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Abstract

The influence of surface tension over an oblique incident waves in presence of thick
rectangular barriers present in water of uniform finite depth is discussed here. Three
different structures of a bottom-standing submerged barrier, submerged rectangular
block not extending down to the bottom and fully submerged block extending down
to the bottom with a finite gap are considered. An appropriate multi-term Galekin
approximation technique involving ultraspherical Gegenbauer polynomial is employed
for solving the integral equations arising in the mathematical analysis. The reflection
and transmission coefficients of the progressive waves for two-dimensional time har-
monic motion are evaluated by utilizing linearized potential theory. The theoretical
result is validated numerically and explained graphically in a number of figures. The
present result will almost match analytically and graphically with those results already
available in the literature without considering the effect of surface tension. From the
graphical representation, it is clearly visible that the amplitude of reflection coefficient
decreases with increasing values of surface tension. It is also seen that the presence
of surface tension, the change of width, and the height of the thick barriers affect the
nature of the reflection coefficients significantly.

Keywords: Oblique wave scattering, Surface tension, Thick rectangular barrier, Multi-
term Galerkin approximation, Transmission and Reflection coefficients.

1 Introduction

Problems of water wave scattering by thin vertical barriers submerged in finite depth water
are well studied in the literature using the linearized theory of water waves. For normal inci-
dent wave trains in finite depth water, the problems are solved explicitly employing various
mathematical techniques by a number of researchers(cf. Packman and Williams [1], Losada
et al. [2], Porter and Evans [3], Mandal and Dolai [4], Kanoria and Mandal [5], Banerjea
et al. [6], Das et al. [7], Das, De and Mandal[8]). When the obstacle is in the form of a
thick vertical barrier with a rectangular cross-section present in the water of uniform finite
depth, the corresponding water wave scattering problems for normal incidence wave train
have been investigated earlier by Mei and Black [9], Kanoria et al. [10]. Mei and Black [9]
considered surface piercing and bottom standing thick vertical barriers and used variational
formulations as the basis for numerical computations of the reflection and the transmission
coefficients. Kanoria et al.[10] and Mandal and Kanoria [11] considered the problems of
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normal and oblique wave scattering by thick barriers respectively, wherein the barriers have
four types of configurations such as surface-piercing or bottom standing thick barrier or a
submerged block, or a thick wall with a gap. They used the multi-term Galerkin approxima-
tion method involving ultraspherical Gegenbauer polynomials for solving first kind integral
equations arising in the mathematical analysis to obtain very accurate numerical estimates
for the reflection coefficient. However, for oblique incidence of the wave trains in finite depth
water, these problems cannot be solved explicitly.

None of the above research considered the effect of surface tension. Due to presence of co-
hesive forces in between water molecule in the upper surface of water, sometimes it’s become
necessary to consider the effect of surface tension on water wave scattering problems. A few
of them such as Evans [12], [13], Rhodes-Robinson [14], [15], [16], Chakrabarti and Sahoo
[17] included the effect of surface tension in water wave scattering problems. However, the
scattering problem due to the thick rectangular barrier in presence of surface tension does
not investigated yet. The amplitude and the frequency of the wave depend on both the
surface tension and gravity. For this reason, it may not be possible to neglect the effect of
surface tension while doing experimental study. As mentioned by Hocking and Mahdmina
[18], another important reason for including surface tension is that in the absence of surface
tension the transient motion initiated by an impulsive start is singular, but when the effect
of surface tension is taken into account this singularity is removed. The uniqueness of the
solution of the problem depends on the behavior of a special combination of the derivatives
of the velocity potential at the edge because of the effect of surface tension as mentioned
by Chakrabarti and Sahoo [17]. This is also an important reason for including the surface
tension.

In our present study, we analyze the effect of surface tension on wave scattering problem
by oblique incidence waves due to thick rectangular barrier. Three types of barrier, sub-
merged bottom standing, submerged plate of finite height and fully submerged block with a
gap are considered here. Due to geometrical symmetry about its central line, the scattering
problems for all the cases are split into two separate boundary value problems in terms of
symmetric and antisymmetric potential functions. Analytically the boundary value prob-
lems involving potential functions are reduced in to first kind integral equations using inverse
Havelock inversion formulae. The integral equations are solved analytically by using multi
term Galerkin approximation technique and there is used the ultra spherical Gegenbauer
polynomial as a basis function as was done by Chakraborty and Mandal [19],[20], Newman
[21] Sasmal and De [24], Paul and De[25]. The analytical result is explained numerically in
terms of reflection coefficients of wave energy by a number of figures. The numerical results
of the reflection coefficient for both types of thick barriers are obtained with almost six
figure accuracies by taking only 6 terms in the multi-term Galerkin approximations and all
of these results are depicted graphically against the non dimensional wave numbers. Some
figures are compared with Kanoria et al.’s [10] result for normal incidence wave (incidence
angle θ = 00) without taking the surface tension and a good agreement is achieved here. For
large horizontal length of type I, II and III barriers, the numbers of zeros of the reflection
coefficient as a function of wave number increases, which is also consistent with the obser-
vation of Kanoria et al.[10] for thick vertical barriers with free surface and Newman [21] for
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long bottom obstacles. In the present study, the energy balance relation involving reflec-
tion and transmission coefficients is also satisfied numerically. These all results provide the
checks of the correctness of the present numerical method utilized here. The new outcome
of this article is that the surface tension together with the change of width of the barrier
affects the amplitude of reflection coefficients significantly.

2 Problem Construction

We consider a time harmonic wave motion of angular frequency σ under the action of both
gravity with acceleration g and surface tension T in region of finite water depth h in which
a thick rectangular barrier of uniform width 2b is immersed. Here water is taken as an
inviscid, homogeneous fluid with irrotational motion.

A rectangular cartesian coordinate system is chosen, where y axis is taken vertically
downwards and the (x, z) plane corresponds to the undisturbed surface. Here we study
three different cases of barrier placement(as shown in fig 1), the barrier may occupy the
region −b ≤ x ≤ b with (I) y ∈ L = L1(= (c, h)) , (II) y ∈ L = L2(= (a, c)), with
0 ≤ a ≤ c ≤ h and (III) y ∈ L = L3(= (a, c) + (d, h)), with 0 ≤ a ≤ c ≤ d ≤ h. In
the present computation L1, L2 and L3, corresponding type-I, type II and type-III barrier
configuration respectively.

