
Improving the Shale Gas Production Data Using the 
Angular- Based Outlier Detector Machine Learning 

Algorithm 
Taha Yehia1,2*, Hamid Khattab2, Mahmoud Tantawy2, Ismail Mahgoub1 
1 Department

 
 of Petroleum Engineering, Faculty of Engineering and Technology, Future University in Egypt (FUE), Cairo

11835, Egypt
2 Department of Petroleum Engineering, Faculty of Petroleum and Mining Engineering, Suez University, Suez 11252, Egypt 
* Corresponding Author ORCID https://orcid.org/0000000154896701

Email Address:  tahayehia52@gmail.com (Taha Yehia); hamidkhattab@hotmail.com (Hamid 
Khattab); mahmoud.tantawy@pme.suezuni.edu.eg  (Mahmoud Tantawy) & ismail.shaaban@fue.edu.eg  (Ismail 
Mahgoub)

Abstract 
Production history is essential for any reservoir engineering study. It used for history matching in 
reservoir simulation study, rate transient analysis and decline curve analysis (DCA). The 
quality of the production data is important. Better quality of the production data 
reduces the uncertainties during modeling the reservoir, characterizing it and 
forecasting the future production.  

Shale gas reservoirs have been developed heavily in last two decades. They have huge 
reserves but there are challenges in evaluating them economically. Transient flow that could 
last for long time, liquid loading causing successful shut ins and controlling the bottom hole 
flowing pressure cause the production data to fluctuate heavily. The noisy production profile 
makes it difficult to detect the different flow regimes precisely and affects analysis such DCA. 

In this paper, we used a machine learning algorithm called angular- based outlier detector 
(ABOD) to improve the production data of 4 shale gas wells. It was assumed that 20% of the 
production data is noise and the algorithm is asked to determine the points with the 
highest potential to be detected as noise. After that, the different flow regimes were 
determined before and after improving the data quality. 

The results show that the ABOD algorithm removed the noise from the production 
data efficiently. The production profile was smoothed without any bias and without 
removing any significant event.  Detecting the different flow regimes was much clear after 
removing the noise. Moreover, we determined the masked flow regimes after improving the 
production data quality in some cases. 

1. Introduction
Any piece of data can include information. It's critical to understand what kind of data is 
being analyzed. The study's desired results dictate the type of analysis conducted on the 
data. The effort, time, and cost of every study are crucial. 

PVT data, core data, logs data, pressure transient data and production history data are 
such examples of the data types that used by the reservoir engineers. Analyzing these different 
kinds data introduces valuable understanding of the whole field and there for lead to better 
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planning the field, well spacing, characterizing the reservoir, determining the reserves, sizing the 
production facilities, deciding investing profile and more are based on the kind of the analyzing 
methods being used.  
The major reservoir engineering data analysis methods are: 

• Data driven empirical models
• Analytical or physics based models:

o Pressure transient analysis (PTA)
o Rate transient analysis (RTA)

• Numerical simulation models and recently;
• Machine learning (ML) models.

Analytical and numerical simulation methods require data such as fluid and rock
properties, geological and construction parameters, production history and some assumptions. 
Using one of these models requires time and effort as modelling complex mechanisms is not 
easy at all. [1–4]. 

Material balance methods use the law of mass conservation and the remaining volumes of 
any reservoirs equal the total volume minus the produced volumes. Driving mechanism, water 
aquifers or gas caps and rock and fluid properties are considered in this method.  Using the 
production data for such a study in shale gas reservoirs faces two problems: 

• MB needs at least two stabilized reservoir pressure points. In shale gas, this is hard being
achieved as the well may be in the transient flow for very long time.

• The driving mechanisms related to producing shale gas such as gas slippage, diffusion
and desorption are hard to determine contribution of each to the production.

Empirical and advanced DCA are considered to be the easiest and fastest methods
compared to analytical and numerical simulation ones. But since there are a lot of uncertainties 
related to the production data, there are uncertainties related to the calculated EUR. Based on 
that, probabilistic DCA is recommended. [5–7]. 

The common required data for all of this analyzing methods is the production history. 
Therefore, improving the production data before conduct and of these analysis is essential. The 
question is how to remove it efficiently without removing any data or trend within the production 
profile that has meaning.  

In this paper, we used a machine learning algorithm called angular- based outlier detector 
(ABOD) to improve the production data of 4 shale gas wells. It was assumed that 20% of the 
production data is noise and the algorithm is asked to determine the points with the highest 
potential to be detected as noise. After that, the different flow regimes were determined before 
and after improving the data quality. 

