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Abstract: Quality control unit of fabric industry looks for the effective defect detection methodology. The 

research is required to be done in this area to develop such solution. Various models based on 

combination of suitable feature extraction, selection and classification approaches need to be 

experimented out for the same. This paper attempts to experiment and provide such models mainly based 

on generic wrapper based selection approaches. Widely used broader range of Haralick features are 

prominently used for detection and classification of defects in this research. It also attempts to identify the 

suitability of these features based on segmented images provided as an input. The research has been 

carried on TILDA Dataset consisting of 800 Silk Fabric Images with eight different defects present on it 

and each carrying 100 images per defect. Models generated using generic wrapper based approach has 

also been compared with the Gabor Transforms. Then identification of suitable Haralick Features for 

particular type of defects has been carried out. In this 68% classification accuracy has been achieved 

using generic wrapper method and 40 % accuracy has been achieved using Gabor Transform with 

respect to fourteen Haralick Features and seven types of defects. 
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1. INTRODUCTION 

Producing defect free material from factories, warehouses, etc is a complex task. There are many 

processes involved to get the finished textile products and each stage. There have been enlarging the 

number of losses due to the defects at each level of processing of fabric [1]. The productivity and the 

nature of the textile delivered by each industry depend upon the type of defects measured amid the quality 

control [2]. Numerous endeavours have been made to unravel these problems. As soon as fabric images 

are obtained they undergo a series of image processing methods like image enhancement, restoration, 

segmentation, feature extraction, and defect detection [3]. Based on the literature survey done various 

methods have been deployed for fabric defect detection and classification over the decades.  

Statistical, spectral, and model-based approaches have all been presented to solve the challenge of 

detecting flaws in woven fabrics, with spectral approaches being the most successful detection approaches 

for woven fabrics. A Gabor transform or filter is one of the most prominent spectral techniques and has 

been effectively and widely used in the field of defect detection because it has optimal localization both in 

the spatial domain and in the spatial-frequency domain [4]. All Gabor function-based detection algorithms 

can be divided into two groups. One is to use a filter bank with unsupervised learning [4-5] and other is 

an optimal filter with supervised learning [6-7]. Filtering with a filter bank can generate a lot of data for 

processing, but a series of filters can help in the segmentation of data. 
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The selection of relevant attributes from the original images to minimize the redundant features is 

called the feature selection method [8-9]. The more appropriate the selection of features the performance 

of the classification is improved. Furthermore, a new paradigm for segmentation and classification uses 

the wrapper-based approach for feature selection and feature extraction. Various types of flaws like holes, 

cuts, oil stains, etc may get introduced in the fabric intentionally or unintentionally. So it is need of the 

hour to understand the relationship between the fabric material and defect types. It performs the look 

within the space of highlight subsets such as classification performances on cross-validation of the 

training set which gives better outcome than filter methods using evaluation metric. But wrapper methods 

increase the computational cost [10-15]. In addition, the best feature subset selection method can reduce 

the cost of feature measurement.  

The important contributions of our research to the literature are as follows:  

1. To reduce the number of features using generic wrapper-based methods to generate the predictive 

models for each defective class using Haralick Features and measure their performance based on 

Classification Accuracy (CA), Precision, Recall and Kappa Coefficients (KC) 

2. Compare the results obtained from the wrapper strategy with approach like Gabor Transforms.. 

 

The remaining sections of this writing are structured as follows: Section 2 outlines the basic 

working principles of the wrapper-based approach, and then Section 3 describes the proposed 

methodology used. Next, section 4 presents an experimental framework for the result and discussion 

obtained from the proposed algorithm and compares it with the other classification and segmentation 

methods. Finally, section 5 concludes the paper with possible future work. 

2. OVERVIEW OF WRAPPER BASED APPROACH  

  The Feature Selection (FS) approach is a commonly used method for diminishing dimensionality 

of the information and expanding the proficiency of learning calculation. For FS we look up the whole 

search space. The possible subsets of features are selected using an equation 1 [15]: 

  
 

 
 

 

   

  
 

 
   

 

 
   

 

 
    

 

 
                                                                         

Where: 

n=Number of features present 

s=Current feature subset size 

FS methods can be grouped into four major categories:  

 Filter Approach: If FS is done without using a learning algorithm, then it is known as the filter 

approach. It uses the inter-class separable principle for selecting and evaluating features [16]. 