Here we consider a harmonically time dependent progressive wave, obliquely incident from
negative infinity and its direction makes an angle θ with the horizontal x− axis. We denote
the wave number by γ0, where γ0 =

2π
λ
, λ is the wave length of incident wave. The incident

wave number γ0 satisfy the transcendental equation

γ(1 +Mγ2) tanh γh = K, K =
σ2

g
, (1)

M = τ
ρg
, τ is the coefficient of surface tension at the free surface of the ocean, ρ is the

density of the fluid.
The position of roots of the transcendental equation (1) is shown numerically in Fig. 2

using a contour plot. To draw the contour, we consider some fixed values of M
h2 (= 2) and
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Figure 1: Diagram of thick barriers

Kh = 0.8. In the figure, the black dots signify the position of the roots and it is very
clear that, in presence of surface tension, the dispersion equation has two real roots ±γ0
and infinitely many purely imaginary roots ±iγn, n = 1, 2, ...(γn > 0). [cf. Chakrabarti and
Sahoo[17], Sasmal, Paul and De[22], Paul et. al.,[23]]. Assuming linear theory, a train of
incident wave is represented by ℜ{φinc(x, y)ei(νz−σt)} where

φinc(x, y) =
2 cosh γ0(h− y)e−iµ(x−b)

cosh γ0h
, (2)

Figure 2: Contour plot Γ of the roots of the dispersion equation for M
h2 = 2, Kh = 0.8.

Here µ = γ0 cos θ and ν = γ0 sin θ where 0 < θ < π/2 and ei(νz) is the z dependence
term of the fluid. Due to geometrical symmetry of the problem, the z dependent term can
be eliminated by assuming the velocity potential to be of the form ℜ{φinc(x, y)ei(νz−σt)}.
Henceforth, the factor ei(νz−σt) will be omitted.

Then velocity potential function φ(x, y) satisfies the boundary value problem

(∇2 − ν2)φ = 0 in the fluid region (3)
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Kφ+
∂φ

∂y
+M

∂3φ

∂y3
= 0 on y = 0, |x| < ∞ (4)

φx = 0 on x = ±b, y ∈ Lj , j = 1, 2, 3 (5)

r
1

3∇φ is bounded as r → 0, (6)

r is the distance from a submerged edge of the thick barrier,

φy = 0 on y = lj, |x| < b, for j-th type of barrier, j = 1, 2, 3 (7)

φy = 0 on y = h,

{

|x| > b for type I and III barrier
|x| < ∞ for type II barrier

(8)

and finally

φ(x, y) ∼

{

φinc(x, y) +Rφinc(−x, y) as x → ∞,
Tφinc(x, y) as x → −∞

(9)

where R and T is the unknown reflection and transmission coefficients respectively and
is to be determined for each barrier configuration. In (7), l1 = c; l2 = a, c; l3 = a, c, d;
corresponding to type I, II, III barriers configurations respectively depicted in Figure 1.

3 Method of solution

Presence of the uniform geometrical structure of the rectangular barrier about x = 0; φ(x, y)
can be divided into symmetric and antisymmetric parts, φSMM(x, y) and φANSMM(x, y),
respectively, so that

φ(x, y) = φSMM(x, y) + φANSMM(x, y) (10)

where

φSMM(−x, y) = φSMM(x, y), φANSMM(−x, y) = −φANSMM(x, y) (11)

Therefore, we consider only the region x ≥ 0. Now φSMM,ANSMM(x, y) satisfy (3) to (8)
together with

φSMM
x (0, y) = 0 and φANSMM(0, y) = 0, 0 < y < h. (12)

Let the behavior of φSMM,ANSMM(x, y) for large x be represented by

φSMM,ANSMM(x, y) ∼
cosh γ0(h− y)

cosh γ0h
{e−iµ(x−b) +RSMM,ANSMMeiµ(x−b)} as x → ∞ (13)

where RSMM and RANSMM are unknown constants. These constants are related to R and
T by

R, T =
1

2
(RSMM ± RANSMM)e−2iµb. (14)

Now the eigen function expansions of φSMM,ANSMM(x, y) satisfying (3) to (8) and (12) for
x > 0 in the different regions for each barrier configuration are below.
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Region I (x > b, 0 < y < h):

φSMM,ANSMM(x, y) =
cosh γ0(h− y)

cosh γ0h
{e−iµ(x−b) +RSMM,ANSMMeiµ(x−b)}

+

∞
∑

n=1

ASMM,ANSMM
n cos γn(h− y)e−sn(x−b) (15)

where γn (n = 1, 2, ...) are the real positive roots of the equation

x(1−Mx2) tanxh +K = 0. (16)

and sn = (γ2
n + ν2)

1

2 .

Region II (0 < x < b, y ∈ (0, h)− Lj , j = 1, 2, 3):

Type I:

For y ∈ (0, c), φSMM(x, y) and φANSMM(x, y) are given by

(

φSMM(x, y)
φANSMM(x, y)

)

=
coshα0(c− y)

coshα0c

(

BSMM
0 cos(α2

0 − ν2)
1

2x

BANSMM
0 sin(α2

0 − ν2)
1

2x

)

+
∞
∑

n=1

(

BSMM
n cosh tnx

BANSMM
n sinh tnx

)

cosαn(c− y) (17)

where ±α0,±iαn(n = 1, 2, ...) are the roots of the equation

α(1 +Mα2) tanhαc = K. (18)

and
tn = (α2

n + ν2)
1

2 , (n = 1, 2, ..). (19)

Type II:

For y ∈ (0, a) + (c, h), φSMM,ANSMM(x, y) will have two types of expressions depending
on whether 0 < y < a or c < y < h. For 0 < y < a the expressions of φSMM,ANSMM(x, y)
are similar to equation (17) with BSMM,ANSMM

n replaced by DSMM,ANSMM
n , αn replaced by

βn, tn replaced by un and c replaced by a, where ±β0, ± iβn(n = 1, 2, ...) are the roots of
the equation

β(1 +Mβ2) tanh βa = K (20)

and un = (β2
n + ν2)

1

2 , (n = 1, 2, ..). (21)

For c < y < h the expressions of φSMM,ANSMM(x, y) are given by

(

φSMM(x, y)
φANSMM(x, y)

)

=

(

0
EANSMM

0 x

)

+

∞
∑

n=1

(

ESMM
n cosh nπx

h−c

EANSMM
n sinh nπx

h−c

)

cos
nπ(y − c)

h− c
(22)

Type III:
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For y ∈ (0, a) + (c, d), φSMM,ANSMM(x, y) will have two types of expressions depending
on whether 0 < y < a or c < y < d. For 0 < y < a the expressions of φSMM,ANSMM(x, y)
are similar to equation (17) with BSMM,ANSMM

n replaced by DSMM,ANSMM
n , αn replaced by

βn, tn replaced by un and c replaced by a, where ±β0, ± iβn(n = 1, 2, ...) are the roots of
the equation (20) and un are given by (21).

