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Abstract: It is assumed that the probabilistic model of the quality characteristics follows the new weighted 

exponential distribution. Control charts based on each subgroup's extreme values are established. The 

constants in the control chart are determined by the probability distribution of the extreme value order 

statistics of the sub-group and the sub-group size. The proposed chart is thus referred to as an extreme values 

chart. A biased overall mean analysis method (ANOM for truncated population) is used for the new weighted 

exponential distribution. Examples based on real time data are used to explain the findings. 
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1. Introduction 

Consider New Weighted Exponential Distribution (NWED) with probability density 

function (PDF) as follows; 

     1
; , 1 . ; 0, 0, 0

x
f x e x

 
     

 
       (1) 

Its cumulative distribution function (cdf) is given by, 

   1
; , 1 . ; 0, 0, 0

x
F x e x

 
   

 
       (2) 

Where,   is a scale parameter and   is a shape parameter. 

  The extreme order statistical percentiles of the NWED sample are required to create a 

control chart that uses extreme observations from a subset of manufacturing processes 

with NWED quality options. Specifically, the first test vector  1 2, ,..., nX x x x  from the 

continuous processing is used as the test statistic on the extreme value control chart. The 

control chart in extreme value chart displays entire sample observations, but no statistic(s) 

is/are calculated from it. According to one or both extreme values of the sample, 
1x  (test 

least) and 
nx  (test most extreme), fall below or above two defined lines (limits), a 

corrective action is taken. Therefore, this chart is called an extreme value control chart 

[9]. 

Many professionals use Shewart control charts as a statistical method [5] for quality 

control. If the solution is found, the technique shall be adjusted when such charts indicate 

that an assignable cause exists [1]. In the abstract group statistical for which the control 

chart is built, the existence of an assignable cause is understood as a signal of 

heterogeneity [1, 8]. For example, the mean process would be heterogeneous when the 

figures are sample mean, which would signify differences from the goal mean [4]. Such 

an analysis is often done by means of means to split a collection of different subset mean 

into categories [2], so that means are homogenous within a category and heterogeneous 

between categories and the technique is known as an analysis of means (ANOM) as 

described by Ott.E.R [7]. The control chart for the mean is read differently using the 

ANOM technique [6, 10]: grouping of the plotted means within or beyond the control 

limits. The two means must fall under the control limits in order for all of them to be 

homogeneous. The probability of any sub-group is equal to the coefficient of confidence, 

take is as  1  . This probability statement will be the nth power of the likelihood that the 

mean of a subgroup fall within the boundaries, provided it is supposed to be independent. 

I.e. the confidence interval of x  for the distribution of samples should be equivalent to 

 
1/

1
n

  between two specified bounds. In the rest of this article, the same principle is 

also applied by NWED. We only looked at ANOM control charts [3] in this research 

since it intends to examine ANOM by employing extreme value statistical control limits. 

No new ANOM tables or procedures have been examined by us. However, there is a 

thorough documentary on ANOM by Rao.C.V [9] and certain similar works are in this 

direction [11-14] are mentioned in references.  

The rest of the paper is described below. Section 2 gives a fundamental exposure to 

extreme value control diagrams that are supported by average runtime (ARL) and to 

ANOM. In Section 3, NWED is used with an ANOM in conjunction with numerical 

examples employing extreme value control charts of NWED. The findings and 

conclusions of Section 4 are provided. 

 

2. Materials and methods 

The mathematical and statistical research background of Extreme value charts & ANOM 

and the methods for the study of NWED model are discussed in this part.  

 

2.1 Extreme Value Chart for NWED Model 

NWED model is considered to be followed by the sample observations. The theory of 

extreme order statistics, based on the NWED model, determines the control lines. The 
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control lines should be chosen such that an arbitrarily chosen 
ix  of  1 2, ,..., nX x x x  lies 

inside the limits with probability  
1/

1
n

 . The following formula can be used to express 

this as a probability inequality: 

 1 / 2P x L    &    / 2nP x U    . The cumulative distribution functions of the lowest 

and largest order statistics in a sample of size n from any continuous population are 

 
n

F x    along with  1 1
n

F x     commonly, according to the theory of order statistics, 

here  F x  is the population's distribution function. The value of  will be 0.0027, if 1   

were needed at 0.9973. Using  F x  as the CDF of a NWED model, we can find solutions 

to the two equations  1 1 0.00135
n

F x     and   0.99865
n

F x    , which can then be 

used to establish the extreme value chart's control limits.  