 Wrapper Approach: If the FS approach is done using a classification algorithm, then it is called the 

wrapper approach. In this method, the selected features are fed into the learning model to measure the 

performance of the selected features [17]. The wrapper approach is constituted by three components as 

shown in Figure 1.   

o Learning Machine 

o Criteria used for Feature Evaluation    

o Feature Selection Method 
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Figure 1. Basic Principle used for Wrapper Approach 

1. Embedded Approach: This method is almost similar to the wrapper-based approach, but here the link 

between the FS and classifier is stronger [18]. 

2. Hybrid Approach: Hybrid methods are the combination of any methods mentioned above. Some 

work has suggested two-step feature selection methods [19]. In this number of features are selected using 

the first method and the second method is used to reduce them. This method is used to attain better 

results. 

3. PROPOSED METHODOLOGY 

This section explains the methodology used by the wrapper-based approach for feature selection 

from silk images present in TILDA Database. This method was validated by processing it for multiple 

images of the different defects like Punches (D1), Oil Stains (D2), Thread Condensation (D3), Wrinkles 

(D4), Camera Distortion (D5), Foreign Body (D6), and Lightning Condition (D7). As a result, the 

suggested system will determine which classification approach; Haralick Feature, and Defect Type yields 

the best results while running the model , and vice versa.  

3.1 Tilda Database: 

The data set contains 800 images of silk material. All images are monochrome gray images with 256 

grayscale. For each class, there are 100 images as shown in Figure 2. The images are saved in TIFF 

format and have a dimension of 768*512 pixels [20]. 

 

Figure 2. TILDA Database for Experimentation [20] 
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3.2  Generic Wrapper Based Method:  

The general model used for the wrapper-based method is shown in figure 3. Below mentioned are the 

steps which show how wrapper methods work [19]: 

 Look for a specific set of characteristics: We select a subset of features from the available ones 

using a search approach. 

 Construct a machine-learning model: In this step, a pre-selected subset of features is used to 

train a machine-learning algorithm. 

 Examine the model's performance: Finally, we use a chosen metric to evaluate the newly-

trained ML model. 

 Repeat: The entire process is restarted with a new set of features, a new machine learning model, 

and so on.  

  This process goes on until the desired condition is met and then, we choose the best subset with the best 

outcome. 

 

              Figure 3. A Unified Model for Feature Selection and Extraction 

 

The "wrapper" approach encases a classifier in a full training set and cross-validation loop, searching 

the attribute space for an appropriate feature set using the classifier. Starting from any subset, we can 

search forwards, backward, or bidirectional. The segmentation methods were used on silk fabric to create 

the feature vector database. Gray Level Co-Occurrence Matrix (GLCM) with Haralick Feature was used 

on the segmented image to create FVDB. Below mentioned are the steps for making these models: 

 Obtain the segmented image by applying Mean Shift Segmentation. 

 Generate Feature Vector Database by applying GLCM using Haralick Features on the segmented 

image. 

 Input the FVDB into the Machine Learning Tool and apply generic wrapper-based approaches: 

Features are extracted using Wrapper Subset Evaluation and Classifier Subset Evaluation and 

features are selected and searched using Best-first Search, Greedy Step Wise and Genetic search.  

 The generated feature subsets are evaluated using well-known classifiers such as Random Forest 

(RF), Decision Tree (J48), Bagging, Boosting, and Support Vector Machine (SVM) for validating 

the output of Feature Selection Algorithms.  

 A reduced feature subset is used to train the classifiers and measure their accuracy using various 

performance metrics like classification accuracy, kappa coefficients precision, and recall. 
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Figure 4 shows the block diagram of generic wrapper based approach. The abbreviations used in Figure 4 

are stated below in Table 1.  