For c < y < d the expressions of φSMM,ANSMM(x, y) are given by

(

φSMM(x, y)
φANSMM(x, y)

)

=

(

USMM
0 cosh νx

UANSMM
0 sinh νx

)

+

∞
∑

n=1

(

USMM
n cosh ζnx

UANSMM
n sinh ζnx

)

cos
nπ(d− y)

d− c

(23)
where

ζn =

√

(

nπ

d− c

)2

+ ν2 (24)

Now let us define

φSMM,ANSMM
x (b+ 0, y) = fSMM,ANSMM(y), 0 < y < h, (25)

Then
fSMM,ANSMM(y) = 0, for y ∈ Lj (26)

and φSMM,ANSMM
x (b− 0, y) = fSMM,ANSMM(y), for y ∈ (0, h)− Lj , j = 1, 2, 3. (27)

Also, due to the edge condition described in equation (6), we must have the requirement
that

fSMM,ANSMM(y) = O(|y − lj|
−

1

3 ) as y → lj , j = 1, 2, 3. (28)

Using the expression of equation (15) for φSMM,ANSMM(y) in (25) and followed by Havelock
inversion formula gives

1− RSMM,ANSMM =
4iγ0
δ0µ

cosh γ0h

∫ h

a

fSMM,ANSMM(y) cosh γ0(h− y)dy (29)

and

ASMM,ANSMM
n = −

4γn
δnsn

∫ h

a

fSMM,ANSMM(y) cos γn(h− y)dy (30)

with δ0 = 2γ0h + sinh 2γ0h; δn = 2γnh+ sin 2γnh (n = 1, 2, ...).

3.1 Evaluate the values of constants for region II

For Type I

Substituting the equation (17) in condition (27) and using Fourier cosine inversion, we
get

BSMM,ANSMM
0 =

4α0 coshα0c

λ0(α2
0 − ν2)

1

2

(
1

− sin(α2
0 − ν2)

1

2 b
,

1

cos(α2
0 − ν2)

1

2 b
)
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×

∫ c

0

fSMM,ANSMM(y) coshα0(c− y)dy (31)

BSMM,ANSMM
n =

4αn

λntn
(

1

sinh tnb
,

1

cosh tnb
)

∫ c

0

fSMM,ANSMM(y) cosαn(c− y)dy (32)

with λ0 = 2α0c+ sinhα0c; λn = 2αnc+ sin 2αnc (n = 1, 2, ...).
For Type II

Here we can derive the constantsDSMM,ANSMM
n from BSMM,ANSMM

n by replacing αn by βn,
tn by un, λn by ǫn and c by a with ǫ0 = 2β0a+sinh β0a; ǫn = 2βna+sin 2βna (n = 1, 2, ...).

and EANSMM
0 =

1

h− c

∫ h

c

fANSMM(y)dy (33)

ESMM,ANSMM
n =

2

nπ
(

1

sinh nπb
h−c

,
1

cosh nπb
h−c

)

∫ h

c

fSMM,ANSMM(y) cos
nπ(y − c)

h− c
dy (34)

and fSMM(y) for type II barrier must satisfy the condition

∫ h

c

fSMM(y)dy = 0 (35)

For Type III

Here the constants DSMM,ANSMM
n are obtained from BSMM,ANSMM

n by changing αn by βn,
tn by un, λn by ǫn and c by a with ǫ0 = 2β0a+sinh β0a; ǫn = 2βna+sin 2βna (n = 1, 2, ...).

and

USMM,ANSMM
0 =

1

ν(d − c)
(

1

sinh νb
,

1

cosh νb
)

∫ d

c

fSMM,ANSMM(y)dy (36)

USMM,ANSMM
n =

2

ζn(d− c)
(

1

sinh ζnb
,

1

cosh ζnb
)

∫ d

c

fSMM,ANSMM(y) cos
nπ(d− y)

d− c
dy (37)

3.2 Formation of integral equation:

Now equating φSMM,ANSMM(x, y) through x = b, we get

φSMM,ANSMM
x (b+ 0, y) = φSMM,ANSMM

x (b− 0, y), (38)

for y ∈ (0, h)− Lj , and it ultimately constructs the integral equation

∫

(0,h)−Lj

F SMM,ANSMM(u)NSMM,ANSMM(y, u)du =
cosh γ0(h− y)

cosh γ0h
, for y ∈ (0, h)− Lj ,

(39)
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where F SMM,ANSMM(y) =
4γ0 cosh

2 γ0h

δ0µ(1 +RSMM,ANSMM)
fSMM,ANSMM(y), (40)

and NSMM,ANSMM(y, u)(y, u ∈ (0, h)− Lj) (j = 1, 2, 3) are real symmetric in y and u and
their constructions are given below

Type I

NSMM(y, u) =
δ0µ

γ0 cosh
2 γ0h

[

∞
∑

n=1

{

γn cos γn(h− y) cosγn(h− u)

δnsn

+
αn coth tnb cosαn(c− y) cosαn(c− u)

λntn

}

+(− cot(α2
0 − ν2)

1

2 b)
α0 coshα0(c− y) coshα0(c− u)

λ0(α2
0 − ν2)

1

2

]

, 0 < y, u < h. (41)

NANSMM(y, u) =
δ0µ

γ0 cosh
2 γ0h

[

∞
∑

n=1

{

γn cos γn(h− y) cosγn(h− u)

δnsn

+
αn tanh tnb cosαn(c− y) cosαn(c− u)

λntn

}

+(tan(α2
0 − ν2)

1

2 b)
α0 coshα0(c− y) coshα0(c− u)

λ0(α2
0 − ν2)

1

2

]

, 0 < y, u < h. (42)

Type II

For y, u ∈ (0, a) + (c, h), we get three different cases for NSMM,ANSMM(y, u)
Case I:

y, u ∈ (0, a)

NSMM(y, u) =
δ0µ

γ0 cosh
2 γ0h

[

∞
∑

n=1

{

γn cos γn(h− y) cosγn(h− u)

δnsn

+
βn coth unb cos βn(a− y) cosβn(a− u)

ǫnun

}

+(− cot(β2
0 − ν2)

1

2 b)
β0 cosh β0(a− y) coshβ0(a− u)

ǫ0(β
2
0 − ν2)

1

2

]

, 0 < y, u < h. (43)

NANSMM(y, u) =
δ0µ

γ0 cosh
2 γ0h

[

∞
∑

n=1

{

γn cos γn(h− y) cosγn(h− u)

δnsn

+
βn tanh unb cos βn(a− y) cosβn(a− u)

ǫnun

}
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+(tan(β2
0 − ν2)

1

2 b)
β0 cosh β0(a− y) cosh β0(a− u)

ǫ0(β
2
0 − ν2)

1

2

]

, 0 < y, u < h. (44)

Case II

y, u ∈ (c, h)

NSMM(y, u) =
δ0µ

γ0 cosh
2 γ0h

[

∞
∑

n=1

(
γn cos γn(h− y) cos γn(h− u)

δnsn
+

1

2nπ
coth

nπb

h− c
cos

nπ(y − c)

h− c
cos

nπ(u− c)

h− c
)