 

2.1.1 Average Run Length (ARL) of the Extreme Value Chart 

For a given parametric combination   and   of NWED and  a given sample size n 

and if L & U respectively stand for the lower control limit (LCL) and upper control 

limit(UCL) of the extreme value control chart, then the ARL of that control chart is given 

by, 
1 p

ARL
p


 , where    2 1

n n

p F U F L          . Here  F x  denotes the distribution 

function of NWED with parameters   and  . We have to substitute L & U to get the 

value of p and hence to get ARL-average run length. Generally, ARL decreases as n 

increases. 

 

2.2 Analysis of Means (ANOM) for NWED Model 

 Assume that 1 2, ,..., kx x x , are arithmetical means of a NWED model in k subgroups of 

the size n. When control charts are established by employing these sub-group means, 

whether acceptable qualitative changes exist can be assessed in the original population 

from which these sub-groups come to be drawn. Depending on the elementary population 

distribution, one can adopt the constants of control diagram we created or the usual 

Shewart constants from statistical textbook. Broadly speaking, when all means in the 

subsets are inside the control limits, the mechanism is considered to be beneath control. 

Otherwise, the mechanism would be excluded from control. If   is the amount of 

significance of the above decisions, the following likely claims can be made. 

  1 , 1,2,..., kiP LCL x UCL i        (3) 

Using the notion of independent subgroups Eq. (3) becomes   

   
1

1
k

iP LCL x UCL       (4) 

With Equi-tailed probability for each subgroup mean, we can find two constants say *L  

and *U  such that 

   
 

1

* *
1 1

2

k

i iP x L P x U
 

      (5) 

*L  and *U  satisfy * *U L  , when the population drawn from a Normal distribution. We 

must measure *L  & *U  separately from sampling distribution of ix  for skewed 

populations like NWED. As a consequence, these are dependent on the number of 

subgroups k and sub-groups size n. Percentiles of the sampling distribution for x  in 

NWED model were calculated using simulation process (Monte-Carlo) and are shown in 

Table 5, Table 6 and Table 7. For stated n and k, we use the percentiles in Eq. (5) to get *L  

and *U  for 0.0.1,0.05,and0.10  . Table 5, Table 6 and Table 7 contain this detail. 
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3. Results and discussion  

The solutions to the two equations  1 1 0.00135
n

F x     and   0.99865
n

F x     for 

2,3,...,10n   are denoted as  1 0.00135
Z  &  0.99865n

Z  are listed in Table 1. 

Table 1. Control Limits of Extreme value charts. 

n  2 3 4 5 6 7 8 9 10 

  1 0.00135
Z  

0.0021 0.0014 0.001 0.0008 0.0007 0.0006 0.0005 0.0004 0.0004 

  0.99865n
Z  

22.8139 24.0806 24.9794 25.6767 26.2463 26.728 27.1453 27.5133 27.8425 

 

The values from Table 1 express the subsequent probability statement; 

    1 0.00135 0.99865
0.9973, 1,2,...,i n

P Z Z Z i n       (6) 

    1 0.00135 0.99865
0.9973, 1,2,...,i n

P Z x Z i n        (7) 

Taking / 3.125x  as an unbiased estimate of  for a specific parametric combination 

0.2   and 0.6   of NWED by the simulation process, the above equation becomes 

  0.9973, 1,2,...,iP Lx x U x i n       (8) 

Where
  1 0.00135

3.125

Z
L   and

  0.99865

3.125

n
Z

U  . Thus L & U would establish the control chart 

constants for extreme value charts. Table 2 display these values for n=2(1)10. 

Table 2. Constants of Extreme value charts. 

n  2 3 4 5 6 7 8 9 10 

L 0.0006 0.0004 0.0003 0.0002 0.0002 0.0001 0.0001 0.0001 0.0001 

U 7.3004 7.7058 7.9934 8.2165 8.3988 8.5529 8.6865 8.8042 8.9096 

 

 
Figure 1 Plots of the pdf’s and cdf’s of NWED for selected parameter values.  

(A): Probability Density Function, (B): Cumulative Distribution Function. 

