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ABSTRACT 

Entropy measures the amount of uncertainty and dispersion of an unknown or random 

quantity, this concept introduced at first by Shannon (1948), it is important for studies 

in many areas. Like, information theory: entropy measures the amount of information 

in each message received, physics: entropy is the basic concept that measures the 

disorder of the thermodynamical system, and others.  Then, in this paper, we introduce 

an alternative measure of entropy, called 𝐻𝑁- entropy, unlike Shannon entropy, this

proposed measure of order α and β is more flexible than Shannon. Then, the cumulative 

residual 𝐻𝑁- entropy, cumulative 𝐻𝑁- entropy, and weighted version have been

introduced. Finally, comparison between Shannon entropy and 𝐻𝑁- entropy and

numerical results have been introduced. 
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1. INTRODUCTION AND BACKGROUND

Let X be a continuous non-negative absolutely continuous random variable having 

probability density function (PDF) 𝑓(𝑥) ,  survival function 𝐹̅(𝑥) = 1 − 𝐹(𝑥), and 

cumulative distribution function (CDF) 𝐹(𝑥). Then, the classical measure of 

uncertainty for X is the differential entropy, also known as the Shannon information 

measure, defined as: 

𝐻𝑠ℎ(𝑋) = −𝐸(𝑙𝑛 𝑓(𝑥))

= − ∫ 𝑓(𝑥)  𝑙𝑛 𝑓(𝑥) 𝑑𝑥
∞

0
, (1) 

where ln denotes the natural logarithm. Since the classical contributions by Shannon 

[18], the properties have been thoroughly investigated.
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 Furthermore, many generalizations of (1) have been proposed. For instance, Rényi [16] 

introduced another entropy measure of order α, defined as: 

𝐼𝑅(𝑋) =
1

1−𝛼
𝑙𝑛[∫ 𝑓𝛼(𝑥) 𝑑𝑥

∞

0
] ٫𝛼 ≠ 1٫𝛼 > 0, (2) 

where 𝐼𝑅(1) = 𝑙𝑖𝑚
𝛼→1

𝐼𝑅(𝛼) = 𝐻𝑠ℎ(𝑋). 

After this, another entropy measure of order α and β introduced by Varma [20], as: 

𝑉𝛼٫𝛽(𝑋) =
1

𝛽−𝛼
𝑙𝑛[∫ 𝑓𝛼+𝛽−1(𝑥) 𝑑𝑥

∞

0
] ;  (𝛽 − 1) < 𝛼 < 𝛽٫𝛽 > 1. (3) 

Then, Tsallis [19] introduced another entropy measure of order α, defined as: 

𝑇𝛼(𝑋) =
1

𝛼−1
[1 − ∫ 𝑓𝛼(𝑥) 𝑑𝑥

∞

0
]٫𝛼 ≠ 1٫𝛼 > 0. (4) 

A new measure introduced by Rao et al. [14] as a measure of uncertainty related to the 

future, this measure called cumulative residual entropy defined as: 

𝜀(𝑋) = − ∫ 𝐹̅
∞

0
(𝑥) 𝑙𝑛 𝐹̅(𝑥)  𝑑𝑥.  (5) 

Then, Di Crescenzo and Longobardi [5] introduced another information measure 

similar to 𝜀(𝑋). That turns out to be particularly useful to measure information on 

inactivity time of a system, given by: 

𝐶𝜀(𝑋) = − ∫ 𝐹(𝑥) 𝑙𝑛 𝐹(𝑥) 𝑑𝑥
∞

0
. (6) 

The arrangement of the current paper is provided as follows:  In Section 2, we 

introduced a new measure of order α and β, called 𝐻𝑁- entropy, the cumulative residual

𝐻𝑁- entropy, and the cumulative 𝐻𝑁- entropy.  Section 3, the weighted version of this

new measures by using length – biased weighted function have been introduced. 

Section4, stochastic orders based on 𝐻𝑁- entropy. Section 5, a comparison between

Shannon entropy and new entropy and numerical results have been derived. 

derived. 

2. 𝑯𝑵- ENTROPY

In analogy with (1), we define the 𝐻𝑁- entropy as a new measure of uncertainty with

parameters (α,β) of a non – negative random variable X , as: 

𝐻𝑁(𝑋) = 𝐸 (𝑔(𝑓(𝑥)))

=
1

𝛼+𝛽
 (1 − ∫ 𝑓(𝑥)  𝑙𝑛 𝑓𝛼+𝛽(𝑥)      𝑑𝑥  

∞

0
) ;    𝛼 > 0 ٫𝛽 > 0,          (7) 

where 𝑔(𝑓(𝑥)) is a convex function, written as: 

𝑔(𝑓(𝑥)) =
1

𝛼+𝛽
(1 − 𝑙𝑛 𝑓𝛼+𝛽(𝑥)).
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Proposition 2.1.  Let X and Y be two non - negative random variables, and if

𝑦 = 𝑎𝑥 + 𝑏 , with  𝑎 > 0, and 𝑏 > 0 , then 

𝐻𝑁(𝑌) = 𝐻𝑁(𝑋) + 𝑙𝑛|𝑎|.