]

(45)

NANSMM(y, u) =
δ0µ

γ0 cosh
2 γ0h

[

b

4(h− c)
+

∞
∑

n=1

(
γn cos γn(h− y) cos γn(h− u)

δnsn
+

1

2nπ
tanh

nπb

h− c
cos

nπ(y − c)

h− c
cos

nπ(u− c)

h− c
)

]

(46)

Case III

y ∈ (0, a), u ∈ (c, h) or y ∈ (c, h), u ∈ (0, a)

NSMM,ANSMM(y, u) =
δ0µ

γ0 cosh
2 γ0h

[

∞
∑

n=1

γn cos γn(h− y) cos γn(h− u)

δnsn

]

(47)

Type III

For y, u ∈ (0, a) + (c, d), we have three different cases for NSMM,ANSMM(y, u)
Case I:

y, u ∈ (0, a)

NSMM(y, u) =
δ0µ

γ0 cosh
2 γ0h

[

∞
∑

n=1

{

γn cos γn(h− y) cosγn(h− u)

δnsn

+
βn coth unb cos βn(a− y) cosβn(a− u)

ǫnun

}

+(− cot(β2
0 − ν2)

1

2 b)
β0 cosh β0(a− y) coshβ0(a− u)

ǫ0(β
2
0 − ν2)

1

2

]

, 0 < y, u < h. (48)

NANSMM(y, u) =
δ0µ

γ0 cosh
2 γ0h

[

∞
∑

n=1

{

γn cos γn(h− y) cosγn(h− u)

δnsn

+
βn tanh unb cos βn(a− y) cosβn(a− u)

ǫnun

}

+(tan(β2
0 − ν2)

1

2 b)
β0 cosh β0(a− y) cosh β0(a− u)

ǫ0(β
2
0 − ν2)

1

2

]

, 0 < y, u < h. (49)
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Case II

y, u ∈ (c, d)

NSMM(y, u) =
δ0µ

γ0 cosh
2 γ0h

[

∞
∑

n=1

(
γn cos γn(h− y) cos γn(h− u)

δnsn
+

coth ζnb

2(d− c)ζn
cos

nπ(d− y)

d− c
cos

nπ(d− u)

d− c
) +

coth νb

4(d− c)ν

]

. (50)

NANSMM(y, u) =
δ0µ

γ0 cosh
2 γ0h

[

∞
∑

n=1

(
γn cos γn(h− y) cosγn(h− u)

δnsn
+

tanh ζnb

2(d− c)ζn
cos

nπ(d− y)

d− c
cos

nπ(d− u)

d− c
) +

tanh νb

4(d− c)ν

]

. (51)

Case III

y ∈ (0, a), u ∈ (c, d) or y ∈ (c, d), u ∈ (0, a)

NSMM,ANSMM(y, u) =
δ0µ

γ0 cosh
2 γ0h

[

∞
∑

n=1

γn cos γn(h− y) cos γn(h− u)

δnsn

]

(52)

Now if we define

CSMM,ANSMM = −i
1 − RSMM,ANSMM

1 +RSMM,ANSMM
, (53)

then by using (29) and (39), we obtain

CSMM,ANSMM =

∫

(0,h)−Lj

F SMM,ANSMM(y)
cosh γ0(h− y)

cosh γ0h
dy (54)

and F SMM,ANSMM(y) and CSMM,ANSMM are real quantities. Thus if the integral equations
(39) can be solved, then these solutions can be used to evaluate CSMM,ANSMM from the
relations (54), and these produce the actual reflection and transmission coefficients |R| and
|T | by using

|R| =
|1 + CSMMCANSMM |

△
and |T | =

|CSMM − CANSMM |

△
(55)

with
△ = {1 + (CSMM)2 + (CANSMM)2 + (CSMMCANSMM)2}

1

2 , (56)

which are obtained from equations (14) and (53).

3.3 Solution of integral equation
Utilizing Galerkin technique, we approximate F SMM,ANSMM(y) as

F SMM,ANSMM(y) ≈ FSMM,ANSMM(y), y ∈ (0, h)− Lj , j = 1, 2, 3 (57)

FSMM,ANSMM(y) is expanded in terms of multi-term Galerkin expansions with a suitable
choice of basis function. In case of type-I barrier, there is a single interval but for type-II

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 11, November - 2021 Page-40



and type-III barriers there are two disjoint intervals.

For type-I,

FSMM,ANSMM(y) =
N
∑

n=0

aSMM,ANSMM
n fSMM,ANSMM

n (y), y ∈ (0, h)− L1 (58)

and for type-II

FSMM,ANSMM(y) =

{
∑N

n=0 a
SMM,ANSMM
n pSMM,ANSMM

n (y), 0 < y < h
∑N

n=0 b
SMM,ANSMM
n qSMM,ANSMM

n (y), c < y < h
(59)

and for type-III

FSMM,ANSMM(y) =

{
∑N

n=0 a
SMM,ANSMM
n p1SMM,ANSMM

n (y), 0 < y < h
∑N

n=0 b
SMM,ANSMM
n q1SMM,ANSMM

n (y), c < y < d
(60)

where the basis functions fSMM,ANSMM
n (y) for a < y < h and pSMM,ANSMM

n (y) for
0 < y < a, qSMM,ANSMM

n (y) for c < y < h and p1SMM,ANSMM
n (y) for 0 < y < a,

q1SMM,ANSMM
n (y) for c < y < d are taken in terms of ultraspherical Gegenbauer poly-

nomials of order 1/6 with suitable weights [cf. Porter[3]]. The basis functions in different
intervals are given below.

3.4 Basis functions

Type-I :

For this type of fully submerged barrier, we have to take the surface tension condition
and the behavior becomes

F SMM,ANSMM
m ∼ (c− y)

−1

3

as y → c−0 derived by considering the flow field near the corner point (b, c). Thus here

fSMM
m (y) = fANSMM

m (y) = fm(y) = −
d

dy
[e

−Ky

γ+Mγ3

∫ c

y

e
−Kt

γ+Mγ3 f̃m(t)dt], 0 < y < c (61)

We choose the basis functions in terms of f̃m(y) as follows

f̃m(y) =
2

7

6Γ(1
6
)(2m)!

πΓ(2m+ 1
3
)(c)

1

3 (c2 − y2)
1

3

C
1

6

2m(
y

c
), 0 < y < c (62)

Type II:

Here we choose two different basis functions for two disjoint intervals.

pSMM
m (y) = pANSMM

m (y) = pm(y) = −
d

dy
[e

−Ky

γ+Mγ3

∫ a

y

e
−Kt

γ+Mγ3 p̃m(t)dt], 0 < y < a (63)
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where

p̃m(y) =
2

7

6Γ(1
6
)(2m)!