1.1. WHY SHALE GAS RESERVOIRS? 
The demand on nature gas has greatly increased and will continue to grow in the next decades. 
Due to the global trend to reach net zero emissions of Co2, the natural gas is considered the 
backbone of the energy transition as it is a clean energy resource compared to other resources of 
fossil fuels. Figure (1) shows a forecasting of the gap between the production and the 
consumption will exist by 2050. Shale gas reservoirs have huge extended reserves. Continues 
developing of these reserves could help narrowing this gap in the future. Figure (2) shows the 
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forecasted incensement in production from shale gas reservoirs compared to conventional 
reservoirs. 

1.2. Shale gas characteristics 
The shale matrix's very small pores are a defining feature of shale gas reserves. These pores 
range in size from micro to nano size. [8] The shale matrix's porosity is less than 10%, and its 
permeability is extremely low (less than 10-8 Darcy). The bedding trend and the in-place 
pressures brought on by the compaction of shale both have an impact on the permeability of the 
rock. Permeability may only be 10(-8) Darcy. [9] Shale gas reservoirs may contain naturally 
fractures as a result of stresses matrix shrinkage. [10] Shale gas reserves contain enormous 
amounts of trapped gas, more than 94 percent of which is methane. This gas may exist in three 
different states: it may be free in the matrix and fractures, adsorbed by organic matter and clay 
minerals, or dissolved in asphaltenes and shale oil. [11] The free gas is the major source of 
production from shale gas resources. Comparatively, the adsorbed gas, which might make up 20 
to 85% of the entire gas volume, is taken into account rather than the dissolved gas volume. 
These fluid and rock qualities result in complicated driving mechanisms that produce this gas. 
There are three basic mechanisms: desorption, diffusion, and slippage. 

 

Figure 1. shows a forecasting of the gap between the production and the consumption will exist by 2050. 
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1.1. Challenges Related to Analyzing the Producing Shale Gas wells 
Under natural conditions, producing from shale gas reservoirs with economic value is difficult. 
Drilling horizontal wells with several stages of hydraulic fracturing is the best way to create 
shale gas reserves. Blocks of stimulated reservoir volume are produced as a result, along with 
transverse or longitudinal fractures (SRV).  

 

Figure 1. shows the forecasted production from shale gas reservoirs compared to conventional reservoirs. 

The larger the SRV that might be created, the longer the well's horizontal length and the more 
stages it has. However, this method of production results in a complicated system with a 
network of interrelated natural fractures, hydraulic fractures, and a matrix with extremely poor 
permeability. Complex flow regime sequences are the actual result. 
The following combinations of flow regimes may be present while developing shale gas wells 
and have an effect on the output decrease trends:[12–15] 

• Linear Flow: It could have been the primary flow throughout the well's lifetime. From 
the matrix to the hydraulic fractures, it is perpendicular. Plotting the flow rate vs time 
on a Log-Log plot can help you find the transient linear flow. If there are no natural 
fractures in the reservoir, the map displays a -1/2 slope. 

• Linear–Boundary Dominated Flow (BDF): The BDF appears after a brief appearance of 
the transient linear. Usually, it has to do with getting to the SRV's bounds. This might be 
seen on a log-log plot as the slope starts to deviate from 1/2 slope starts to appears. 

• Bilinear–Linear: In this scenario, bilinear flow is supposed to be the starting flow regime 
(linear followed by another linear). When it occurs and lasts for a relatively little time in 
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the beginning, it is typically associated to natural fractures. In this instance, the flow 
simultaneously travels linearly from the matrix to the fractures and from the fractures 
to the well. Accordingly, a -1/4 slope on a log-log plot indicates a bilinear flow, while a -
1/2 slope indicates a linear flow. 

• Bilinear-linear-BDF: When the flow approached the SRV borders and the Log-Log plot
once more deviates from the -1/2 slope, this situation is distinct from the previous
example.

Figure 3 demonstrates how the Log-Log plot is used to describe various flow regimes. It
should be noted that whether or not the reservoir is naturally broken affects whether one of 
these scenarios appears. This also has to do with fracture conductivity. 

 Figure 3. Identifying the different flow regimes based on the slope value on the log-log plots[14]. 