Proof: 

Let 𝑦 = 𝑎𝑥 + 𝑏, then 𝑥 =
𝑦−𝑏

𝑎
, 𝑓𝑦(𝑦) =

1

𝑎
𝑓𝑥(

𝑦−𝑏

𝑎
) 

𝐻𝑁(𝑌) =
1

𝛼 + 𝛽
[1 − ∫ 𝑓𝑦(𝑦) 𝑙𝑛 𝑓𝑦

𝛼+𝛽 (𝑦)     𝑑𝑦
∞

𝑏

] = 𝐻𝑁(𝑋) + 𝑙𝑛|𝑎|.

Proposition 2.2.  We recall that the two – dimensional version of (7), defined as: 

𝐻𝑁(𝑋٫𝑌) = 𝐸 (𝑔 (𝑓(𝑥٫𝑦)))

=
1

𝛼+𝛽
 (1 − ∫ ∫ 𝑓(𝑥٫𝑦)  𝑙𝑛 𝑓𝛼+𝛽(𝑥٫𝑦)

∞

0
  𝑑𝑦 𝑑𝑥  

∞

0
) ;    𝛼 > 0 ٫𝛽 > 0,     (8) 

has the following property: if X and Y are independent, then: 

 𝐻𝑁(𝑋٫𝑌) = 𝐻𝑁(𝑋) + 𝐻𝑁(𝑌) −
1

𝛼 + 𝛽
. 

Proof: 

If 𝑋 ٫Y are independent, then the 𝑓(𝑥٫𝑦) = 𝑓(𝑥)𝑓(𝑦), then 

𝐻𝑁(𝑋 ٫𝑌) =
1

𝛼 + 𝛽
[1 − ∫ ∫ 𝑓(𝑥)𝑓(𝑦) 𝑙𝑛 (𝑓𝛼+𝛽(𝑥)𝑓𝛼+𝛽(𝑦))  𝑑𝑦𝑑𝑥

∞

0

∞

0

] 

 = 𝐻𝑁(𝑋) + 𝐻𝑁(𝑌) −
1

𝛼+𝛽
. 

Then, we introduce another entropy measure based on 𝐻𝑁 – entropy, this new measure

has been introduced as a measure of uncertainty when the uncertainty related to the 

future lifetime of a system, called the cumulative residual 𝐻𝑁 – entropy measure. The

basic concept of this measure is to replace the PDF with the survival function, where is 

the CDF is more regular than PDF, because it is computed as the derivative of CDF, 

defined as: 

𝜀𝐻𝑁(𝑋) =
1

𝛼+𝛽
[1 − ∫ 𝐹̅(𝑥) 𝑙𝑛 𝐹̅𝛼+𝛽 (𝑥)𝑑𝑥

∞

0
]٫𝛼 > 0, 𝛽 > 0. (9) 

This new measure has many important properties unlike the differential entropy such 

as: 1) Cumulative residual entropy has consistent definition in both the continuous and 

discrete domains. 2) Cumulative residual entropy is always non – negative.

3) Cumulative residual entropy can be easily computed from sample data and these

computations asymptotically converge to the true values. 
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Proposition 2.3.  According to proof of proposition 2.1, then 

𝜀𝐻𝑁(𝑌) = 𝜀𝐻𝑁(𝑋) + 𝑙𝑛|𝑎|. 

Proposition 2.4.  We recall that the two – dimensional version of (9), defined as: 

𝜀𝐻𝑁(𝑋٫𝑌) =
1

𝛼+𝛽
 (1 − ∫ ∫ 𝐹̅(𝑥٫𝑦)  𝑙𝑛 𝐹̅𝛼+𝛽(𝑥٫𝑦)

∞

0
  𝑑𝑦 𝑑𝑥  

∞

0
) ;    𝛼 > 0 ٫𝛽 > 0,     (10) 

if X and Y are independent, then, as proposition 2.2, we have 

𝜀𝐻𝑁(𝑋٫𝑌) = 𝐸(𝑦)𝜀𝐻𝑁(𝑋) + 𝐸(𝑥)𝜀𝐻𝑁(𝑌) +
1 − 𝐸(𝑦) − 𝐸(𝑥)

𝛼 + 𝛽
, 

where 𝐸(𝑥) = ∫ 𝐹̅(𝑥)𝑑𝑥
∞

0
, and 𝐸(𝑦) = ∫ 𝐹̅(𝑦)𝑑𝑦

∞

0
 , are the expectation of 𝑋 and 𝑌. 

Then, we define the cumulative 𝐻𝑁 – entropy of a non – negative random variable X,

as: 

𝐶𝜀𝐻𝑁(𝑋) =
1

𝛼+𝛽
[1 − ∫ 𝐹(𝑥) 𝑙𝑛 𝐹𝛼+𝛽 (𝑥)𝑑𝑥

∞

0
]٫𝛼 > 0, 𝛽 > 0. (11) 

In particular 𝐶𝜀𝐻𝑁(𝑋) = 0  if  only if X is constant, and the basic concept of this

measure is suitable to describe the true elapsing between the failure system and the time 

when it is found to be down. 

Remark 2.1.   Let 𝜇 = 𝐸(𝑥) be finite, then the cumulative residual 𝐻𝑁-entropy is equal

to the cumulative 𝐻𝑁-entropy if the distribution is symmetric with respect to 𝜇, i.e. if

𝐹(𝜇 + 𝑥) = 1 − 𝐹(𝜇 − 𝑥). 