πΓ(2m+ 1
3
)(a)

1

3 (a2 − y2)
1

3

C
1

6

2m(
y

a
), 0 < y < a (64)

and
qSMM
m (y) = g1

(1)
m+1(y), m = 0, 1, 2, ...

qANSMM
m (y) = g1(1)m (y), m = 0, 1, 2, ... (65)

where

g1(1)m (y) =
2

7

6Γ(1
6
)(2m)!

πΓ(2m+ 1
3
)(h− c)

1

3 ((h− c)2 − (h− y)2)
1

3

C
1

6

2m(
h− y

h− c
), c < y < h (66)

Type III:

Here we choose two different basis functions for two disjoint intervals.

p1SMM
m (y) = p1ANSMM

m (y) = p1m(y) = −
d

dy
[e

−Ky

γ+Mγ3

∫ a

y

e
−Kt

γ+Mγ3 x̃m(t)dt], 0 < y < a (67)

where

p̃1m(y) =
2

7

6Γ(1
6
)(2m)!

πΓ(2m+ 1
3
)(a)

1

3 (a2 − y2)
1

3

C
1

6

2m(
y

a
), 0 < y < a (68)

and

q1SMM,ANSMM
m (y) =

2
7

6Γ(1
6
)(m)!

πΓ(m+ 1
3
)(d−c

2
)
1

3 ((y − c)(d− y))
1

3

C
1

6
m(

2y − c− d

d− c
), c < y < d (69)

As the horizontal velocity component near the corner points of the thick barriers of all
the three types, have a cube root singularity, then allowing similar arguments as given in
Kanoria et al. [10], here also the basis functions are chosen in terms of Gegenbauer polyno-
mials of order 1/6.

3.5 Formation of linear system of equations

For type I, we substitute the approximation (58) in equation (39), and then multiplying
both side by appropriate fSMM,ANSMM(y) and integrate over (a, h) to obtain the linear
system of equations

N
∑

n=0

aSMM,ANSMM
n χSMM,ANSMM

mn = ωSMM,ANSMM
m , m = 0, 1, ..., N (70)
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where

χSMM,ANSMM
mn =

∫ h

a

∫ h

a

NSMM,ANSMM(y, u)fSMM,ANSMM
n (u)fSMM,ANSMM

m (y)du dy,

m, n = 0, 1, 2, ..., N, (71)

and

ωSMM,ANSMM
m =

∫ h

a

cosh γ0(h− y)

cosh γ0h
fSMM,ANSMM
m (y)dy,m = 0, 1, ..., N. (72)

The integrals (71) and (72) can be evaluated explicitly, as in Kanoria et al. [10] by using
the different properties and standard results on Gegenbaur polynomials. Thus the constants
aSMM,ANSMM
n (n = 0, 1, ...N) are obtained by solving the linear equations (70). The relation

(54) produce

CSMM,ANSMM =
N
∑

n=0

aSMM,ANSMM
n ωSMM,ANSMM

n (73)

so that CSMM,ANSMM are now found and |R| and |T | are evaluated from the relations (55).
For type II, we replace the equation (59) by (39) and multiplying both sides first by

pSMM,ANSMM
m (y) (0 < y < a) and then by qSMM,ANSMM

m (y) (c < y < h) and then integrate
over (0, a) and (c, h) respectively, we get the linear system of equations as follows:

N
∑

n=0

aSMM,ANSMM
n

(

GSMM,ANSMM
mn

PSMM,ANSMM
mn

)

+
N
∑

n=0

bSMM,ANSMM
n

(

HSMM,ANSMM
mn

QSMM,ANSMM
mn

)

=

(

ω
(1)SMM,ANSMM
m

ω
(2)SMM,ANSMM
m

)

, m = 0, 1, ..., N (74)

where

GSMM,ANSMM
mn =

∫ a

0

( ∫ a

0
NSMM,ANSMM(y, u)pSMM,ANSMM

n (u)du
)

pSMM,ANSMM
m (y)dy,

HSMM,ANSMM
mn =

∫ a

0

(

∫ h

c
NSMM,ANSMM(y, u)qSMM,ANSMM

n (u)du
)

pSMM,ANSMM
m (y)dy,

PSMM,ANSMM
mn =

∫ h

c

( ∫ a

0
NSMM,ANSMM(y, u)pSMM,ANSMM

n (u)du
)

qSMM,ANSMM
m (y)dy,

QSMM,ANSMM
mn =

∫ h

c

(

∫ h

c
NSMM,ANSMM(y, u)qSMM,ANSMM

n (u)du
)

qSMM,ANSMM
m (y)dy,
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m,n = 0, 1, 2, ..., N, (75)

so that PSMM,ANSMM
mn = HSMM,ANSMM

mn , and

ω(1)SMM,ANSMM
m =

∫ a

0

cosh γ0(h− y)

cosh γ0h
pSMM,ANSMM
m (y)dy,

ω(2)SMM,ANSMM
m =

∫ h

c

cosh γ0(h− y)

cosh γ0h
qSMM,ANSMM
m (y)dy,

m = 0, 1, ..., N. (76)

The integrals in the relations (75) and (76) can be evaluated explicitly and thus the
constants for type II barrier aSMM,ANSMM

n and bSMM,ANSMM
n (n = 0, 1, 2, ..N) from linear

equations (59) are obtained. We approximate CSMM,ANSMM as

CSMM,ANSMM =
N
∑

n=0

aSMM,ANSMM
n ω(1)SMM,ANSMM

n +
N
∑

n=0

bSMM,ANSMM
n ω(2)SMM,ANSMM

n

(77)
For type III, we substitute the equation (60) in (39) and multiplying both sides first by

p1SMM,ANSMM
m (y) (0 < y < a) and then by q1SMM,ANSMM

m (y) (c < y < d) and then integrate
over (0, a) and (c, d) respectively, we get the linear system of equations as follows:

N
∑

n=0

aSMM,ANSMM
n

(

RSMM,ANSMM
mn

XSMM,ANSMM
mn

)

+
N
∑

n=0

bSMM,ANSMM
n

(

SSMM,ANSMM
mn

Y SMM,ANSMM
mn

)

=

(

ω1
(1)SMM,ANSMM
m

ω1
(2)SMM,ANSMM
m

)

