An applied case
was presented which showed the importance of the neoteric family.

Keywords: Inverse exponential distribution, Moments, Mode,
quantile function, Shannon's entropy, T-X[Y] family.

1 Introduction

[1], indicated that "a distribution is simply a collection of data on a vari-
able". Not all the data follows normal distribution, which is a bellshape
curve. The data may be right or left skewed, so what is the best distribution
that �ts your data? This question is always on researchers' minds. Because
the current distributions are not resilient enough to model all the data sets
generated by applied �elds.
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Due to the massive improvement in technology, data is growing all the
time. It is becoming more complicated as a result of the overlapping of more
than one process of generating the data. Therefore, attention is paid to
constructing neoteric statistical distributions to deal with the large generated
variety of data.

Neoteric distributions families were developed in ad hock manner in the
past and [2] showed that most of the approach raised after 1980 was intended
to mix two distributions or add an extra parameter to the actual distribu-
tion to form a family of neoteric distributions.For example, [3] sugested the
skewed normal distribution family by giving an additional parameter to the
normal distribution. The exponentiated Weibull distribution was developed
by adding another parameter to Weibull distribution by [4]. [5] presented
a neoteric framework to create a life distributions family With regard to
another's one survival function. [6] explored the family of beta-generated
distributions, where he uses beta distribution as a generator function. The
cumulative distribution function CDF of the beta generated distribution is
de�ned as;

G(ν) =

∫ F (x)

0
b(τ) dτ,

wherever F is the CDF of any random variable say X and b(τ) is the PDF
of beta distirbution. The beta generated distribution pdf is given by;

g(ν) =
f(x)

B(α, β)
Fα−1(x)(1− F (x))β−1, α;β > 0, (1)

wherever B(α, β) is the beta function. Several researchers used di�erent F
in Equation (1) to generate beta distributions. Instead of beta distribu-
tion, Kumaraswamy distribution is applied to expand The beta-generated
family of distributions by [7] and [8]. [9] used the �rst kind of generalized
beta-distribution to introduce the generalized Beta-X family. The replace-
ment of a beta PDF with a new PDF for some continous random variable
[10] o�ered a framework to build neoteric distribution families. Their frame-
work implies using W (F (x)) , that complies with the following requirements:

1. W (F (x)) ∈ [c, d],

2. W is di�erentiable and monotonically non-decreasing,

3. W (F (x)) → c as x → −∞ and W (F (x)) → d as x → ∞,

wherever [c,d] is the support of the random variable T for −∞ ≤ c < d ≤ ∞.
[10] named their technique as, the T-X family of distributions. The CDF
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and PDF of T-X family of distributons is supplied as, respectivly;

G(ν) =

∫ W (F (x))

c
r(t) dt = R(W (F (x))), (2)

where R is the CDF of the generated random variable T . Furthermore,the
corresponding PDF is

g(ν) = [
d

dx
W (F (x))][r(W (F (x))]. (3)

where r is the PDF of T . Several T-X families of distributions were generated
using various W functions. The quantile function of a random variable Y
was admitted as W (F (x)) and the de�nition of the T-X[Y] family were done
by [11]. Several generalized distributions families have released within the
literature. T-normal [12], T-gamma [13], T-Cauchy [14], T-Weibull [15], T-
Burr [16], T-Pareto [17], T-Exponential [18], T-Lomax [19] and T-Dagum
[20]. In this paper, we present the T-inverse exponential distribution family,
which It applies the T-R[Y] technique explored by [11]. The remaining paper
is arranged accordingly. The T-R[Y] technique is brie�y reviewed in Section
2. In Section 3, various generic IE subfamilies are listed. Several T-R[Y]
distribution general attributes are provided in section 4. Section 5 some
neoteric T-R[Y] distributions. Section 6 introduces some applications.

2 The Neoteric Distributions Family T-IE[Y]

The neoteric T-IE[Y] distributions family is introduced in this section,
using the T-R[Y] technique described by [11]. This is seen as a generalization
of inverse exponential distiribution.