 

For a fixed parametric combination 0.2   and 0.6   of NWED and  a given sample 

size n and if L & U respectively stand for the lower control limit (LCL) and upper control 

limit(UCL) of the extreme value control chart, then the ARL of that control chart is given 

by, 
1 p

ARL
p


 , where    2 1

n n

p F U F L          . Here  F x  denotes the distribution 

function of NWED with parameters 0.2   and 0.6  . We have to substitute L & U to 

get the value of p and hence to get ARL-average run length. These values are shown in 

Table 3 for n=2 to 10. 
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Table 3. Average Run Length (ARL) 

n  2 3 4 5 6 7 8 9 10 

ARL 4.4207 3.2697 2.6218 2.1982 1.8967 1.6694 1.4909 1.3467 1.2274 

 

An In-Control result of a mean control chart shows that, even if means of sub-group 

differ significantly, they are all homogeneous in some way. In a study of analysis of 

variance, this is the null hypothesis. As a consequence, the control limits can be used 

instead of the study of analysis of variance. The Ott.E.R, [7] tables can be used with a 

normal population. The constants in Table 5, Table 6 and Table 7 can be used for a 

NWED. For research purpose, we've included some examples below in which the Q-Q 

plot technique (graphical tool to assess linearity between actual data and theoretical 

model) was used to determine the goodness of fit of the NWED model and the 

homogeneity of means was evaluated in each case. 

 

3.1 Examples under study 

Example 1: Take into consideration the following data from the 25 observations 

concerning the production of metal products suspected of variations in raw material iron 

content from five suppliers. Of each of the five suppliers, five ingots were randomly 

chosen. The below observations (Data 1) includes percentage by weight for the iron 

determination on each ingot. 

Data 1: 

Supplier % weight 

1 3.46 3.48 3.56 3.39 3.4 

2 3.59 3.46 3.42 3.49 3.5 

3 3.51 3.64 3.46 3.52 3.49 

4 3.38 3.4 3.37 3.46 3.39 

5 3.29 3.46 3.37 3.32 3.38 

 

Example 2: The study includes three battery bands. The life of the three brands is 

suspected (in weeks). The following findings (Data 2) are tested for five batteries of each 

brand. Test whether the lives of these battery brands are different at 5% level of 

significance. 

Data 2: 

Brands Life in Weeks 

1 100 96 92 96 92 

2 76 80 75 84 82 

3 108 100 96 98 100 

 

Example 3: Four catalysts are being examined which can influence the concentration of 

one component in a fluid blend of three components. The levels are earned as follows 

(Data 3). Test if the four catalysts have an equal 10% significant impact on the 

concentration. 

Data 3: 

Catalysts Concentration Levels 

1 58.2 57.2 58.4 55.8 

2 56.3 54.5 57 55.3 

3 50.1 54.2 55.4 54.9 

4 52.9 49.9 50 51.7 
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The table 4 below shows that NWED is the best model and shows a considerable linear 

link (correlation co-efficient) between sampled and population quantiles in raised 

examples, as demonstrated in the Q-Q plot.  

Table 4. r value 

Example Normal Dist. NWED    

1 0.2067 0.9554    

2 0.4149 0.8768    

3 0.4447 0.8811    

 

 
Figure 2 Graphs indicating QQ-plot for the data in the illustrated examples. (C): Example 

1, (D): Example 2, (E): Example 3 
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Table 5. NWED constants for Analysis of Means when 0.01   