Proposition 2.5.    If 𝑌 = 𝑎𝑋 + 𝑏, with 𝑎 > 0 and 𝑏 > 0, then 

𝐶𝜀𝐻𝑁(𝑌) = 𝐶𝜀𝐻𝑁(𝑋) + 𝑙𝑛|𝑎|.

Proposition 2.6.    We remember that the two – dimensional version of (11), defined 

as: 

𝐶𝜀𝐻𝑁(𝑋٫𝑌) =
1

𝛼+𝛽
 (1 − ∫ ∫ 𝐹(𝑥٫𝑦)  𝑙𝑛 𝐹𝛼+𝛽(𝑥٫𝑦)

∞

0
  𝑑𝑦 𝑑𝑥  

∞

0
) ;    𝛼 > 0 ٫𝛽 > 0,      (12) 

 if X and Y are independent, then, as proposition 2.2, we have 

𝐶𝜀𝐻𝑁(𝑋٫𝑌) = 𝛿(𝑦)𝐶𝜀𝐻𝑁(𝑋) + 𝛿(𝑥)𝐶𝜀𝐻𝑁(𝑌) +
1 − 𝛿(𝑦) − 𝛿(𝑥)

𝛼 + 𝛽
, 

where 𝛿(𝑥) = ∫ 𝐹(𝑥)𝑑𝑥
∞

0
, and 𝛿(𝑦) = ∫ 𝐹(𝑦)𝑑𝑦

∞

0
. 

3. WEIGHTED 𝑯𝑵 - ENTROPY

At times, elementary events do not have the same important, so it is needful to associate 

the probability and qualitative weights. For that, the new entropy measures have been 

introduced with weighted function, for instance, Di Crescenzo and Longobardi [4] 

introduced the weighted entropy, Misagh et al. [11] introduced the weighted cumulative 
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entropy, Mirali et al. [10] introduced the weighted cumulative residual entropy, and 

Nourbakhsh and Yari [13] introduced the weighted Rényi entropy. 

Then, we introduced another 𝐻𝑁- entropy measure with length – biased weighted

function given as: 

𝐻𝑤
𝑁(𝑋) =

1

𝛼+𝛽
(1 − ∫  𝑥 𝑓(𝑥)   𝑙𝑛 𝑓𝛼+𝛽(𝑥)      𝑑𝑥  

∞

0
) ;    𝛼 > 0 ٫𝛽 > 0.     (13) 

Proposition 3.1.  We recall that the two – dimensional version of (13), defined as : 

𝐻𝑤
𝑁(𝑋٫𝑌) =

1

𝛼+𝛽
 (1 − ∫ ∫ 𝑥𝑦𝑓(𝑥٫𝑦)  𝑙𝑛 𝑓𝛼+𝛽(𝑥٫𝑦)

∞

0
  𝑑𝑦 𝑑𝑥  

∞

0
) ;    𝛼 > 0 ٫𝛽 > 0, (14) 

 if X and Y are independent, then: 

𝐻𝑤
𝑁(𝑋٫𝑌) = 𝐸(𝑦)𝐻𝑤

𝑁(𝑋) + 𝐸(𝑋)𝐻𝑤
𝑁(𝑌) +

1 − 𝐸(𝑦) − 𝐸(𝑥)

𝛼 + 𝛽
. 

Proof: 

𝐻𝑤
𝑁(𝑋٫𝑌) =

1

𝛼 + 𝛽
[1 − (𝐸(𝑦) ∫ 𝑥𝑓(𝑥) 𝑙𝑛 𝑓𝛼+𝛽(𝑥)𝑑𝑥 + 𝐸(𝑥) ∫ 𝑦𝑓(𝑦) 𝑙𝑛 𝑓𝛼+𝛽(𝑦)𝑑𝑦

∞

0

∞

0

)] 

= 𝐸(𝑦)𝐻𝑤
𝑁(𝑋) + 𝐸(𝑋)𝐻𝑤

𝑁(𝑌) +
1−𝐸(𝑦)−𝐸(𝑥)

𝛼+𝛽
. 

Then, we introduce the weighted cumulative residual 𝐻𝑁 – entropy with weighted

function 𝑤(𝑥) = 𝑥, as: 

𝜀𝐻𝑤
𝑁(𝑋) =

1

𝛼+𝛽
[1 − ∫ 𝑥𝐹̅(𝑥) 𝑙𝑛 𝐹̅𝛼+𝛽 (𝑥)𝑑𝑥

∞

0
]٫𝛼 > 0, 𝛽 > 0. (15) 

Proposition 3.2.  We remember that the two – dimensional version of (15), defined as: 

𝜀𝐻𝑤
𝑁(𝑋٫𝑌) =

1

𝛼+𝛽
 (1 − ∫ ∫ 𝑥𝑦 𝐹̅(𝑥٫𝑦)  𝑙𝑛 𝐹̅𝛼+𝛽(𝑥٫𝑦)