Let us denote the Y , R, and T as the random variables with their CDFs
FY (ν) = P (Y ≤ ν), FR(ν) = P (R ≤ ν) and FT (ν) = P (T ≤ ν), respectively.
Also, suppose QY (u), QR(u) and QT (u), the quantile functions coresponding
to Y , R and T , respectively. Where the de�nition of the quantile function
is QZ(u) = inf [z : FZ(z) ≥ u], 0 < u < 1. The PDFs of Y , R and T
are pointed as fY (ν), fR(ν) and fT (ν), respectively. We assume that the
random variables T ∈ (c, d) and Y ∈ (l,m), for −∞ ≤ c < d ≤ ∞ and
−∞ ≤ l < m ≤ ∞. [11] (see also [12]) presented the CDF of the T-R[Y]
family as follows:

GX(ν) =

∫ QY (FR(ν))

c
fT (τ) dτ = FT (QY (FR(ν))). (4)

From Equation 4 the corresponding PDF is given by;

gX(ν) = fT [QY (FR(ν))] ∗Q′
Y (FR(ν)) ∗ fR(ν). (5)
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Alternatively, Equation 5 can be written as;

gX(ν) = fR(ν) ∗
fT (QY (FR(ν)))

fY (QY (FR(ν)))
.

Let the variable R follows the inverse exponential distribution. A ν vari-
able is claimed to possess an inverse exponential distribution if its PDF

and CDF are, respectively, given by; f(ν) = ϑ
ν2

e−
ϑ
ν and F (ν) = e−

ϑ
ν ,

ν ≥ 0, ϑ ≥ 0. The CDF and PDF of the T-inverse exponential[Y] family can
therefore be provided, respectively, as;

GX(ν) =

∫ QY (e−
ϑ
ν )

a
fT (τ) dτ = FT [QY (e

−ϑ
ν )], (6)

and

gX(ν) =
ϑ

ν2
e−

ϑ
ν
fT [QY (e

−ϑ
ν )]

fY [QY (e
−ϑ

ν )]
. (7)

In cases when T ∼ Kw(a, b) and Y ∼ uniform(0, 1), the T-IE[Y] de-
creases to the Kumaraswamy-inverse exponential(KW-IE) distribution ([21]).

Proposition 1 The subsequent proposition can easily be proved. Allowing R
to be an inverse exponential variable, and T , Y be any random variables with
CDFs FT and FY with Q denoting a quantile function. If X is a random
variable following the Equation 7 distribution, It is simple to demonstrate
that;

i X
d
= QR(FY (T )),

ii QX(u) = QR(FY (QT (u))),

iii E(Xn) = E[(QR(FY (T )))
n],

iv If T
d
= Y , then X

d
= R. Also, if Y

d
= R, then X

d
= T .

Some recognaized distributions quantile functions (in standard form) are
given in Table 1 which are able to be applied to come up with T-IE[Y]
sub-families in section 3.

[22] mentioned that it is useless to use more than �ve parameters distri-
butions. Using non-standard quantile functions may result more than �ve
parameters T-IE[Y] distributions. Consequently, we concentrate on standard
quantile functions during this paper.
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Table 1: Various Y distributions quantile functions.

No. Y Quantiel functions

1 Uniform υ
2 Weibull -ln (1-υ)
3 Log-logistic υ / (1-υ)
4 Pareto 1 / (1-υ)
5 Logistic ln [υ / (1-υ)]
6 Enutreme Value ln [-ln (1-υ)]

3 T-IE[Y] Subfamilies.

In this part, certain T-IE[Y] subfamilies are shown on the basis of the
quantile functions from Table 1.