k n  2 3 4 5 6 7 8 9 10 

1 
0.3758 

8.4359 

0.4393 

6.9699 

0.481

3 

5.843

8 

0.518

8 

5.387

1 

0.548

0 

5.082

0 

0.577

8 

4.564

6 

0.595

2 

4.430

0 

0.625

3 

4.274

5 

0.640

0 

3.955

3 

2 
0.3639 

9.5115 

0.4130 

7.7933 

0.444

0 

6.359

9 

0.487

7 

5.857

3 

0.522

1 

5.730

2 

0.550

8 

4.863

6 

0.562

8 

4.849

9 

0.600

3 

4.528

0 

0.610

3 

4.201

0 

3 
0.3567 

10.0172 

0.4056 

8.2825 

0.432

6 

6.610

8 

0.478

1 

6.141

6 

0.504

5 

5.972

0 

0.539

4 

5.094

8 

0.547

0 

5.056

8 

0.583

9 

4.742

2 

0.596

6 

4.487

1 

4 
0.3528 

10.1611 

0.3998 

8.4739 

0.427

0 

6.761

5 

0.470

8 

6.224

4 

0.491

2 

6.037

7 

0.522

2 

5.321

0 

0.537

2 

5.137

2 

0.577

9 

4.868

2 

0.584

0 

4.556

7 

5 
0.3502 

10.5592 

0.3965 

8.5502 

0.426

4 

6.837

0 

0.460

3 

6.373

1 

0.484

1 

6.090

1 

0.501

9 

5.367

0 

0.533

0 

5.167

8 

0.571

8 

4.981

2 

0.582

6 

4.659

0 

6 
0.3474 

10.7958 

0.3957 

8.7261 

0.425

1 

6.857

8 

0.458

1 

6.515

0 

0.471

8 

6.222

1 

0.491

8 

5.577

9 

0.528

3 

5.253

0 

0.558

2 

5.058

3 

0.575

9 

4.772

3 

7 
0.3473 

10.7964 

0.3923 

9.0483 

0.423

2 

7.004

3 

0.457

3 

6.519

5 

0.459

4 

6.227

9 

0.484

2 

5.733

7 

0.527

2 

5.354

4 

0.555

3 

5.194

5 

0.574

4 

4.781

6 

8 
0.3472 

10.7973 

0.3921 

9.3994 

0.415

1 

7.348

7 

0.456

3 

6.704

5 

0.458

7 

6.271

7 

0.484

0 

5.820

0 

0.526

1 

5.394

3 

0.548

2 

5.278

4 

0.574

3 

4.966

9 

9 
0.3449 

10.9862 

0.3900 

9.4422 

0.414

9 

7.368

9 

0.454

1 

6.779

3 

0.456

3 

6.374

3 

0.474

6 

5.921

3 

0.522

0 

5.477

7 

0.545

1 

5.305

2 

0.574

0 

4.989

2 

10 
0.3449 

10.9862 

0.3900 

9.4422 

0.414

9 

7.368

9 

0.454

1 

6.779

3 

0.456

3 

6.374

3 

0.474

6 

5.921

3 

0.522

0 

5.477

7 

0.545

1 

5.305

2 

0.574

0 

4.989

2 

15 
0.3399 

12.4806 

0.3756 

10.0287 

0.405

0 

7.755

1 

0.449

9 

6.931

5 

0.446

3 

6.885

5 

0.461

6 

5.979

4 

0.503

3 

5.698

0 

0.541

7 