∞

0
  𝑑𝑦 𝑑𝑥  

∞

0
) ;    𝛼 > 0 ٫𝛽 > 0,(16) 

has the following property: if X and Y are independent, and 𝐹̅(𝑥٫𝑦) = 𝐹̅(𝑥)𝐹̅(𝑦), 

then, as proposition 3.1, we have 

𝜀𝐻𝑤
𝑁(𝑋٫𝑌) =

𝐸(𝑦2)𝜀𝐻𝑤
𝑁(𝑋) + 𝐸(𝑥2)𝜀𝐻𝑤

𝑁(𝑌)

2
+

1 − 𝐸(𝑦2) 2⁄ − 𝐸(𝑥2) 2⁄

 (𝛼 + 𝛽)
, 

where  𝐸(𝑥2) = 2 ∫ 𝑥 𝐹̅(𝑥) 𝑑𝑥
∞

0
, and 𝐸(𝑦2) = 2 ∫ 𝑦 𝐹̅(𝑦) 𝑑𝑦.

∞

0

And then, we introduced the weighted cumulative 𝐻𝑁 – entropy with weighted function

𝑤(𝑥) = 𝑥, as: 

𝐶𝜀𝐻𝑤
𝑁(𝑋) =

1

𝛼+𝛽
[1 − ∫ 𝑥𝐹(𝑥) 𝑙𝑛 𝐹𝛼+𝛽 (𝑥)𝑑𝑥

∞

0
]٫𝛼 > 0. 𝛼٫𝛽 ≠ 1. (17) 

Proposition 3.3.  We remember that the two – dimensional version of (17), defined as: 

𝐶𝜀𝐻𝑤
𝑁(𝑋٫𝑌) =

1

𝛼+𝛽
 (1 − ∫ ∫ 𝑥𝑦 𝐹(𝑥٫𝑦)  𝑙𝑛 𝐹𝛼+𝛽(𝑥٫𝑦)

∞

0
  𝑑𝑦 𝑑𝑥  

∞

0
) ;    𝛼 > 0 ٫𝛼٫𝛽 ≠ 1, (18). 
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 If X and Y are independent, according to proposition 3.1, we have 

𝐶𝜀𝐻𝑤
𝑁(𝑋٫𝑌) = 𝜗(𝑦)𝐶𝜀𝐻𝑤

𝑁(𝑋) + 𝜗(𝑋)𝐶𝜀𝐻𝑤
𝑁(𝑌) +

1 − 𝜗(𝑦) − 𝜗(𝑥)

𝛼 + 𝛽
, 

where  𝜗(𝑥) = ∫ 𝑥 𝐹(𝑥) 𝑑𝑥
∞

0
, and 𝜗(𝑦) = ∫ 𝑦 𝐹(𝑦) 𝑑𝑦.

∞

0
 

4. STOCHASTIC ORDERS BASED ON 𝑯𝑵- ENTROPY

Stochastic orders have been attracted an increasing number of authors in the last 40 

years, they used them in several areas of probability such as reliability theory, survival 

analysis, operation research, mathematical finance, and risk theory. Then, in this section 

we explore the probability of application of stochastic orders. 

Definition 4.1.  Let X and Y be two random variables with density functions 𝑓(𝑥), 𝑓(𝑦), 

distribution functions 𝐹(𝑥), 𝐹(𝑦), survival functions 𝐹̅(𝑥), 𝐹̅(𝑦),  𝐻𝑁 – entropy

measures 𝐻𝑁(𝑋), 𝐻𝑁(𝑌), and weighted 𝐻𝑁 – entropy measures 𝐻𝑤
𝑁(𝑋), 𝐻𝑤

𝑁(𝑌),

respectively, if  X is less than Y , then,  

1. Entropy ordering (𝑋 ≤𝑒 𝑌), if 𝐻𝑁(𝑋) ≤ 𝐻𝑁(𝑌), for all 𝑥 ≥ 0.

2. Weighted entropy ordering (𝑋 ≤𝑤𝑒 𝑌), if 𝐻𝑤
𝑁(𝑋) ≤ 𝐻𝑤

𝑁(𝑌), for all 𝑥 ≥ 0.

3. Less uncertainty ordering (𝑋 ≤𝑙𝑢 𝑌), if 𝐻𝑁(𝑋) ≤ 𝐻𝑁(𝑌), for all 𝑥 ≥ 0.

Definition 4.2.   Let X and Y be two random variables, if X is less than Y in the usual 

stochastic order, then, 

1. (𝑋 ≤𝑠𝑡 𝑌), if 𝐸(𝑢(𝑋)) ≤ 𝐸(𝑢(𝑌)), for all non – decreasing function.

2. (𝑋 ≤𝑠𝑡 𝑌), if 𝐻𝑁(𝑋) ≤ 𝐻𝑁(𝑌), for 𝐻𝑁- non – decreasing entropy function.

3. (𝑋 ≤𝑠𝑡 𝑌), if 𝐻𝑤
𝑁(𝑋) ≤ 𝐻𝑤

𝑁(𝑌), for 𝐻𝑁- non – decreasing weighted entropy

function.

4. If 𝑋𝑖 and 𝑌𝑖 are independent sets of random variables with (𝑋𝑖 ≤𝑠𝑡 𝑌𝑖), for each

𝑖,  then,  𝐻𝑁(𝑋1, … . . , 𝑋𝑛) ≤ 𝐻𝑁(𝑌1, … . . , 𝑌2).