 

Figure 4. Wrapper Based Approach for Subset Evaluation and Optimal Feature Selection 

[ BFS: Breadth-First Search, GSW- Greedy step wise, GA-Genetic Algorithm, RF-Random Forest, HF-Haralick features] 

Also the 14 different Haralick Features used in this paper are as: HF1 (Angular Second Moment), 

HF2 (Contrast), HF3 (Correlation) , HF4 (Variance), HF5 (Inverse Difference), HF6 (Sum Average) , 

HF7 (Sum Variance),  HF8 (Sum Entropy),  HF9 (Entropy), HF10 (Difference Variance), HF11 

(Difference Entropy), HF12 (Information Measure of Correlation-I) , HF13 (Information Measure of 

Correlation-II) , and HF14 (Maximal Correlation Coefficient).  

3.3  Gabor Transform: 

Gabor Filter is a texture analysis linear filter that determines whether there is any certain 

frequency content in the image in specific directions in a confined region surrounding the point or region 

of analysis. Gabor filters and Gabor wavelets are related because they can be built for a variety of 

dilations and rotations. However expansion is not possible for Gabor Wavelets. As a result, a filter bank 

made up of Gabor filters of various sizes and rotations is frequently developed. 

The algorithm used to extract the features using Gabor Wavelet Transform has been mentioned 

below and block diagram for the same is shown in figure 5. 
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Figure 5 Output Generations at each Step in Gabor Wavelet Transform 

 

4. RESULTS AND DISCUSSIONS 

In this part, we provide the results of several models generated throughout the learning and 

testing phase for the development, optimization, and validation of Haralick characteristics appropriate for 

specific types of errors. This section compares alternative Generic Wrapper and Gabor transform 

approaches for feature extraction and feature selection methods based on four parameters: classification 

accuracy, kappa coefficients, precision, and recall. We have conducted an extensive study utilizing a 

variety of wrapper search algorithms, including best-first search and greedy step-wise. Table 2 and 3 

shows the nomenclature used for the Wrapper-based approach and Gabor Transforms.  

Table 1. Model Number used for Simple Wrapper Based Approaches 

 

Table 2. Model Number used for Gabor Transform Approaches 
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4.1. Performance Evaluation Metrics 

The formula used for measuring classification accuracy is given in equation 1: 

         
     

           
                           

The accuracy and KC can be measured using the 2*2 confusion matrix [2, 30] given in Figure 6. 

 

Figure 6. Confusion Matrix for evaluation of Performance Metrics 

Using these two approaches we have generated around 84 models using two subset evaluators.  

  

4.2.1 Simple Wrapper Subset Evaluation (SWBE) 

 In Weka, the WrapperSubsetEval technique is used with a Greedy Stepwise and Best First Search 

Method. It uses a learning approach, to evaluate the attribute sets and cross-validation is a technique used 

for estimating the accuracy of attributes [28]. Table 4 and 5 below mentioned shows the result generated 

these methods.  

 Table 3: Wrapper based Evaluation using BFS and 10 Fold CV 

 

 

Observation Table 3: Shows the wrapper based Evaluation using Best First Search and 10 Fold Cross 

Validation as training module. Random Forest gives the best results i.e. CA-68%, KC-64%, Precision-70 

%, and Recall-68 % shown in blue color with HF2, HF3, HF4, HF6, HF10, HF12, and HF14 as best 

subset of Haralick Features out of all. Boosting gives the second best result i.e. CA-68%, KC-64%, 

Precision-70 %, and Recall-68 % shown in blue color with HF2, HF3, HF4, HF6, HF10, HF12, and HF14 

as best subset of Haralick Features out of all. The worst result was given by the Grid Search i.e. CA-55%, 

KC-48%, Precision-59%, and Recall-55%. 
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        Table 4: Wrapper based Evaluation using Greedy Step Wise and 10 Fold CV

 

Observation Table 4: Shows the Wrapper Based Evaluation using Greedy Step-wise and   10 Fold CV as 

training module. Random forest and Grid search gives the best results for all the four parameters i.e. CA-

66%, KC-61%, Precision-68% and Recall-66% shown in blue color. The best HF subset generated by it is 

HF4, HF5, HF10, HF12, and HF14.The second best result was given by the Boosting i.e. CA-64%, KC-

59%, Precision-66%, and Recall-64% shown in pink color. The HF subsets generated by it are HF3, HF4, 

HF5, HF6, HF7, HF10, and HF14.The worst result was given by the Naïve Bayes algorithm i.e. CA-62%, 

KC-57%, Precision-66%, and Recall-62%.Figure 7 shows the identification of the suitable Haralick 

features for the particular type of defects using best first search and validation technique 10 fold cross 

validation. 