5.586

2 

0.561

6 

5.063

2 

20 
0.3396 

13.3413 

0.3756 

10.0287 

0.395

9 

7.844

9 

0.445

1 

6.960

4 

0.436

5 

7.011

7 

0.459

9 

6.243

4 

0.501

6 

5.920

7 

0.534

3 

5.913

1 

0.558

5 

5.097

3 

25 
0.3396 

13.3413 

0.3756 

10.0287 

0.395

9 

7.844

0.445

1 

6.960

0.436

5 

7.011

0.459

9 

6.243

0.501

6 

5.920

0.534

3 

5.913

0.558

5 

5.097
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9 4 7 4 7 1 3 

30 
0.3395 

13.8106 

0.3638 

10.4346 

0.366

8 

8.253

5 

0.443

5 

7.285

1 

0.434

1 

7.167

8 

0.450

4 

6.444

1 

0.492

8 

5.975

1 

0.524

7 

5.957

5 

0.529

3 

5.373

1 

35 
0.3395 

13.8106 

0.3638 

10.4346 

0.366

8 

8.253

5 

0.443

5 

7.285

1 

0.434

1 

7.167

8 

0.450

4 

6.444

1 

0.492

8 

5.975

1 

0.524

7 

5.957

5 

0.529

3 

5.373

1 

40 
0.3395 

13.8106 

0.3638 

10.4346 

0.366

8 

8.253

5 

0.443

5 

7.285

1 

0.434

1 

7.167

8 

0.450

4 

6.444

1 

0.492

8 

5.975

1 

0.524

7 

5.957

5 

0.529

3 

5.373

1 

45 
0.3395 

13.8106 

0.3638 

10.4346 

0.366

8 

8.253

5 

0.443

5 

7.285

1 

0.434

1 

7.167

8 

0.450

4 

6.444

1 

0.492

8 

5.975

1 

0.524

7 

5.957

5 

0.529

3 

5.373

1 

50 
0.3395 

13.8106 

0.3638 

10.4346 

0.366

8 

8.253

5 

0.443

5 

7.285

1 

0.434

1 

7.167

8 

0.450

4 

6.444

1 

0.492

8 

5.975

1 

0.524

7 

5.957

5 

0.529

3 

5.373

1 

The constants mentioned in the above Table 5 are in particular used to illustrate the 

Example 1. For Data 1, the sample means are 1 3.458x  , 2 3.492x  , 3 3.524x  , 4 3.400x 

and 5 3.364x  . The overall mean or population mean is 3.4476x  . For stated n=5 and 

k=5, we use the percentiles in Eq. (5) to get * .L L x  (LDL) and * .U U x  (UDL) for 

0.0.1  (assumed). Those values (decision limits) are presented in Table 8. Here from 

Table 5, we can observe that, for n=5 and k=5, 0.4603L  and 6.3731U  . These constants 

are useful in general, for specified n and k. 
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Table 6. NWED constants for Analysis of Means when 0.05   