Definition 4.3.  Let X and Y be two random variables, if  X is less than Y  in the convex  

order, then, 

𝐸(𝑢(𝑥)) ≤ 𝐸(𝑢(𝑦)), 

for any convex function u. 

Theorem  4.1.  Suppose X1 , and X2 are two be two random variables , let 𝑋1 ≤𝑒 𝑋2 , 

then 𝐻𝑁(𝑋1) ≤𝑒 𝐻𝑁(𝑋2) if  𝑋1 ≤𝑐𝑥 𝑋2.

Proof :  Due to fact that 𝑔(𝑋) =
1

𝛼+𝛽
[1 − 𝑙𝑛 𝑓𝛼+𝛽(𝑥)], is a convex function, and when

𝑋1 ≤𝑐𝑥 𝑋2, we get that 𝐸(𝑔(𝑋1)) ≤ 𝐸(𝑔(𝑋2)), by apply Eq. (7), we have

𝐻𝑁(𝑋1) ≤𝑒 𝐻𝑁(𝑋2).

Theorem 4.2.  If  X and Y  are non – negative random variables such that  (𝑋 ≤𝑠𝑡 𝑌), 

then, 𝐶𝜀𝐻𝑁(𝑋) ≤ 𝐶𝜀𝐻𝑁(𝑌) ≤ 𝐶𝜀𝐻𝑁(𝑋, 𝑌).

Proof: the proof follows propositions (2.5) and (2.6). 
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Definition 4.4.   Let  X and Y  are non – negative random variables, with distribution 

function 𝐹(𝑥), 𝐹(𝑦), then X is said to be smaller than Y in Laplace transform order 

(𝑋 ≤𝑙𝑡 𝑌), then  𝐻𝑁(𝑋) ≤ 𝐻𝑁(𝑌), where 𝐻𝑁(𝑋), and 𝐻𝑁(𝑌) are positive functions.

Definition 4.5.   Let two absolutely continuous random variables X1, and X2 with density 

function  

𝑓𝑖(𝑥) = 𝑒−𝑎𝑖𝑥, 𝑎, 𝑥 > 0.

Then: 

• If  𝑎1 ≥ 𝑎2, and 𝐻𝑁(𝑋) ≤ 𝐻𝑁(𝑌), then, (𝑋 ≤𝑒 𝑌).

• If  𝑎1 ≤ 𝑎2, and 𝐻𝑁(𝑋) ≥ 𝐻𝑁(𝑌), then, (𝑋 ≥𝑒 𝑌).

• If  𝑎1 ≥ 𝑎2, and (𝑋 ≤𝑤𝑒 𝑌), then 𝐻𝑤
𝑁(𝑋) ≤ 𝐻𝑤

𝑁(𝑌).

• 𝐻𝑁(𝑋) ≤ 𝐻𝑁(𝑌), when 𝑎1 ≥ 𝑎2, then (𝑋 ≤𝑙𝑡 𝑌), when 𝐻𝑁(𝑋) and 𝐻𝑁(𝑌)

are positive functions.

5. COMPARISON FOR SHANNON ENTROPY AND 𝑯𝑵-ENTROPY

MEASURES AND NUMERICAL RESULTS 

In this section, we introduce Shannon entropy and 𝐻𝑁- entropy for quasi – lindley,

nakagami – μ, chi square, rayleigh, and weighted nakagami – μ distributions in tables 

1 and 2, then the relative loss entropy introduced in table 3, after this the numerical 

results presented in tables 4 – 8. 

5.1   HN – Entropy and Shannon Entropy For Some Distributions 

• HN – entropy for nakagami – μ distribution

 The probability density function given by: 

𝑓(𝑥) = {
2(

𝜇
Ω⁄ )𝜇 𝑥2𝜇−1𝑒

(
−𝜇𝑥2

Ω
⁄ )

Γ(𝜇)
, 𝑥 > 0

0 ,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

,       (19) 

Then HN – entropy is given: 

𝐻𝑁(𝑋) =
1

𝛼+𝛽
(1 − (𝛼 + 𝛽)

2(
𝜇

𝛺⁄ )
𝜇

Γ(𝜇)
[∫ 𝑥2𝜇−1𝑒

(
−𝜇𝑥2

𝛺
⁄ )

𝑙𝑛 2  𝑑𝑥
∞

0
+

∫ 𝜇𝑥2𝜇−1𝑒
(

−𝜇𝑥2

𝛺
⁄ )

𝑙𝑛
𝜇

𝛺
𝑑𝑥

∞

0
+ ∫ 𝑥2𝜇−1𝑒

(
−𝜇𝑥2

𝛺
⁄ )∞

0
(2𝜇 − 1) 𝑙𝑛 𝑥 𝑑𝑥 −

∫ 𝑥2𝜇−1𝑒
(

−𝜇𝑥2

𝛺
⁄ ) 𝜇𝑥2

Ω
𝑑𝑥

∞

0
− ∫ 𝑥2𝜇−1𝑒

(
−𝜇𝑥2

𝛺
⁄ )