 

Figure 7 Identification of HF for particular Type of Defects using BFS-10 FCV 

Observation Figure 7: The inferences drawn from figure 7 are as:HF4 (Variance) was able to identify 

the defects D7 (Camera Distortion) with CA-45%, KC-37%, Precision-71% and Recall-68% using 

Random Forest and D6 (Lightning Conditions) with CA-52%, KC-45%, Precision-80% and Recall-40% 

with J48 as Classification Algorithm.HF6 (Sum Average) was able to identify the defects D4 (Foreign 

Body) with CA-41%, KC-32%, Precision-51% and Recall-58%. Also HF6 was able to identify the defect 

D6 (Lightning Condition) with LibSVM.HF7 (Sum Variance) has identified D6 and D7 the particular 

type of defect using Bagging and Boosting as Classification Algorithm. 

 

4.2.2 Classifier Subset Evaluation (CSE) 

This method determines the importance of qualities based on their predictive capacity and degree 

of redundancy. Subsets with low inter-correlation but high correlations with the target class are favored. 

This attribute evaluator with the Best-First and Greedy stepwise is applied on the FVDB. The results 

obtained from this method are shown below. Table 7 shows the selection of best HF subsets using various 

classification algorithms for the silk fabric having eight types of defects present on it.  

45% 41% 52% 53% 51% 53% 
37% 32% 45% 46% 44% 46% 
71% 

51% 
80% 86% 80% 91% 

68% 
58% 

40% 36% 64% 40% 

D7 D4 D6 D6 D7 D6 

HF4 HF6 HF4 HF7 HF7 HF6 

Random Forest Grid Search J48 Bagging Boosting LibSVM 

WWG20 WWG21 WWG19 WWG16 WWG17 WWG18 

Identification of HF for Particular Defects using BFS-10 FCV 

CA KC Precision  Recall 
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Table 5: Classifier Subset Evaluation using Best First Search and 10 FCV

 

Observation Table 5: Shows the Classifier Subset Evaluation using Best First Search and 10 fold CV as 

training module. After Generation of best HF subset various classification algorithms were applied to 

obtain the results based on four performance metrics.J48 gives the best results i.e. CA-64%, KC-59%, 

Precision-65 %, and Recall-64 % shown in blue color with HF1, HF2, HF3, HF7, HF10, HF11, HF12, 

and HF14 selected as best subset of Haralick Features out of all.Bagging gives the second best result i.e. 

CA-63%, KC-57%, Precision-64 %, and Recall-63% shown in pink color with HF2, HF5, HF7, HF12, 

and HF14 as best subset of Haralick Features out of allThe worst result was given by the Naïve Bayes i.e. 

CA-62%, KC-56%, Precision-66%, and Recall-61%.Similarly, we have applied the same procedure using 

the greedy stepwise search method. The results generated by this method show that Random forest and 

Grid search gives the best results for all the four parameters i.e. 100% using the full training set. The 

worst result was given by the Naïve Bayes algorithm i.e. CA-61.5%, KC-56%, Precision-66%, and 

Recall-61%. Using the 10 Fold CV method Boosting gives the best result i.e. CA-80%, KC-77%, 

Precision-82%, and Recall-80%. Bagging gives the worst result i.e. CA-62.5%, KC-57%, Precision-64% and 

Recall-63% with selected subsets HF2, HF5, HF7, HF8, HF10. 

4.2.3 Gabor Transform 

In Gabor Transforms, the feature extraction and selection process is based on a specific machine 

learning algorithm that we are trying to fit on a given dataset. The result obtained from various attribute 

evaluators are mentioned with their observations in table 8.  