3.1 T-IE[Uniform] Family

Employing uniform distribution quantile function in Table 1, the CDF to
Equation 6 is demonstrated as;

GX(ν) = FT (e
−ϑ

ν ), (8)

and the PDF to equation 8 is;

gX(ν) =
ϑ

ν2
e−

ϑ
ν fT (e

−ϑ
ν ). (9)

3.2 T-IE[Weibull] Family

Employing Weibull distribution quantile function in Table 1, the corre-
sponding CDF to Equation 6 can be dei�ned as ;

GX(ν) = FT

(
− ln

(
1− e−

ϑ
ν

))
, (10)

and the PDF to Equation 10 is;

gX(ν) =
ϑ

ν2
e−

ϑ
ν

(1− e−
ϑ
ν )

fT

(
− ln

(
1− e−

ϑ
ν

))
. (11)

3.3 T-IE[Log-Logistic] Family

Employing log-logistic distribution quantile function from Table 1, the
CDF to Equation 6 is explored as;

GX(ν) = FT

(
e−

ϑ
ν

1− e−
ϑ
ν

)
, (12)
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and the PDF to equation 12 is;

gX(ν) =
ϑ

ν2
e−

ϑ
ν

(1− e−
ϑ
ν )2

fT

(
e−

ϑ
ν

1− e−
ϑ
ν

)
. (13)

3.4 T-IE[Pareto] Family

Employing Pareto distribution quantile function in Table 1, the corre-
sponding CDF to Equation 6 is;

GX(ν) = FT

(
1

1− e−
ϑ
ν

)
, (14)

and the PDF to Equation 14 is;

gX(ν) =
ϑ

ν2
e−

ϑ
ν

(1− e−
ϑ
ν )2

fT

(
1

1− e−
ϑ
ν

)
. (15)

3.5 T-IE[Logistic]Family

Employing logistic distribution quantile function from Table 1, the corre-
sponding CDF to Equation 6 is;

GX(ν) = FT

(
− ln

(
e−

ϑ
ν

1− e−
ϑ
ν

))
, (16)

and the PDF to equation 16 is;

gX(ν) =
ϑ

ν2
1

(1− e−
ϑ
ν )

fT

(
− ln

(
e−

ϑ
ν

1− e−
ϑ
ν

))
. (17)

3.6 T-IE[Extreme Value] Family

Employing Extreme Value distribution quantile function from Table 1, the
corresponding CDF to Equation 6 is;

GX(ν) = FT

(
ln
(
− ln

(
1− e−

ϑ
ν

)))
, (18)

and the PDF to Equation 18 is;

gX(ν) =
ϑ

ν2
e−

ϑ
ν

(1− e−
ϑ
ν )

1

ln
(
1− e−

ϑ
ν

) fT

(
ln
(
− ln

(
1− e−

ϑ
ν

)))
. (19)
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4 Several Properities of T-IE[Y] Family

Several general properties (including transformations, quantile functions,
mode, Shannon's entropy, moments and mean deviation) will be detected in
this section concerning the T-IE [Y] distributions family.

4.1 Quantile Function and Transformation

The realationship among the two random variables X and T is presented
in the subsequent lemma.

Lemma 1 Using proposition 1(i) the subsequent lemma is simple to verify.
Suppose T is a random variable and fT (ν) is the corresponding PDF, then;

1. x = −ϑ
ln(1−e−T )

follows the T-IE(Weibull) family distribution in Equation
10.

2. x = −ϑ
ln( T

1+T
)
follows the T-IE(Log- logistic) family distribution in Equa-

tion 12.

3. x = −ϑ
ln(T− 1

T )
follows the T-IE(Pareto) family distribution in Equation

14.

4. x = −ϑ

ln
(

eT

1+eT

) follows the T-IE(logistic) family distribution in Equation

16.

5. x = −ϑ
ln(1−exp(e−T ))

follows the T-IE(Extreme Value ) family distribution

in Equation 18.

In simple words, the quantile function of any random variable is the inverse
of its distribution function. The quantile functions for the T-IE[Y]family of
distributions are presented in the next lemma.

Lemma 2 The result of this lemma follows 1 (ii). The quantile function
(s) for(1) T-IE (Weibull), (2) T-Ie(log-logistic), (3) T-IE (Pareto),(4) T-
IE (logistic) and (5) T-IE (Extreme Value) subfamilies of distributions, are
respectively, for 0 < u < 1;

1. Qx(u) =

[
−ϑ

ln(1−e−QT (u))

]
,

2. Qx(u) =

[
−ϑ

ln
(

QT (u)

1+QT (u)

)
]
,
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3. Qx(u)=

[
−ϑ

ln(1−exp(eQT (u)))

]
,

4. Qx(u)=

[
−ϑ

ln(1−eQT (u))

]
,

5. Qx(u) =

[
−ϑ

ln
(

QT (u)−1

QT (u)

)
]
.