𝑙𝑛 Γ(𝜇) 𝑑𝑥
∞

0
]), 

since  ∫ 𝑥2𝜇−1 𝑒
(

−𝜇𝑥2

𝛺
⁄ )

𝑑𝑥 = Γ(𝜇) [2 (
𝜇

𝛺
)

𝜇

]⁄
∞

0
, 

and  ∫ 𝑥2𝜇−1 𝑒
(

−𝜇𝑥2

𝛺
⁄ )

𝑙𝑛𝑥 𝑑𝑥 =
1

4
Γ(𝜇) (

𝜇

𝛺
)

−𝜇

[𝜓(𝜇) − 𝑙𝑛
𝜇

𝛺
]

∞

0
, 
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then, we have 

𝐻𝑁(𝑋) = [
1

(𝛼 + 𝛽)
+ μ (1 − 𝜓(𝜇)) +

1

2
𝜓(𝜇) −

1

2
 𝑙𝑛 (

𝜇

𝛺
) + 𝑙𝑛 (

Γ(𝜇)

2
)]. 

Then, the HN – entropy and Shannon entropy for some distributions proposed in table 

1 and table 2. 

Table 1: HN – entropy for some different distributions 

Distribution Density function HN – entropy 

Quasi-lindley 𝜃(𝜇 + 𝜃𝑥)

𝜇 + 1
𝑒−𝜃𝑥

(
1

𝛼+𝛽
−

𝜃

(𝜇+1)
[

𝑒𝜇Γ(2,𝜇)

𝜃
𝑙𝑛

𝜃

𝜇+1
+

𝑒𝜇

𝜃
(𝑒−𝜇 + Γ(0, 𝜇) +

Γ(2, 𝜇) 𝑙𝑛 𝜇) −
𝑒𝜇

𝜃
(Γ(3, 𝜇) − 𝜇Γ(2, 𝜇))]).  

Rayleigh 2𝜃 𝑥 𝑒−𝜃𝑥2 1

𝛼+𝛽
(1 − [(𝛼 + 𝛽) [𝑙𝑛(2 𝜃) +

1

2
(𝜓(1) − 𝑙𝑛 𝜃) − 1]]). 

Chi square 
1

2
𝑝
2Γ (

𝑝
2)

 𝑥
𝑝
2

−1𝑒
−𝑥
2 1

𝛼+𝛽
(1 − (𝛼 + 𝛽) [𝑙𝑛

1

2
𝑝
2Γ(

𝑝

2
)

+ (
𝑝

2
− 1) [𝜓 (

𝑝

2
) − 𝑙𝑛

1

2
] −

𝑝

2
 ]). 

Weighted 

nakagami-μ 

2(
𝜇

Ω⁄ )
𝜇+

𝜃
2𝑥2𝜇+𝜃−1𝑒

(
−𝜇𝑥2

Ω
⁄ )

Γ(𝜇 + 𝜃
2⁄ )

(
1

𝛼+𝛽
− [𝑙𝑛 2 + (𝜇 +

𝜃

2
) [𝑙𝑛(

𝜇
𝛺⁄ ) − 1] +

(2𝜇+𝜃−1)

2
[𝜓 (𝜇 +

𝜃

2
) − 𝑙𝑛(

𝜇
𝛺⁄ )] − 𝑙𝑛 Γ(𝜇 + 𝜃

2⁄ )]).

Table 2: Shannon entropy for some different distributions 

Distribution Shannon entropy 

Nakagami-μ [μ (1 − 𝜓(𝜇)) +
1

2
𝜓(𝜇) −

1

2
𝑙𝑛 (

𝜇

𝛺
) + 𝑙𝑛 (

Γ(𝜇)

2
)]. (see [9]). 

Quasi-lindley −𝑒𝜇

(𝜇+1)
[  Γ(2, 𝜇) 𝑙𝑛  [

𝜃

(𝜇+1)
] + [𝑒−𝜇 + Γ(0, 𝜇) + Γ(2, 𝜇) 𝑙𝑛 𝜇] − [Γ(3, 𝜇) − 𝜇 Γ(2, 𝜇)]]. 

Rayleigh [1 − 𝑙𝑛(2 𝜃) −
1

2
(𝜓(1) − 𝑙𝑛 𝜃)]. (see [3]). 

Chi square 
[− 𝑙𝑛

1

2
𝑝
2Γ (

𝑝
2

)
− (

𝑝

2
− 1) [𝜓 (

𝑝

2
) − 𝑙𝑛

1

2
] +

𝑝

2
]. 

Weighted nakagami-μ [−𝑙𝑛 2 + (𝜇 +
𝜃

2
) (1 − 𝑙𝑛(

𝜇
𝛺⁄ )) −

(2𝜇+𝜃−1)

2
[𝜓 (𝜇 +

𝜃

2
) − 𝑙𝑛(

𝜇
𝛺⁄ )] + 𝑙𝑛 Γ(𝜇 +

𝜃
2⁄ )].  (see [9]).