, m = 0, 1, ..., N (78)

where

RSMM,ANSMM
mn =

∫ a

0

( ∫ a

0
NSMM,ANSMM(y, u)p1SMM,ANSMM

n (u)du
)

p1SMM,ANSMM
m (y)dy,

SSMM,ANSMM
mn =

∫ a

0

(

∫ d

c
NSMM,ANSMM(y, u)q1SMM,ANSMM

n (u)du
)

p1SMM,ANSMM
m (y)dy,

XSMM,ANSMM
mn =

∫ d

c

( ∫ a

0
NSMM,ANSMM(y, u)p1SMM,ANSMM

n (u)du
)

q1SMM,ANSMM
m (y)dy,

Y SMM,ANSMM
mn =

∫ d

c

(

∫ h

d
NSMM,ANSMM(y, u)q1SMM,ANSMM

n (u)du
)

q1SMM,ANSMM
m (y)dy,
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m,n = 0, 1, 2, ..., N, (79)

so that XSMM,ANSMM
mn = SSMM,ANSMM

mn , and

ω1(1)SMM,ANSMM
m =

∫ a

0

cosh γ0(h− y)

cosh γ0h
p1SMM,ANSMM

m (y)dy,

ω1(2)SMM,ANSMM
m =

∫ d

c

cosh γ0(h− y)

cosh γ0h
q1SMM,ANSMM

m (y)dy,

m = 0, 1, ..., N. (80)

Solving the integrals present in (79) and (80) explicitly, the constants for type III barrier
aSMM,ANSMM
n and bSMM,ANSMM

n (n = 0, 1, 2, ..N) from linear equations (60) are obtained.
We evaluate CSMM,ANSMM as

CSMM,ANSMM =
N
∑

n=0

aSMM,ANSMM
n ω1(1)SMM,ANSMM

n +
N
∑

n=0

bSMM,ANSMM
n ω1(2)SMM,ANSMM

n

(81)
3.6 Coefficients of linear system of equations

Type I

χSMM
mn =

δ0µ

γ0 cosh
2 γ0h

[

4(−1)m+n

∞
∑

r=1

{

γr cos
2 γrh

δrsr(γrc)
1

3

J2m+ 1

6

(γrc)J2n+ 1

6

(γrc)

+ coth trb
αr cos

2 αrc

λrtr(αrc)
1

3

J2m+ 1

6

(αrc)J2n+ 1

6

(αrc)

}

+(− cot(α2
0 − ν2)

1

2 b)
cosh2 α0c

λ0(α2
0 − ν2)

1

6 c
1

3

I2m+ 1

6

(α0c)I2n+ 1

6

(α0c)

]

(82)

χANSMM
mn =

δ0µ

γ0 cosh
2 γ0h

[

4(−1)m+n
∞
∑

r=1

{

γr cos
2 γrh

δrsr(γrc)
1

3

J2m+ 1

6

(γrc)J2n+ 1

6

(γrc)

+ tanh trb
αr cos

2 αrc

λrtr(αrc)
1

3

J2m+ 1

6

(αrc)J2n+ 1

6

(αrc)

}

+(tan(α2
0 − ν2)

1

2 b)
cosh2 α0c

λ0(α2
0 − ν2)

1

6 c
1

3

I2m+ 1

6

(α0c)I2n+ 1

6

(α0c)

]

(83)

ωSMM,ANSMM
m =

I2m+ 1

6

(γ0c)

(γ0c)
1

6

, m = 0, 1, ..., N. (84)

Type II
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GSMM
mn =

δ0µ

γ0 cosh
2 γ0h

[

4(−1)m+n
∞
∑

r=1

{

γr cos
2 γrh

δrsr(γra)
1

3

J2m+ 1

6

(γra)J2n+ 1

6

(γra)

+ coth urb
βr cos

2 βra

ǫrur(βra)
1

3

J2m+ 1

6

(βra)J2n+ 1

6

(βra)

}

+(− cot(β2
0 − ν2)

1

2 b)
cosh2 β0a

ǫ0(β2
0 − ν2)

1

6a
1

3

I2m+ 1

6

(β0a)I2n+ 1

6

(β0a)

]

(85)

GANSMM
mn =

δ0µ

γ0 cosh
2 γ0h

[

4(−1)m+n
∞
∑

r=1

{

γr cos
2 γrh

δrsr(γra)
1

3

J2m+ 1

6
(γra)J2n+ 1

6
(γra)

+ tanhurb
βr cos

2 βra

ǫrur(βra)
1

3

J2m+ 1

6

(βra)J2n+ 1

6

(βra)

}

+(tan(β2
0 − ν2)

1

2 b)
cosh2 β0a

ǫ0(β2
0 − ν2)

1

6a
1

3

I2m+ 1

6

(β0a)I2n+ 1

6

(β0a)

]

(86)

HSMM
mn = 4(−1)m+n+1 δ0µ

γ0 cosh
2 γ0h

∞
∑

r=1

γr cos γrh

δrsr(γra)
1

6

1

(γr(h− c))
1

6

J2m+ 1

6

(γra)J2n+ 13

6

(γr(h− c)) (87)

HANSMM
mn = HSMM

m,n−1 (88)

PSMM
mn = HSMM

mn (89)

PANSMM
mn = PSMM

m−1,n (90)

QSMM
mn =

δ0µ

γ0 cosh
2 γ0h

[

(−1)m+n
∞
∑

r=1

{

4γr

δrsr(γr(h− c))
1

3

J2m+ 13

6

(γr(h− c))J2n+ 13

6

(γr(h− c))

+
2

rπ
coth

rπb

h− c

J2m+ 13

6

(rπ)J2n+ 13

6

(rπ)

(rπ)
1

3

}]

(91)

QANSMM
mn =

δ0µ

γ0 cosh
2 γ0h

[

12πb

h− c

2
1

3

Γ(1
3
)4
δ0nδ0m

+(−1)m+n
∞
∑

r=1

{

4γr

δrsr(γr(h− c))
1

3

J2m+ 1

6

(γr(h− c))J2n+ 1

6

(γr(h− c))
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+
2

rπ
tanh

rπb

h− c

J2m+ 1

6

(rπ)J2n+ 1

6

(rπ)

(rπ)
1

3

}]

(92)

where δ0n = 1 for n = 0, and δ0n = 0 for n ≥ 1 and J ′s are Bessel functions of first kind and

ω(1)SMM
m =

I2m+ 1

6

(γ0a)

(γ0a)
1

6

, m = 0, 1, ..., N. (93)

ω(1)ANSMM
m = ω(1)SMM

m (94)

ω(2)SMM
m =

1

cosh γ0h

I2m+ 7

6

(γ0(h− c))

(γ0(h− c))
1

6

, m = 0, 1, ..., N. (95)

ω(2)ANSMM
m = ω

(2)SMM
m−1 (96)

Type III

RSMM
mn =

δ0µ

γ0 cosh
2 γ0h

[

4(−1)m+n

∞
∑

r=1

{

γr cos
2 γrh

δrsr(γra)
1

3

J2m+ 1

6

(γra)J2n+ 1

6

(γra)

+ coth urb
βr cos

2 βra

ǫrur(βra)
1

3

J2m+ 1

6

(βra)J2n+ 1

6

(βra)

}

+(− cot(β2
0 − ν2)

1

2 b)
cosh2 β0a

ǫ0(β2
0 − ν2)

1

6a
1

3

I2m+ 1

6

(β0a)I2n+ 1

6

(β0a)