4.2 Mode(s)

Mode is the most value that appears in a set of data and it is impor-
tant in many applications, like marketing research, media, medical research
and business. So, within the current section, the mode(s)'s formula of the T-
IE[Y] family is shown within the next theorem.

Theorem 1 The mode(s) of T-IE[Y] subfamilies of distributions [(1)T-IE(Weibull),
(2) T-IE(log-logistic), (3) T-IE(Pareto), (4) T-IE(logistic) and (5) T-IE(Extreme
Value)], are the solutions of the subsequent equations, respectively;

1. x =
f ′
T (−ln[1−e

ϑ
ν ])

fT (−ln[1−e
ϑ
ν ])

[2− ϑ
ν (

e−
ϑ
ν

1−e−
ϑ
ν
+ 1)],

2. x =
f ′
T ( e

−ϑ
ν

1−e
−ϑ

ν

)

fT ( e
−ϑ

ν

1−e
−ϑ

ν

)

[2− ϑ
ν (2

e−
ϑ
ν

1−e−
ϑ
ν
+ 1)],

3. x =
f ′
T ( 1

1−e
−ϑ

ν

)

fT ( 1

1−e
−ϑ

ν

)
[2− ϑ

ν (2
e−

ϑ
ν

1−e−
ϑ
ν
+ 1)],

4. x =
f ′
T (ln[ e

−ϑ
ν

1−e
−ϑ

ν

])

fT (ln[ e
−ϑ

ν

1−e
−ϑ

ν

])

[2− ϑ
x (

e−
ϑ
ν

1−e−
ϑ
ν
)],

5. x = fT (ln(−ln[1−e
ϑ
ν ]))

fT (ln(−ln[1−e
ϑ
ν ]))

[2− ϑ
ν (

e−
ϑ
ν

1−e−
ϑ
ν
+ 1)].

4.3 Shannon's Entropy

The entropy term has a wide use in the social scince as a measure of
uncertanty. Thus, the shannon's entropy (ηx) of a random variable X will
be derived in this section as ηx = E (−ln [f(x)]).
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Theorem 2 T-IE[Y] family Shannon's entropy is given by;

ηx = ηT + E (lnfy(T ))− ln[ϑ] + 2E(lnν)− ϑE(
1

ν
) (20)

ηT represent the Shannon entropy for random variable T.

Proof: from proposition 1(i)X
d
= QR(FY (T )) and (iv) If T

d
= Y , furthermore

X
d
= R this implies that T

d
= QY (FR(ν)). Therefore, from Equation 5 we've

gX(ν) = fR(ν) ∗
fT (T ))

fY (T )
.

Which implies
ηx = ηT + E (lnfY (T ))− E (lnfR(ν)) (21)

Now, lnfR(ν) = ln[ϑ]− 2ln[ν]− ϑ
ν , which provides

E (−ln[fR(ν)]) = −ln[ϑ] + 2E(lnν) + ϑE

(
1

ν

)
.

from lemma 1 x = −ϑ
ln(1−e−T )

follows the distribution of T-IE(Weibull), hence

E (−ln[fR(ν)]) = −3ln[ϑ]− 2E
(
ln
[
ln[1− e−T ]

])
− E

(
ln[1− e−T ]

)
,

also E (lnfY (T )) = E
(
ln[1− eln[1−e−T ]]

)
.