5.2   Relative Loss Entropy (RL) 

In stochastic process, the probability distribution changes with time, and these changes 

make the entropy measure also changes. Then, the relative loss entropy measures the 

amount of changes. In table 3, the relative loss entropy for some distribution, then, the 

RL is given:  

𝑅𝐿 =
𝐻𝑠ℎ(𝑋)−𝐻𝑁(𝑋)

𝐻𝑠ℎ(𝑋)
  (20) 
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Table 3: Relative loss entropy for some different distributions 

Distribution RL IRL DRL 

Nakagami-μ 
𝑅𝐿(𝑁) = 1 −

[
1

(𝛼+𝛽)
+μ (1−𝜓(𝜇))+

1

2
𝜓(𝜇)−

1

2
𝑙𝑛(

𝜇

𝛺
)+𝑙𝑛(

Γ(𝜇)

2
)]

[μ (1−𝜓(𝜇))+
1

2
𝜓(𝜇)−

1

2
𝑙𝑛(

𝜇

𝛺
)+𝑙𝑛(

Γ(𝜇)

2
)]

. 
Ω and β 

increase 

μ increases 

Quasi-lindley 
𝑅𝐿(𝑄) =

𝐻𝑠ℎ(𝑋) − 𝐻𝑁(𝑋)

𝐻𝑠ℎ(𝑋)

α and β 

increase 

θ and μ 

increase 

Rayliegh 
𝑅𝐿(𝑅) = 1 −

(
1

𝛼+𝛽
−[[𝑙𝑛(2 𝜃)+

1

2
(𝜓(1)−𝑙𝑛 𝜃)−1]])

[1−𝑙𝑛(2 𝜃)−
1

2
(𝜓(1)−𝑙𝑛 𝜃)]

. 
α and β 

increase 

θ increases 

Chi square 

𝑅𝐿(𝐶) = 1 −

(
1

𝛼+𝛽
−[𝑙𝑛

1

2
𝑝
2Γ(

𝑝
2

)

+(
𝑝

2
−1)[𝜓(

𝑝

2
)−𝑙𝑛

1

2
]−

𝑝

2
 ])

[− 𝑙𝑛
1

2
𝑝
2Γ(

𝑝
2

)

−(
𝑝

2
−1)[𝜓(

𝑝

2
)−𝑙𝑛

1

2
]+

𝑝

2
]

. 
P, α and β 

increase - 

Weighted 

nakagami-μ 𝑅𝐿(𝑁𝑤) =
𝐻𝑠ℎ(𝑋) − 𝐻𝑁(𝑋)

𝐻𝑠ℎ(𝑋)

Ω, θ, α and β 

increase 

μ increases 

Figure 1: The Relative loss entropy 

Nakagami-μ distribution Quasi-lindely distribution 

Rayleigh distribution Chi square distribution 

Weighted nakagami-μ distribution 
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- The relative loss entropy is always negative, though that, the new entropy is 

better than shannon. 

- With regard to the fixed 𝛽 = 1, 𝑅𝐿(𝑄) > 𝑅𝐿(𝑁), and 𝑅𝐿(𝑄) > 𝑅𝐿(𝐶). 

- With regard to the fixed Ω = 2, 𝑅𝐿(𝑁𝑤) > 𝑅𝐿(𝑁).

- When 𝛼 = 0.5, and 𝛽 = 1, 

• 𝑅𝐿(𝑄) > 𝑅𝐿(𝑁), 𝑅𝐿(𝑄) > 𝑅𝐿(𝐶).

• 𝑅𝐿(𝑄) > 𝑅𝐿(𝑅), 𝑅𝐿(𝑅) > 𝑅𝐿(𝑁).

• 𝑅𝐿(𝐶) > 𝑅𝐿(𝑁).

 CONCLUSIONS 

In this paper, new entropy measure of order α and β has been introduced and its 

properties. This new measure is always positive unlike Shannon entropy, and the   𝐻𝑁-

entropy has two parameters, that made it more flexible than Shannon, and the relative 

loss entropy is always negative, though the new entropy is better than Shannon entropy. 
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APPENDICIES 

Table 4 

The relative loss entropy in using 𝐻𝑁-entropy instead of Shannon entropy for

nakagami-µ distribution 

𝝁 𝜴 

𝑹𝑳(𝑵) 

𝛽 = 1 𝛽 = 2 𝛽 = 3 

 𝛼 = 0.5
0.5

1

-0.9185 -0.5511 -0.3937

1 -1.1196 -0.6717 -0.4798

1.5 -1.4919 -0.8952 -0.6394

2 -2.0443 -1.2266 -0.8761

2.5 -2.9359 -1.7615 -1.2582

3 -4.6382 -2.7829 -1.9878

3.5 -9.2625 -5.5575 -3.9696

4 -73.6382 -44.1829 -31.5592

0.5

2

-0.6217 -0.3730 -0.2664

1 -0.7077 -0.4246 -0.3033

1.5 -0.8402 -0.5041 -0.3601

2 -0.9911 -0.5946 -0.4247

2.5 -1.1621 -0.697 -0.4981

3 -1.3597 -0.8158 -0.5827

3.5 -1.5928 -0.9557 -0.6826

4 -1.8746 -1.1248 -0.8034

Table 5 

The relative loss entropy in using 𝐻𝑁-entropy instead of Shannon entropy for quasi –

lindley distribution 

𝜽 𝝁 

𝑹𝑳(𝑸) 