]

(97)

RANSMM
mn =

δ0µ

γ0 cosh
2 γ0h

[

4(−1)m+n

∞
∑

r=1

{

γr cos
2 γrh

δrsr(γra)
1

3

J2m+ 1

6

(γra)J2n+ 1

6

(γra)

+ tanhurb
βr cos

2 βra

ǫrur(βra)
1

3

J2m+ 1

6

(βra)J2n+ 1

6

(βra)

}

+(tan(β2
0 − ν2)

1

2 b)
cosh2 β0a

ǫ0(β2
0 − ν2)

1

6a
1

3

I2m+ 1

6

(β0a)I2n+ 1

6

(β0a)

]

(98)

SSMM,ANSMM
mn =

4δ0µ

γ0 cosh
2 γ0h

∞
∑

r=1

γr cos γrh

δrsr(γra)
1

6

cos(nπ
2
− γr(h− c+d

2
))

(γr
d−c
2
)
1

6

J2m+ 1

6

(γra)Jn+ 1

6

(γr
d− c

2
) (99)

SSMM,ANSMM
mn = XSMM,ANSMM

mn (100)

Y SMM
mn =

δ0µ

γ0 cosh
2 γ0h

[

2

∞
∑

r=1

{

2γr
srδr

cos(
nπ

2
− γr(h−

c+ d

2
))
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cos(
mπ

2
− γr(h−

c+ d

2
))
Jm+ 1

6

(γr
d−c
2
)Jn+ 1

6

(γr
d−c
2
)

(γr
d−c
2
)
1

3

+
cothζrb

(d− c)ζr
cos
{mπ

2
−

rπ

2

}

cos
{nπ

2
−

rπ

2

} Jm+1/6(
rπ
2
)Jn+1/6(

rπ
2
)

( rπ
2
)1/3

}

+
12π

(d− c)

21/3

(Γ(1/3))4
coth νb

ν
δ0mδ0n

]

(101)

where δ0n = 1 for n = 0, and δ0n = 0 for n ≥ 1.
After replacing ‘coth’ by ‘tanh’, we obtain Y ANSMM

mn from (101).

ω1(1)SMM,ANSMM
m =

I2m+1/6(γ0a)

(γ0a)
1

6

(102)

ω1(2)SMM,ANSMM
m =

(−1)meγ0(h−
c+d
2

)e−γ0(h−
c+d
2

)

2 cosh γ0h

Im+1/6(γ0
d−c
2
)

(γ0
d−c
2
)
1

6

(103)

where I ′s are modified Bessel function of first kind.

4 Numerical results and discussions

The present numerical results describe the nature of reflection coefficient |R| against the non
dimensional wave numbers Kh for different values of the parameters b/h, a/h and different
values of incident angle θ. For numerical computation of three type of barriers, we consider
N = 10 in equation (70), (74) and (78) respectively. The coefficients are obtained by
employing (N + 1) Galerkin approximation technique. These are seen to satisfy the energy
balance relations numerically. This gives a partial check on the correctness of the numerical
result obtained here. We consider 200 terms in each series of χSMM,ANSMM

m,n and almost
a six figure accuracy is obtained is obtained in the result. In the Table 1, we study the
convergence of the analytical solution by showing the numerical values of |R| for different
values of kh with the truncation size N = 2, 5, 7, 10 of the finite series (70) for type I barrier.
From this table it is seen that the results for |R| converge very rapidly with N . For N = 7,
an accuracy of almost five decimal places is achieved.

Table 1: Convergence of |R| with N for Type I Barrier with b/h = 0.5, c/h = 0.5, θ =
250,M/h2 = 0.5

Kh N=2 N=5 N=7 N=10
0.2 0.35462 0.38562 0.395131 0.395133
1.0 0.29652 0.31236 0.327913 0.327916
1.8 0.13256 0.16235 0.175689 0.175692

Table 2 shows the convergence of the numerical values of |R| for different values of kh
with the truncation size N = 2, 5, 7, 10 of the finite series (74) for type II barrier. Here
also a five figure accuracy is achieved for N = 7. Thus, from these two tables, we can say
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the present method is quite efficient for the numerical calculation of |R| (and |T |). In a
similar manner one can show the convergence analysis for Type III barrier. Here we avoid
the similar calculations.

Table 2: Convergence of |R| with N for Type II Barrier with a/h = 0.4, b/h = 1.0, c/h =
0.8, θ = 250,M/h2 = 0.5

Kh N=2 N=5 N=7 N=10
0.2 0.31562 0.35841 0.361959 0.361966
1.0 0.221024 0.261021 0.272900 0.272902
1.8 0.361120 0.405543 0.417920 0.417921

4.1.1 Discussion of energy identity relation

In Table 3, the numerical values of the components present in the energy identity relation
are provided for different values of the dimensionless wavenumber kh for Type I barrier with
fixed values of a/h = 0.4, b/h = 1.0, c/h = 0.8, θ = 250,M/h2 = 0.5. It is observed from
the table that the energy balance relation |R|2 + |T |2 = 1 satisfied numerically. It shows
a partial check of our present method. Thus numerically we can show that reflection and
transmission coefficients are satisfied the energy balance relation, which is |R|2 + |T |2 = 1.
Thus in present numerical analysis, it is quite enough to show the behavior change of |R|
considering different parametric values.

Table 3: Energy identity, Type I barrier for b/h = 0.5, c/h = 0.5, θ = 250,M/h2 = 0.5
Kh |R| |T | |R|2 + |T |2

0.1 0.127612 0.991824 1.0000
0.5 0.412045 0.911164 1.0000
1.0 0.327916 0.944707 1.0000
1.5 0.229463 0.969256 1.0000
2.0 0.143046 0.989716 1.0000
2.5 0.0729557 0.997335 1.0000
2.9 0.0278562 0.999612 1.0000

4.1.2 Comparison with existing results

In Fig. 3, the reflection coefficient verses non dimensional wave number for type I and
type II barriers have been plotted without the effect of surface tension. For comparison
with my present result with the figures given in Kanoria et. al’s [10], we consider very
small values of non dimension surface tension factor, M

h2 = 0.0001, θ = 00 and other non
dimensional parameters are taken same as Kanoria et. al’s [10] data for their Figures 4 and
5. In Fig. 3, dashed line and thick line corresponds our present data line and star and thick
dot points represent the data of Kanoria’s Figure 4 and 5 respectively. We can say that our
present figure 3 almost matched with those figures of Kanoria et al’s[10] paper. This shows
the partial check of the correctness of our present numerical data.
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Figure 3: Reflection coefficients for two types of barriers without surface tension

4.2 Effect of various parameters on reflection coefficients

We now discuss the results associated with type I and type II barriers in separate fig-
ures. The variation of reflection coefficients (|R|) as a function of wave numbers (Kh)are
explained considering different parametric values.