k n  2 3 4 5 6 7 8 9 10 

1 
0.4458 

5.7094 

0.5141 

4.9388 

0.5715 

4.3630 

0.5991 

4.0340 

0.6293 

3.9095 

0.6564 

3.6288 

0.6739 

3.4849 

0.7032 

3.3865 

0.7135 

3.2355 

2 
0.4079 

6.7877 

0.4723 

5.7089 

0.5266 

5.1072 

0.5641 

4.5788 

0.5848 

4.3758 

0.6201 

4.0549 

0.4361 

3.9040 

0.6605 

3.7448 

0.6753 

3.5865 

3 
0.3929 

7.3963 

0.4605 

6.2438 

0.5105 

5.4008 

0.5417 

4.9023 

0.5722 

4.7266 

0.6050 

4.2877 

0.6218 

4.1333 

0.6413 

4.0069 

0.6564 

3.7727 

4 
0.3848 

8.2010 

0.4471 

6.5604 

0.4965 

5.7067 

0.5299 

5.2001 

0.5562 

4.8805 

0.5887 

4.4533 

0.6028 

4.3297 

0.6325 

4.1791 

0.6477 

3.8887 

5 
0.3766 

8.4269 

0.4397 

6.9514 

0.4827 

5.8377 

0.5205 

5.3867 

0.5511 

5.0590 

0.5815 

4.5643 

0.5972 

4.4046 

0.6260 

4.2640 

0.6407 

3.9496 

6 
0.3715 

8.7205 

0.4315 

7.0962 

0.4754 

5.9559 

0.5137 

5.4669 

0.5413 

5.1890 

0.5675 

4.6358 

0.5850 

4.5386 

0.6207 

4.3727 

0.6354 

4.0430 

7 
0.3696 

8.8756 

0.4246 

7.3175 

0.4664 

6.1244 

0.5092 

5.6066 

0.5371 

5.3184 

0.5616 

4.7158 

0.5790 

4.5894 

0.6139 

4.4027 

0.6313 

4.0873 

8 
0.3675 

9.2301 

0.4213 

7.5617 

0.4595 

6.2676 

0.4998 

5.7637 

0.5306 

5.3723 

0.5545 

4.7724 

0.5713 

4.6715 

0.6103 

4.4739 

0.6255 

4.1779 

9 
0.3664 

9.2951 

0.4174 

7.6507 

0.4555 

6.3244 

0.4917 

5.8271 

0.5241 

5.4936 

0.5532 

4.8445 

0.5670 

4.6969 

0.6037 

4.5019 

0.6227 

4.1922 

10 
0.3639 

9.5115 

0.4130 

7.7933 

0.4440 

6.3599 

0.4877 

5.8573 

0.5221 

5.7302 

0.5508 

4.8636 

0.5628 

4.8499 

0.6003 

4.5280 

0.6103 

4.2010 

15 
0.3579 

9.9812 

0.4058 

8.2613 

0.4345 

6.6065 

0.4800 

6.0942 

0.5055 

5.9519 

0.5399 

5.0645 

0.5477 

5.0405 

0.5892 

4.7397 

0.5990 

4.4420 

20 
0.3528 

10.1611 

0.3998 

8.4739 

0.6270 

6.7615 

0.4708 

6.2244 

0.4912 

6.0377 

0.5222 

5.3210 

0.5372 

5.1372 

0.5779 

4.8682 

0.5840 

4.5567 

25 
0.3502 

10.5592 

0.3965 

8.5502 

0.4264 

6.8370 

0.4603 

6.3731 

0.4841 

6.0901 

0.5019 

5.3670 

0.5330 

5.1678 

0.5718 

4.9812 

0.5826 

4.6590 

30 
0.3474 

10.7958 

0.3957 

8.7261 

0.4251 

6.8578 

0.4581 

6.5150 

0.4718 

6.2221 

0.4918 

5.5779 

0.5283 

5.2530 

0.5582 

5.0583 

0.5759 

4.7723 

35 
0.3473 

10.7964 

0.3923 

9.0483 

0.4232 

7.0043 

0.4573 

6.5195 

0.4596 

6.2279 

0.4842 

5.7337 

0.5272 

5.3544 

0.5553 

5.1945 

0.5744 

4.7816 

40 
0.3472 

10.7973 

0.3921 

9.3994 

0.4151 

7.3487 

0.4563 

6.7045 

0.4587 

6.2717 

0.4840 

5.8200 

0.5261 

5.3943 

0.5482 

5.2784 

0.5743 

4.9669 

45 
0.3449 

10.9862 

0.3900 

9.4422 

0.4149 

7.3689 

0.4541 

6.7793 

0.4563 

6.3743 

0.4746 

5.5213 

0.5220 

5.4777 

0.4551 

5.3052 

0.5740 

4.9892 

50 
0.3449 

10.9862 

0.3900 

9.4422 

0.4149 

7.3689 

0.4541 

6.7793 

0.4563 

6.3743 

0.4746 

5.5213 

0.5220 

5.4777 

0.4551 

5.3052 

0.5740 

4.9892 

 

In specifically for Example 2 the constants specified in the above-described Table 6 are 

employed. For Data 2, the sample means are 1 95.2x  , 2 79.4x  , and 3 100.4x  . The 

overall mean or population mean is 91.6667x  . For stated n=5 and k=3, and for 0.05  , 

from Table 6 we can find 0.5417L  and 4.9023U  . 

The same technique is used and the calculated values (decision limits) are presented in 

Table 8. In general, for stated n and k, these constants are helpful.  
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Table 7 NWED constants for Analysis of Means when 0.10   