𝛽 = 1 𝛽 = 2 𝛽 = 3 

𝛼 = 0.5 

0.5

0.1

-0.2950 -0.1770 -0.1264

1 -0.4256 -0.2554 -0.1824

1.5 -0.5742 -0.3445 -0.2461

2 -0.7634 -0.4581 -0.3272

2.5 -1.0255 -0.6153 -0.4395

3 -1.4251 -0.8551 -0.6108

3.5 -2.1256 -1.2754 -0.9110

4 -3.7015 -2.2209 -1.5864

0.5

0.2

-0.2976 -0.1785 -0.1275

1 -0.4309 -0.2585 -0.1847

1.5 -0.5839 -0.3503 -0.2502

2 -0.7805 -0.4683 -0.3345

2.5 -1.0565 -0.6339 -0.4528

3 -1.4858 -0.8915 -0.6368

3.5 -2.2634 -1.3581 -0.9700

4 -4.1406 -2.4844 -1.7745
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Table 6 

The relative loss entropy in using 𝐻𝑁-entropy instead of Shannon entropy for rayleigh

distribution 

𝜽 𝜶 𝑹𝑳(𝑹) 

𝛽 = 1 𝛽 = 2 𝛽 = 3 

0.1

0.5

-0.3817 -0.2290 -0.1636

0.2 -0.4761 -0.2857 -0.2041

0.5 -0.7077 -0.4246 -0.3033

1 -1.1196 -0.6717 -0.4798

1.5 -1.6975 -1.0185 -0.7275

2 -2.6786 -1.6072 -1.1480

2.5 -4.8550 -2.9130 -2.0807

3 -14.4442 -8.6665 -6.1904

0.1

1.5

-0.2290 -0.1636 -0.1272

0.2 -0.2857 -0.2041 -0.1587

0.5 -0.4246 -0.3033 -0.2359

1 -0.6717 -0.4798 -0.3732

1.5 -1.0185 -0.7275 -0.5658

2 -1.6072 -1.1480 -0.8929

2.5 -2.9130 -2.0807 -1.6183

3 -8.6665 -6.1904 -4.8147

Table 7 

The relative loss entropy in using 𝐻𝑁-entropy instead of Shannon entropy for chi

square distribution 

𝚸 𝜶 𝑹𝑳(𝑪) 

𝛽 = 1 𝛽 = 2 𝛽 = 3 

1

0.5

-0.8506 -0.5104 -0.3645

1.5 -0.4849 -0.2909 -0.2078

2 -0.3937 -0.2361 -0.1687

2.5 -0.3506 -0.2103 -0.1502

3 -0.3246 -0.1947 -0.1391

3.5 -0.3068 -0.1841 -0.1351

4 -0.2936 -0.1762 -0.1258

4.5 -0.2834 -0.1700 -0.1215

1

1.5

-0.5104 -0.3645 -0.2835

1.5 -0.2909 -0.2078 -0.1616

2 -0.2361 -0.1687 -0.1312

2.5 -0.2103 -0.1502 -0.1169

3 -0.1947 -0.1391 -0.1082

3.5 -0.1841 -0.1351 -0.1023

4 -0.1762 -0.1258 -0.0979

4.5 -0.1700 -0.1215 -0.0945
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Table 8 

The relative loss entropy in using 𝐻𝑁-entropy instead of Shannon entropy for

weighted nakagami-µ distribution 

𝜽 𝝁 𝛀 
𝑹𝑳(𝑵𝒘)

𝛽 = 1 𝛽 = 2 𝛽 = 3 

𝛼 = 0.5 

0.5

0.1

1

-0.5140 -0.3084 -0.2203

1 -0.4140 -0.2484 -0.1774

1.5 -0.3889 -0.2334 -0.1667

2 -0.3782 -0.2269 -0.1621

2.5 -0.3725 -0.2235 -0.1596

3 -0.3690 -0.2214 -0.1581

3.5 -0.3666 -0.2199 -0.1571

4 -0.3649 -0.2189 -0.1564

0.5

2

-0.4056 -0.2434 -0.1738

1 -0.3407 -0.2044 -0.1460

1.5 -0.3235 -0.1941 -0.1387

2 -0.3161 -0.1897 -0.1355

2.5 -0.3121 -0.1872 -0.1337

3 -0.3096 -0.1857 -0.1327

3.5 -0.3079 -0.1847 -0.1320

4 -0.3067 -0.1840 -0.1314

0.5

0.2

1

-0.5916 -0.3038 -0.2535

1 -0.5064 -0.2876 -0.2170

1.5 -0.4794 -0.2800 -0.2054

2 -0.4667 -0.2757 -0.2000

2.5 -0.4595 -0.2729 -0.1969

3 -0.4518 -0.2711 -0.1950

3.5 -0.4495 -0.2697 -0.1936

4 -0.3549 -0.2535 -0.1926

0.5

2

-0.4524 -0.2715 -0.1939

1 -0.4009 -0.2405 -0.1718

1.5 -0.3837 -0.2302 -0.1645

2 -0.3756 -0.2253 -0.1610

2.5 -0.3709 -0.2225 -0.1590

3 -0.3679 -0.2007 -0.1577

3.5 -0.3658 -0.2195 -0.1568

4 -0.3643 -0.2186 -0.1661
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