So this is the procedures for having shannon's entropy for T-IE(Weibull)
and by the same procedures we can get shannon's entropy formulas for all
T-IE subfamilies of distributions.

corollary 1 The Shannon's entropies of T-IE[Y] subfamilies of distribu-
tions [ (1) T-IE(Weibull), (2) T-IE(log-logistic), (3) T-IE(Pareto), (4) T-
IE(logistic) and (5) T-IE(Extreme Value)] are given by, respectively;

1. ηx = ηT + E
(
ln [1− eln[1−e−T ]]

)
− 3 ln[ϑ]− 2E

(
ln [ln [1− e−T ]]

)
− E

(
ln[1− e−T ]

)
,

2. ηx = ηT + 2E
(
ln [1− eln[

T
1+T

]]
)
− 3 ln[ϑ]− E

(
ln[ T

1+T ]
)

− 2E
(
ln
[
ln[ T

1+T ]
])

,

3. ηx = ηT + 2E
(
ln[1− eln[1−

1
T
]]
)
− 3 ln[ϑ]− 2E

(
ln [ln [1− 1

T ]]
)

− E
(
ln[1− 1

T ]
)
,
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4. ηx = ηT + 2E
(
ln[1 + eT−ln[1+eT ]]

)
− 3 ln[ϑ]− 2E (ln[T ])

+ 2E
(
ln
[
ln[1 + eT ]

])
,

5. ηx = ηT +E
(
ln[1− eln[1−ee

−T
]]
)
−E

(
ln[ln[1− eln[1−ee

−T
]]]
)
−3 ln[ϑ]

− 2E
(
ln[ln[1− ee

−T
]]
)
+ E

(
ln[1− ee

−T
]
)
.

4.4 Moments

The usefulness of moments of any statistical distribution is it can de-
scribe the shape of any distribution, Thus, in this section, our motivation
is to introduce the non-central moments of neoteric T-IE[Y] subfamilies of
distributions.

Theorem 3 The relationship among the two random variables X and T is
used for developing the non-central moment of the random variable X in
lemma 1. The rth non-central moments of T-IE[Y] subfamilies of distri-
butions [ (1) T-IE(Weibull), (2) T-IE(log-logistic), (3) T-IE(Pareto), (4)
T-IE(logistic) and (5) T-IE(Extreme Value)] can be respectively de�ned like
that;

1. E(xr) = ϑr− r
∑∞

i=0

(
i+ r
i

)∑i
j=0

(−1)i+j

−r−j

(
i
j

)
Pj,iE

[
(e−T )−r+i

]
,

2. E(xr) = ϑr−r
∑∞

i=0

(
i+ r
i

)∑i
j=0

(−1)i+j

−r−j

(
i
j

)
Pj,iE

[(
1

1+T

)−r+i
]
,

3. E(xr) = ϑr − r
∑∞

i=0

(
i+ r
i

)∑i
j=0

(−1)i+j

−r−j

(
i
j

)
Pj,iE

[(
1
T

)−r+i
]
,

4. E(xr) = ϑr−r
∑∞

i=0

(
i+ r
i

)∑i
j=0

(−1)i+j

−r−j

(
i
j

)
Pj,iE

[(
1

1+eT

)−r+i
]
,

5. E(xr) = ϑr − r
∑∞

i=0

(
i+ r
i

)∑i
j=0

(−1)i+j

−r−j

(
i
j

)
Pj,iE

[
exp[e−T ]

]
.

Proof: the rth non-central moment of X can be de�ned as;

E (xr) = E [( QR (FY (T )) )
r] .

For example , the rth non-central moment of X that follow T-IE [Weibull]
distribution can be de�ned as;

E (xr) = E

[(
−ϑ

ln[1− e−T ]

)r]
= ϑrE

[(
−ln[1− e−T ]

)−r
]
.
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An expansion of the expression
(
−ln[1− e−T ]

)−r
can be given by using the

formula (see [23]);

(−log[1− z])a = a

∞∑
i=0

(
i− a
i

) i∑
j=0

(−1)i+j

a− j

(
i
j

)
Pj,iZ

a+i, (22)

wherever a > 0 is any real value and | z |< 1. The constant Pj,i can be
calculated using

Pj,i =
1

i

i∑
m=1

(jm− i+m)(−1)m

m+ 1
Pj,i−m (23)

for i = 1, 2, 3, ..., and Pj,0 = 1. The rest of non-central moments of T-IE
families given in section 3 can be obtained applying the same technique.