k n  2 3 4 5 6 7 8 9 10 

1 
0.4987 

4.6020 

0.5664 

4.1144 

0.6202 

3.6551 

0.6516 

3.5009 

0.6811 

3.3762 

0.7027 

3.1799 

0.7245 

3.0881 

0.7549 

2.9910 

0.7693 

2.8649 

2 
0.4466 

5.6535 

0.5156 

4.9046 

0.5740 

4.3465 

0.6027 

4.0223 

0.6307 

3.8997 

0.6580 

3.6140 

0.6754 

3.4753 

0.7040 

3.3791 

0.7153 

3.2288 

3 
0.4232 

6.3360 

0.4913 

5.3818 

0.5491 

4.7362 

0.5788 

4.3044 

0.6059 

4.1303 

0.6339 

3.8526 

0.6541 

3.7258 

0.6746 

3.5863 

0.6924 

3.4126 

4 
0.4087 

6.7391 

0.4736 

5.6888 

0.5275 

5.0604 

0.5651 

4.5437 

0.5860 

4.3683 

0.6207 

4.0484 

0.6376 

3.8818 

0.6613 

3.7344 

0.6768 

3.5788 

5 
0.4017 

7.0563 

0.4651 

5.9478 

0.5169 

5.2376 

0.5538 

4.7470 

0.5783 

4.5269 

0.6137 

4.1721 

0.6303 

4.0153 

0.6519 

3.8608 

0.6639 

3.7021 

6 
0.3942 

7.3281 

0.4616 

6.2211 

0.5112 

5.3846 

0.5428 

4.8809 

0.5731 

4.7038 

0.6066 

4.2772 

0.6257 

4.1176 

0.6434 

3.9849 

0.6567 

3.7604 

7 
0.3891 

7.8144 

0.4536 

6.3411 

0.5007 

5.4845 

0.5329 

5.0271 

0.5650 

4.7970 

0.5956 

4.3640 

0.6170 

4.2659 

0.6382 

4.1098 

0.6528 

3.8256 

8 
0.3855 

8.1552 

0.4480 

6.5107 

0.4969 

5.6939 

0.5303 

5.1790 

0.5575 

4.8684 

0.5901 

4.4314 

0.6031 

4.3253 

0.6339 

4.1583 

0.6489 

3.8837 

9 
0.3809 

8.3170 

0.4430 

6.6693 

0.4919 

5.7913 

0.5251 

5.2670 

0.5533 

4.9351 

0.5858 

4.4924 

0.6009 

4.3495 

0.6298 

4.2272 

0.6467 

3.9189 

10 
0.3771 

8.4220 

0.4400 

6.9182 

0.4837 

5.8356 

0.5207 

5.3396 

0.5512 

5.0556 

0.5820 

4.5456 

0.5976 

4.4039 

0.6269 

4.2557 

0.6410 

3.9462 

15 
0.3694 

8.9986 

0.4245 

7.5022 

0.4650 

6.1891 

0.5036 

5.6447 

0.5343 

5.3532 

0.5592 

4.7393 

0.5746 

4.6198 

0.6130 

4.4367 

0.6298 

4.1214 

20 
0.3657 

9.4710 

0.4152 

7.7531 

0.4453 

6.3450 

0.4883 

5.8334 

0.5231 

5.6720 

0.5519 

4.8620 

0.5637 

4.7882 

0.6007 

4.5202 

0.6159 

4.1993 

25 
0.3616 

9.6045 

0.4092 

7.9203 

0.4416 

6.4883 

0.4845 

5.9039 

0.5127 

5.8046 

0.5444 

4.9569 

0.5564 

4.9291 

0.5930 

4.6799 

0.6042 

4.2671 

30 
0.3579 

9.9812 

0.4058 

8.2613 

0.4345 

6.6065 

0.4800 

6.0942 

0.5055 

5.9519 

0.5399 

5.0645 

0.5477 

5.0405 

0.5892 

4.7397 

0.5990 

4.4420 

35 
0.3558 

10.0213 

0.4010 

8.3186 

0.4309 

6.6456 

0.4773 

6.1472 

0.4998 

5.9777 

0.5388 

5.2318 

0.5423 

5.0691 

0.5830 

4.7549 

0.5956 

4.4924 

40 
0.3529 

10.1224 

0.4002 

8.4559 

0.4279 

6.7542 

0.4713 

6.2198 

0.4937 

6.0049 

0.5266 

5.2979 

0.5414 

5.1336 

0.5785 

4.8645 

0.5909 

4.5500 

45 
0.3510 

10.1920 

0.3986 

8.5110 

0.4264 

6.8009 

0.4632 

6.2496 

0.4857 

6.0673 

0.5073 

5.3539 

0.5361 

5.1514 

0.5741 

4.8718 

0.5827 

4.6157 

50 
0.3502 

10.5592 

0.3965 

8.5502 

0.4264 

6.8370 

0.4603 

6.3731 

0.4841 

6.0901 

0.5019 

5.3670 

0.5330 

5.1678 

0.5718 

4.9812 

0.5826 

4.6590 

 

In specifically for Example 3 the constants stated in the above-described Table 7 are 

applied. For Data 3, the sample means are 1 57.35x  , 2 55.775x  , 3 53.65x  , and 

4 51.125x  . The overall mean or population mean is 54.475x  . For stated n=4 and k=4, 

and 0.10  , we may find from Table 7, 0.5275L  and 5.0604U  . Using the same 

technique, Table 8 provides and shows derived values (decision limits). These constants 

are usually beneficial for specified n and k.  
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We have determined and submitted Table 8, the decision limits (DL) for the Normal 

Population and the NWED Population utilizing these findings in data as a single sample. 

Table 8. Comparison between Normal Distribution and NWED 

Example 

No. 