Controlling the bottom hole pressure (BHP) during production is crucial for raising EUR. 
This reduces the stress impact, controls proppant backflow, and stops related water from building 
up in the wellbore. [16] Even if establishing SRV and managing BHP are crucial for the 
development of shale gas reservoirs and their appropriate implementation helps to improve the 
EUR, estimating the EUR itself is difficult as a result of these procedures. [17] Since the SRV is 
the primary source of flow during the early stages of production, the flow rate is high. [18] The 
flow transitions from transient flow to boundary dominated flow (BDF) when it approaches the 
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Figure 4. Kth nearest neighbors for point A, k = 3.  Figure 5. An outlier has low variance in its angle 
with other data points as compared to an inlier.  

SRV's borders, generating a sharp decline in the flow rate profile before continuing with a long 
tail production profile. [3] However, modifying the BHP results in significant changes to the 
production data itself, and the noise level may be excessive. Therefore, it is difficult to 
adequately match the production data using decline curve models as a result of the results of 
these two practises. [19] 

2. Removing the Outlier using ML Algorithm 
After adding artificial noise to simulated data, Jha et al. tested the five well-known outlier 
identification approaches. The detectors that were looked into were isolation forest, distance-
based outlier detection, density-based outlier detection, and angle-based outlier detection. [20] 

Investigation led to the discovery that the ABOD is the most effective algorithm. 
Assuming that 20% of the data are noise, the ABOD algorithm was assigned to filter outlier and 
inlier data. The ABOD is to identify the highest 20 percent of the data that should be regarded as 
an outlier. 
  Figures 4 and 5 depict the operation of the ABOD algorithm. It begins by setting up the 
observation of interest's k nearest neighbours and computing the k vectors that extend from the 
observation to those neighbours. Equation 1 is used to compute the weighted scalar product of all 
possible pairings of different vectors that were found in the previous stage. 
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3. Data 
The data used in this study is actual data. The data was released in 2021 on the SPE official 
website. The data repository has more than fifty wells between shale gas production and shale 
oil. 6 wells were selected. The production is mainly dry gas. The choice of this certain wells was 
based on having variety of production profile durations and different level of noise through the 
data to better clear the aim of this study. Tables (1) through (4) shows the characteristics of each well. 

Table 1. Well_12 

The Specifications of Well_12. [21]  

State LA TVD (ft) 11258.854 
Formation/Reservoir HAYNESVILLE 

SHALE 
Spacing 

- 
Initial Pressure Estimate (psi) 9939 Stages 10 
Reservoir Temperature (deg F) 285.21375 Clusters  69 
Net Pay (ft) 268.39703 Clusters per Stage 7 
Wellbore Diameter (ft) 0.7 Lateral Length (ft) 4496 
Porosity 0.088000059 Top Perf (ft) 11253 
Water Saturation 0.183792612 Bottom Perf (ft) 15749 
Oil Saturation 0 Sandface Temp (deg F) 285.21375 
Gas Saturation 0.816207388 Static Wellhead Temp (deg F) 120 
Gas Specific Gravity 0.58 Casing Depth (ft) 15800 
Condensate Gravity (API) 30 Tubing OD (in) 2.375 
Dew Point Pressure (psi) 9893.27 Tubing Depth (ft) 11224.67 
Sep. Temperature (deg F) 100 Casing ID 1 (in) 4.67 
Sep. Pressure (psi) 100 Casing Depth (ft) 15800 
 
 

Table 2. Well_24 

The Specifications of Well_24. [22] 

State LA TVD (ft) 12064.16 
Formation/Reservoir HAYNESVILLE 

SHALE 
Spacing 

1050 
Initial Pressure Estimate (psi) 10450 Stages 66 
Reservoir Temperature (deg F) 329 Clusters per Stage 7 
Net Pay (ft) 193 Lateral Length (ft) 9820 
Wellbore Diameter (ft) 0.7 Top Perf (ft) 12470 
Porosity 0.08612 Bottom Perf (ft) 22290 
Water Saturation 0.21 Sandface Temp (deg F) 329 
Oil Saturation 0 Static Wellhead Temp (deg F) 236 
Gas Saturation 0.79 Production Path Casing 
Gas Specific Gravity 0.594 Casing ID 1 (in) 4.67 
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Condensate Gravity (API) 30 Casing Footage 1 (ft) 11421 
Sep. Temperature (deg F) 100 Casing ID 2 (in) 4.28 
Sep. Pressure (psi) 100 Casing Footage 2 (ft) 10885 
Oil Gravity (API) 30 Casing Depth (ft) 22306 
Clusters  462   

 