4.5 Mean Deviations

How far the data values are spread out from the mean value, this is what
the mean deviations tells us. Dµ is the mean deviation from the mean.

Theorem 4 Dµ for (1) T-IE(Weibull), (2) T-IE(log-logistic), (3) T-IE(Pareto),
(4) T-IE(logistic) and (5) T-IE(Extreme Value) subfamilies of distributions,
respectively, are;

1. Dµ = 2µG(µ) + 2ϑ
∑∞

i=0

(
i+ 1
i

)∑i
j=0

(−1)−1−j

a−j

(
i
j

)
Pj,i S

e−
ϑ
u
(µ, 0,−1 + i),

where Sϕ(u)(c, δ, α) =∫ Qy(FR(c))
δ (ϕ(u))αfT (u) du and Qy(FR(c)) = −ln[1− FR(c)],

2. Dµ = 2µG(µ) + 2ϑ
∑∞

i=0

(
i+ 1
i

)∑i
j=0

(−1)−1−j

a−j

(
i
j

)
Pj,i

S 1
1+u

(µ, 0,−1 + i), where Qy(FR(c)) =
FR(c)

1−FR(c) ,

3. Dµ = 2µG(µ) + 2ϑ
∑∞

i=0

(
i+ 1
i

)∑i
j=0

(−1)−1−j

a−j

(
i
j

)
Pj,i

S 1
u
(µ, 0,−1 + i), where Qy(FR(c)) =

1
1−FR(c) ,

4. Dµ = 2µG(µ) + 2ϑ
∑∞

i=0

(
i+ 1
i

)∑i
j=0

(−1)−1−j

a−j

(
i
j

)
Pj,i

S 1
1+eu

(µ, 0,−1 + i), where Qy(FR(c)) = ln[ FR(c)
1−FR(c) ],
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5. Dµ = 2µG(µ) + 2ϑ
∑∞

i=0

(
i+ 1
i

)∑i
j=0

(−1)−1−j

a−j

(
i
j

)
Pj,i

S
ee−T (µ, 0,−1 + i), where Qy(FR(c)) = ln[−ln[1− FR(c)]].

Proof: The Dµ is de�ned by

Dµ = E(| ν − µ |) =∫ ∞

−∞
| ν − µ | gX(ν)dν =

∫ µ

−∞
(µ− ν)gX(ν)dν +

∫ ∞

µ
(ν − µ)gX(ν)dν. (24)

Dµ = 2µG(µ)− 2

∫ µ

−∞
ν gX(ν)dν. (25)

To �nd the integral in Equation 25, let I(c) =
∫ c
−∞ ν gX(ν)dν. we now

present the proof of mean deviation of T-IE(Weibull) family. Using Equation
5, we rewrite I(c) as;

I(c) =

∫ c

−∞
ν fR(ν)

FT (QY (FR(ν)))

FY (QY (FR(ν)))
dν. (26)

Using the substitution u = QY (FR(ν)) in Equation 26, I(c) can be presented
as;

I(c) =

∫ QY (FR(ν))

0
ϑ
(
−ln[1− e−

ϑ
ν ]
)−1

fT (u)du. (27)

Using the same technique presented in Equation 22 to write the expansion

of −ln[1− e−
ϑ
ν ], we get

I(c) = −ϑ
∞∑
i=0

(
i+ 1
i

) i∑
j=0

(−1)−1−j

a− j

(
i
j

)
Pj,i S

e−
ϑ
u
(µ, 0,−1 + i). (28)

where Pi,j is de�ned in Equation 23 and Sϕ(u)(c, δ, α) =∫ Qy(FR(c))
δ (ϕ(u))αfT (u) du.

5 A number Of T-IE[Y] Distributions

Using some di�erent distributions for random variable T to create several
neotric distributions is done in this section. These distributions are, re-
spectivly, Fréchet-IE[Log-logistic], Weibull-IE[Log-logistic] and exponential-
IE[Weibull].