 , ,n k   

Normal Dist. NWED 

Decision 

Limits 

[LDL, 

UDL] 

Count I 

(Within 

Limits) 

Probability  

( /p i k ) 

Decision 

Limits 

[LDL, 

UDL] 

Count i 

(Within 

Limits) 

Probability  

( /p i k ) 

1 

(5, 5, 

0.01) 

[3.517, 

3.879] 
3 0.6 

[1.587, 

21.972] 
5 1 

2 

(5, 3, 

0.05) 

[87.82, 

95.52] 
2 0.7 

[49.656, 

449.378] 
3 1 

3 

(4, 4, 

0.10) 

[26.14, 

82.84] 
2 0.5 

[28.735, 

275.665] 
4 1 

 

n : Size of Subgroup, k : No. of Subgroups,  : level of significance, LDL: Lower 

Decision Limit, UDL: Upper Decision Limit. 

 

4. Conclusion  

According to the decision limits using Normal distribution or the Shewart control 

limits and ANOM tables of Ott.E.R [7], the number of homogenous mean is 3, 2, and 2 

for each data set, and those who are not homogeneous are 2, 1, and 2 respectively. When 

the ANOM tables of NWED are utilized, the number of homogeneous means for the same 

data sets is 5, 3, and 4, with no deviations from the homogeneity. This indicates that, 

when the normal distribution model has been applied, certain means have been 

homogenized, and others have deviated. This decision is valid, even if the data 

corresponds to the Normal distribution. In comparison, NWED is a better model that has 

already been displayed on a Q-Q plot that shows that each data set with Normal and 

NWED has a Q-Q correlation coefficient independently. As a result, we concluded that 

the decision method of the Normal distribution will be correlated with more error. 

Henceforth, using proposed NWED model is a better option rather than the usual, to 

achieve homogeneity for ANOM method in some cases. 

 

  

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 11, November - 2021 Page-835



 
 
5. References  

[1] Bakir.S.T., Means using ranks for randomised complete block designs. 

Communications in Statistics Simulation and Computation. 1994; 23:547-568. 

[2] Bernard.A.J., and Wludyka.P.S. Robust I-sample Analysis of means type 

randomization tests for variances Journal of Statistical Computation and Simulation. 

2001; 69:57-88. 

[3] Farnum.N.R. Analysis of Means Tables using mathematical processors. Quality 

Engineering. 2004; 16:399-405.  

[4] Guirguis.G.H., and Tobias.R.D. On the computation of the distribution for the 

analysis of means. Communications in Statistics- Simulation and Computation. 2004; 

16:861-887. 

[5] Montgomery.D.C. Design and Analysis of Experiments. Fifth edition, John Wiley 

and Sons, New York. 

[6] Nelson.P.R., and Dudewicz.E.J. Exact Analysis of Means with Unequal Variances. 

Technometrics. 2002; 44:152-160. 

[7] Ott.E.R. Analysis of Means- A graphical procedure. Industrial Quality Control. 1967; 

24:101-109. 

[8] Ramig.P.F. Applications of Analysis of Means. Journal of Quality Technology. 

1983; 15:19-25. 

[9] Rao.C.V. Analysis of Means - A review. Journal of Quality Technology. 2005; 

37:308-315. 

[10] Rao.C.V., and Prankumar.M. ANOM-type Graphical Methods for testing the 

Equality of Several Correlation Coefficients. Gujarat Statistical Review. 2002; 

29:47-56. 

[11] Srinivasa Rao.B., Pratapa Reddy.J., and Rosaiah.K. Extreme value charts and 

ANOM based on inverse Rayleigh distribution. Pakistan Journal of Statistic & 

Operations Research. 2012; 8(4):759-766. 

[12] Srinivasa Rao.B., and Kantam.R.R.L. Extreme value charts and Analysis of means 

based on half logistic distribution. International Journal of Quality, Reliability and 

Management. 2012; 29(5):501-511. 

[13] Srinivasa Rao.B., and Sricharani.P. Extreme value charts and Analysis of means 

based on Dagum distribution. International Journal of Statisytics & Applied 

maythematics. 2018; 3(2):351-354.  

[14] Srinivasa Rao.B., Pratapa Reddy.J., and Sarath Babu.G. Extreme value charts and 

ANOM based on log-logistic distribution. Modern Applied Statistical Methods. 

2012; 493-505. 

 

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 23, Issue 11, November - 2021 Page-836