Table 3. Well_27 

The Specifications of Well_27. [23] 
State PA Bubble Point Pressure (psi) 20000 
Formation/Reservoir MARCELLUS TVD (ft) 5707.639 
Initial Pressure (psi) 3486 Stages 13 
Reservoir Temperature (deg F) 115 Clusters  65 
Net Pay (ft) 101.6 Clusters per Stage 5 
Wellbore Diameter (ft) 0.7 Lateral Length (ft) 5210 
Porosity 0.070015 Top Perf (ft) 5900 
Water Saturation 0.3297 Bottom Perf (ft) 11110 
Oil Saturation 0.001304 Sandface Temp (deg F) 115 
Gas Saturation 0.668996 Static Wellhead Temp (deg F) 65 
Gas Specific Gravity 0.57 Production Path Tubing 
Condensate Gravity (API) 30 Tubing ID (in) 2.441 
Dew Point Pressure (psi) 20000 Tubing OD (in) 2.875 
Sep. Temperature (deg F) 100 Tubing Depth (ft) 5172 
Sep. Pressure (psi) 100 Casing ID 1 (in) 4.778 
Oil Gravity (API) 30 Casing Footage 1 (ft) 11238 
Initial GOR (scf/bbl) 591.613 Casing Depth (ft) 11238 
 

 

Table 4.  Well_40 

The Specifications of Well_40. [24] 
State PA TVD (ft) 6936.15 
Formation/Reservoir MARCELLUS - 

UPPER 
Spacing 

1500 
Initial Pressure Estimate (psi) 3150 Stages 75 
Reservoir Temperature (deg F) 124.56 Clusters  373 
Net Pay (ft) 230.5 Clusters per Stage 4.973333333 
Wellbore Diameter (ft) 0.7 Lateral Length (ft) 13011 
Porosity 0.0675 Top Perf (ft) 6948 
Water Saturation 0.27 Bottom Perf (ft) 19959 
Oil Saturation 0 Sandface Temp (deg F) 125 
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Gas Saturation 0.73 Static Wellhead Temp (deg F) 60 
Gas Specific Gravity 0.57 Production Path Casing 
Condensate Gravity (API) 30 Casing ID 1 (in) 4.778 
Sep. Temperature (deg F) 100 Casing Footage 1 (ft) 20087.6 
Sep. Pressure (psi) 100 Casing Depth (ft) 20087.6 
Oil Gravity (API) 30   

 

4. Analysis 
In this chapter, the impact of removing the outliers from the production data of the selected wells 
is shown using the ABOD algorithm. For each well, we will present the production profile before 
and after removing the outliers. Also, the different flow regimes are identified before and after 
removing the outliers. 
4.1. WELL_12  
Figures (1) and (2) show the actual production profile, and the production profile after removing 
20% of the production data as noise and the removed noise of well_12 successfully.  

 Figures (3) and (4) show how the different flow regimes are identified from the log-log 
plot of the flow rate versus time by detecting the trend line with the characteristic slope of each 
one. 
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Figure 2. The actual production data before removing outlier. 

 
ABOD removes the isolated points. After that, it removes closer by closer points without 

masking any trends within the production profile.   
Figure (3) shows the log-log plot of the actual flow rate versus time before removing the 

outliers while Figure (4) shows the same plot but after removing 20% from the production data 
as noise successfully. 

The removed noise takes the same profile of the production data. This means that the 
noise was not concentrated in a specific period. Although the slopes of the trend lines related to 
the linear and pseudo steady state flow regimes are clear to be identified before the removing any 
noise but removing the noise helped smoothing the trends and became clearer. 
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Figure 2. (a) The production data after removing 20% as outlier. (b) The removed data. 

 
Figure 3. Shows identifying the flow regimes before removing the noise. 
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Figure 4. Shows identifying the flow regimes after removing 20% as the noise. 

4.2. WELL_24  
Figures (5) and (6) show the actual production profile and the production profile after removing 20% of 
the production data as noise and the removed noise of well_24 successfully.  

 
Figure 5. The actual production data before removing outlier. 

10 100 1000

100

1000

10000

 Flow Rate after Removing 20% as Outlier
Flo

w 
rat

e (
Ms

cf/
D)

Time (Day)

Slope = -1

Slope = -1/2

0 200 400 600 800 1000
0

5000

10000

15000

20000

25000

30000

Ac
tu

al 
Fl

ow
 R

at
e 

(M
sc

f/D
)

Time (Day)

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 24, Issue 8, August - 2022 163



Figures (7) and (8) show how the different flow regimes are identified from the log-log plot of 
the flow rate versus time by detecting the trend line with the characteristic slope of each one. 

Looking at the production profile of this well, we could notice that most of the noise are 
concentrated in the early time of the production while the late time is much smoother. 