4.2.1 Type I barrier

Figs. 4A, 4B and 5A, 5B show the plots of reflection coefficient (|R|) of bottom standing
thick barrier (Type I barrier) against non-dimensional wave number (Kh). Fig 4A is drawn
with fixed values of c

h
= 0.5, M

h2 = 1 and θ = 450 for different values of width of the barrier
b
h
= 0.5, 1.5 and 2. It is seen that increasing values of the width reflect less energy and also

oscillation in the curve increases with increasing width of the barrier.
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|R
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c/h=0.6
c/h=0.8

(A) c
h

= 0.5, M
h2 = 0.5, θ = 250 (B) b

h
= 1.5, M

h2 = 0.5, θ = 250

Figure 4: Reflection coefficient for type I barrier (A)for different b
h
; (B)for different c

h

In Fig. 4B, |R| is depicted against Kh for different c
h
(= 0.4, 0.6, 0.8) and consider fixed

values of b
h
= 2, M

h2 = 0.5, θ = 250. When depth from the free surface of the bottom standing
thick barrier gradually increases less energy reflected and more energy transmitted. Zero
reflection also decreases with increasing c

h
.
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Figure 5: Reflection coefficient for type I barrier (A)for different M
h2 ; (B)for different θ

The effect of surface tension on reflection coefficient is described in Fig. 5A which is drawn
for three different values of surface tension factor M

h2 = 0.5, 1.5 and 2 with fixed values of
b
h
= 2, c

h
= 0.5, θ = 250. It is clear that the amplitude of reflection coefficient decreases with

increase of surface tension which agrees the presence of cohesive force in between the water
molecule due to the surface tension. The graphs depicted in Fig. 5B are the reflection coef-
ficients against wave numbers with fixed values of b

h
= 2, c

h
= 0.5 and M

h2 = 3 and different
values of incidence angle θ = 250, 600, 890. The peak values of |R| gradually decreases with
the increasing values of incidence wave angle. It is also noticed that when θ is almost 900

the amplitude of |R| is very small compared to the small incident angles.

4.2.2 Type II barrier

In Figs. 6A, 6B, 7A, 7B and 8, the variation of reflection energy coefficient is plotted
against non dimensional wave number for type II barrier (submerged rectangular block). The
graphs depicted in Fig. 6A are drawn with fixed values of b

h
= 1, c

h
= 0.8, M

h2 = 0.5 and θ =
250 and for different depth of the barrier from the upper surface of water, a

h
= 0.4, 0.5, 0.6.

It is seen that increasing values of a
h
decreases the amplitude of reflection coefficient. Fig.

6B shows the effect of change of width of the barrier on reflection coefficients by considering
b
h
= 1.0, 0.7 and 0.4 and fixed values of a

h
= 0.5, c

h
= 0.8, M

h2 = 0.5 and θ = 250. Barrier with
large width reflects more energy than the thinner one.

Fig. 7A is drawn for different values of c
h
(= 0.5, 0.7, 0.9) and fixed values of a

h
= 0.4, b

h
=

1, M
h2 = 0.5 and θ = 450. From the figure it can be say that with increasing c

h
, |R| grad-

ually increases. It is physically quite obvious because large height of the barrier reflects
more energy than the smaller one. Fig. 7B is drawn for |R| with different values of
M
h2 = 0.5, 1.0, and1.5 and fixed values of a

h
= 0.5, b

h
= 1, c

h
= 0.8 and θ = 250. The ef-

fect of surface tension increases the amplitude of |R| for type II barrier. Fig. 8 is plotted
the variation of reflection coefficient |R| against wave number Kh for different angles of in-
cidence θ(= 250, 500, 750 and 890) and fixed values of a

h
= 0.5, b

h
= 1, c

h
= 0.8 and M

h2 = 0.5.
Figure shows that for presence of surface tension in the upper surface and submerged block
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Figure 6: Reflection coefficient for type II barrier (A)for different a
h
; (B)for different b

h
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Figure 7: Reflection coefficient for type II barrier (A)for different c
h
; (B)for different M

h2

in water, the amplitude of |R| gradually increases with decreasing values of θ.
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Figure 8: Reflection coefficient for type II barrier for different θ with a
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= 0.5, b
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= 1, c
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=
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h2 = 0.5

4.2.3 Type III barrier
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Figs. 9A, 9B, 10 depict the behavior of |R| against non dimensional wave numbers, for type
III barrier. Fig. 9A is drawn for different values of width ( b

h
= 0.4, 0.7 and 1.0) of the

thick barrier and fixed values of a
h

= 0.2, M
h2 = 0.5, (d−c)

h
= 0.3, θ = 250. The figure have

shown that increasing width of the barrier gradually increases the reflection coefficient and
oscillating behavior in reflection curve also seen for large values of b

h
.
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Figure 9: Reflection coefficient for type III barrier (A)for different b
h
; (B)for different d−c

h
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Figure 10: Reflection coefficient for type III barrier for different M
h

with a
h

= 0.2, b
h

=

1, (d−c)
h

= 0.3, θ = 250.

In Fig. 9B, |R| is depicted for various values of the gap of the barrier (d−c
h

= 0.2, 0.3 and 0.4)
and fixed values of a

h
= 0.2, b

h
= 1, M

h2 = 0.5, θ = 250. The figure has clearly shown that
amplitude and oscillation the reflection curve increases with large values of the gap in the
barrier. Fig. 10 shows the behavior of |R| for different values of M

h
= 0.2, 0.5 and 1.0 with

fixed values of a
h

= 0.2, b
h

= 1, (d−c)
h

= 0.3, θ = 250. Same as the type I and type II barri-
ers, also in case of type III barrier, the effect of surface tension increases the amplitude of
reflection coefficient of wave energy and it is more clear for large values of wave numbers. It
can be noted that, all the reflection curves for each type of barriers with different paramet-
ric values show the zero reflection behavior. This phenomenon is true due to geometrical
symmetry in the barrier’s configuration. Also, number of zeros in reflection curve increases
with increasing width of the barrier. For each type of barriers, the reflection curves for long
waves confine near the origin.
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5 Conclusion

Oblique wave scattering by thick rectangular barrier in presence of surface tension at the
upper surface have been studied here by employing multi-term Galerkin approximation
technique. Three different geometrical positions of the barrier are considered here. The
numerical estimate of reflection coefficient for different values of wave numbers and other
parameters involved in the physical problem have been obtained and exemplify graphically.
The numerical results also satisfy the energy balance relation. The results without surface
tension have been recovered from present result by considering very small values of M .
From the present study, it is clear that the amplitude of reflection coefficient decreases
when the value of surface tension increases. The width and height of the thick barriers play
a crucial role to the nature of scattering waves. The zero reflection and oscillation behavior
of reflection coefficient are also observed here.
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