5.1 Fréchet-IE[Log-Logistic] Distribution

A neoteric three parmeters distribution is introduced in this section, named
as Fréchet-IE[log-logistic] distribution, which is an example of T-IE[log-
logistic] family of distributions.

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 9, September - 2021 Page-567



Figure 1: Fréchet-IE[log-logistic] distribution PDFs for di�erent parameters
value

If T follow Fréchet distribution, then fT (ν) = αλν−(α+1)e−λν−α
and

FT (ν) = e−λν−α
. Using Equation 12 and Equation 13, the CDF and PDF of

Fréchet-IE[log-logistic] distribution is formed as, respectivly;

GX(ν) = exp

[
−λ

(
e−

ϑ
ν

1− e−
ϑ
ν

)−α]
, (29)

gX(ν) =
αλϑ

ν2
e

αϑ
ν(

1− e−
ϑ
ν

)1−α exp

[
−λ

(
e−

ϑ
ν

1− e−
ϑ
ν

)−α]
. (30)

5.2 Weibull-IE[log-Logistic] Distribution

This section presents a three-parameter Weibull-IE[log-logistic] distribu-
tion. This is a case in point of the T-IE[log-logistic] family. If T follow

Weibull distribution, then fT (ν) =
β
η (

ν
η )

β−1e
−( ν

η
)β

and FT (ν) = 1− e
−( ν

η
)β
.

Using Equation 12 and Equation 13, the CDF and PDF of Weibull-IE[log-
logistic] distribution is formed as;

GX(ν) = 1− exp

[
−1

η

(
e−

ϑ
ν

1− e−
ϑ
ν

)]β
, (31)

gX(ν) =
βϑ

ηβν2
e−

βϑ
ν

(1− e−
ϑ
ν )β+1

exp

[
−1

η

(
e−

ϑ
ν

1− e−
ϑ
ν

)]β
. (32)
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Figure 2: Weibull-IE[log-logistic] distribution PDFs for di�erent parameters
value

Figure 3: Exp-IE[Weibull] distribution PDFs for di�erent parameters value

5.3 Exponential-IE[Weibull] Distribution

This section proposes a two-parameter exponential-IE[Weibull] distribu-
tion. This is a case in point of the T-IE[Weibull] family. If T follow ex-
ponential distribution, then fT (ν) = γe−γν and FT (ν) = 1 − eγν . Using
Equation10 and Equation 11, the CDF and PDF of exponential-IE[Weibull]
distribution is formed as;

GX(ν) = 1− exp
[
−γ
(
−ln[1− e−

ϑ
ν ]
)]

, (33)

gX(ν) =
γϑ

ν2
e

ϑ
ν

1− e−
ϑ
ν

exp
[
−θ
(
−ln[1− e−

ϑ
x ]
)]

. (34)

6 Applications

The elasticity of Fréchet-IE [log-logistic] is explained by the use of a real
data set. A comparison is made between the Fréchet-IE[log-logistic] dis-
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Table 2: AIC, BIC and Log-Likelihood Measures for The Data

Distribution AIC BIC Log-likelihood

Fréchet-IE[Log-Logistic] 1319.00 1327.99 -656.50
Fréchet 1557.96 1566.95 -775.97
Inverse power logistic exponential 1557.96 1566.95 -775.97
Weibull-Lomax[log-logistic] 5158.78 5167.77 -2576.39
Weibull-exponential 5160.78 5172.77 -2576.39
Logistic-exponential 5156.78 5162.77 -2576.39

tribution and various distributions such as (Fréchet, inverse power logistic
exponential, Weibull-Lomax[log-logistic], Weibull-exponential and logistic-
exponential). In monthly renal transplantation patient statistics, we use
graft survival times provided in [24].

The log-likelihood value, Bayesian information criterion (BIC) and Akaike
information criterion (AIC) are obtained to compare the �tted distributions.
The maximum likelihood estimation method is used to estimate distribution
parameters. Table 2 contains the values of AIC, BIC and log-likelihood. The
�gures in Table 2 indicate that the Fréchet-IE[Log-Logistic] distribution is
the best-�tted model among the listed model.
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