Table 6: Gabor Transform using Classifier Subset Evaluation using Best First Search and 10 

FCV 

 

 

 

 

 Observation Table 6: Shows the Classifier Subset Evaluation using Best First Search and 10 Fold Cross 

Validation as validation technique. J48 gives the best results i.e. CA-40%, KC-32%, Precision-41 %, and 

Recall-43 % shown in blue colour with HF1,HF2, HF4, HF6, HF7, HF8, HF9, HF12, HF13 and HF14 as 
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best subset of Haralick Features out of all. Bagging gives the second best result i.e. CA-40%, KC-31%, 

Precision-39 %, and Recall-40 % shown in pink colour with HF1, HF3, HF4, HF6, HF7, HF8, HF9, 

HF10,HF11, and HF14 as best subset of Haralick Features out of all.The worst result was given by 

Random Search i.e. CA-22%, KC-11%, Precision-22%, and Recall-22% with HF2.Similarly, we have 

applied the same procedure using the greedy stepwise search method. The results generated by this 

method show that J48 and Bagging gives the best results for all the four parameters i.e. CA-40%, KC-

32%, Precision-41% and Recall-43% using the 10 Fold Cross validations. The worst result was given by 

the Random Forest Algorithm i.e. CA-22%, KC-11%, Precision-22%, and Recall-22%.  

 

4.2.4 Comparison of results between Generic Wrapper Based Approach and Gabor Transform 

The Figure 8 shows the comparison of Classification Accuracy with respect to Generic wrapper 

based approach and Gabor Transform.  From the Figure 8 we can see that Generic Wrapper based 

Approach gives the best results as compared to Gabor Transforms. In this the X axis represents 

classification accuracy and Y axis represents the model number. Model number WWG47 gave the highest 

result of CA-64% and selects the best subset HF1, HF2, HF3, HF7, HF10, HF11, HF12, and HF14 out of 

all. The best result given by the Gabor Transform was model number GW12 with CA-40.4% and selects 

the best subset HF1, HF2, HF4, HF6, HF7, HF8, HF9, HF12, HF13, and HF14. 

 

 

Figure 8 Comparisons between Generic Wrapper and Gabor Transform Approach 

Model WWG45 using Boosting identifies the HF8 with defect D5 giving accuracy of 70%. Also 

model number WWG44 was able to identify the suitable HF HF5 with defect D6 with accuracy 67%. 

Similarly, in Gabor Transform model number GW12 was able to identify the suitable HF HF2 with defect 

type D7 with classification accuracy of 67%. At the same time GW30 was able to identify the defect D6 

with suitable Haralick Feature HF1 at 55% of classification accuracy. 

5. CONCLUSION AND FUTURE SCOPE 

Various defect detection and classification models were designed. These models were executed 

on the dataset and the best models and best performers contributing Haralick features towards specific 

type of defect were noted down.  

In simple wrapper-based approach model number WWG20 using random forest gives the best 

results for HF subset using 10 Fold CV. Values of the four parameters obtained in this are CA-68%, KC-

64%, Precision-70%, and Recall-68%. It indicates that LibSVM was able to identify HF6 (Sum Average) 
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suitable for Defect D6 (Lightning Condition) with CA-53%, KC-46%, Precision-91%, and Recall-40%. 

Similarly Boosting was able to identify HF7 (Sum Variance) for Defect D7 (Camera Distortion). The 

worst result was given by the Grid Search with an accuracy of 41% for HF6 for Defect D4 (Foreign 

Body). The experiment carried out helps to identify suitable Haralick features for some types of defects. 

Similarly, using Gabor Transform model number GW12 using J48 gives the best result out of all with 

CA-40%, KC-32%, Precision-41% and Recall-43%. Also, GW12 was able to identify HF2 (Contrast) as a 

best suitable defect to D7 (Camera Distortion) with CA 65%. Similarly, GW30 was able to identify the 

defect D6 (Lightning Condition) for HF1 with CA of 55%.  

  The limitation has been observed that this is not able to identify suitable Haralick features for all 

types of defects because it has higher chances of over-fitting and if the number of features increases it 

becomes computationally unfeasible and no guarantee of optimal solution is achieved. 

In the future these defects and fabric types can be further experimented with and classified using 

various textural, colour, and shape features using various transforms.     
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