 The removed noise is not equally through the production profile. The ABOD algorithm 
removed more noise point from the early time which is noisier than the late time. This is one of 
the advantages of the ABOD algorithm. At the beginning, it removes the isolated points. After 
that, it removes closer by closer points without masking any trends within the production profile.   

Figure (7) shows the log-log plot of the actual flow rate versus time before removing the 
outliers while Figure (8) shows the same plot but after removing 20% from the production data 
as noise . 

Before removing the noise, we identified two trend lines related to the linear and BDF 
flow as shown in Figure (7). After removing the noise, we identified three trend lines related to 
the bilinear, linear, and BDF as shown in Figure (8). Because most of the removed noise was 
from the early time of the production, we differentiated between the bilinear and linear flow 
regime clearly after removing the noise. 

Figure 6. (a) The production data after removing 20% as outlier. (b) The removed data. 
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Figure 7. Shows identifying the flow regimes before removing the noise. 

 

Figure 8. Shows identifying the flow regimes after removing 20% as the noise. 
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4.3. WELL_27 
Figures (4.9) and (10) show the actual production profile, the production profile after removing 20% of 
the production data as noise and the removed noise of well_27 successfully.  
 Figures (4.11) and (4.12) show how the different flow regimes are identified from the 
log-log plot of the flow rate versus time by detecting the trend line with the characteristic slope 
of each one. 

 

Figure 9. The actual production data before removing outlier. 
 

Looking at the production profile of this well, we could notice that it is too noisy 
especially at the early time of the production. This was because of the flow back of the fracturing 
fluids and controlling the BHP by changing the chock size continuously. In late time, there is 
fluctuations in the production profile too. This was because of liquid loading caused successful 
shut ins. 

The removed noise is scattered through all the production profile. The ABOD algorithm 
removed more noise point from the early time which is noisier than the late time. At the 
beginning, it removes the isolated points. After that, it removes closer by closer points without 
masking any trends within the production profile.   

Figure (4.11) shows the log-log plot of the actual flow rate versus time before removing 
the outliers while Figure (4.12) shows the same plot but after removing 20% from the 
production data as noise. 

Before removing the noise, we identified one trend line related to the linear flow as 
shown in Figure (4.11). After removing the noise, we identified two trend lines related to the 
bilinear and linear as shown in Figure (4.12). Because the removed noise was scattered along the 
production profile, the period of the linear flow lasted for shorter time than before removing the 
noise. 
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Figure 10. (a) The production data after removing 20% as outlier. (b) The removed data. 
 

 
Figure 11. Shows identifying the flow regimes before removing the noise. 
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Figure 12. Shows identifying the flow regimes after removing 20% as the noise. 

4.4. WELL_40 
Figures (13) and (4.14) show the actual production profile, the production profile after removing 20% of 
the production data as noise and the removed noise of well_40 successfully.  

 
Figure 13. The actual production data before removing outlier. 
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Figures (15) and (16) show how the different flow regimes are identified from the log-
log plot of the flow rate versus time by detecting the trend line with the characteristic slope of 
each one. 

Looking at the production profile of this well, we could notice that it is too smooth 
especially at the early time of the production. Most of the noise was concentrated in the late time 
of the production profile. 

The removed noise is scattered through all of the production profile. At the beginning, it 
removes the isolated points. After that, it removes closer by closer points without masking any 
trends within the production profile.   

Figure (15) shows the log-log plot of the actual flow rate versus time before removing 
the outliers while Figure (4.16) shows the same plot but after removing 20% from the 
production data as noise successfully. 

Before removing the noise, we identified two trend lines related to the bilinear and linear 
flow regimes as shown in Figure (15). After removing the noise, we identified three trend lines 
related to the bilinear, linear, and BDF as shown in Figures (16). Because most of the removed 
noise was from the early time of the production, we differentiated between the bilinear and linear 
flow regime clearly after removing the noise. 
 

 
Figure 14. (a) The production data after removing 20% as outlier. (b) The removed data. 
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Figure 15. Shows identifying the flow regimes before removing the noise. 

 

Figure 16. Shows identifying the flow regimes after removing 20% as the noise. 
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5. Conclusions and Recommendations
In this paper, we used the ABOD algorithm to improve the production data of the shale gas 
wells. This algorithm proved its efficiency in removing the noise and smoothing the production 
profile without any bias. Determining the different flow regimes related to the shale gas was 
effective and the trend line with the characteristics slope of each flow regime was much better 
and clear. Another advantage of the ABOD is that the production profile is improved based on 
the concentration of the noise. This means if the noise is spread all over the production profile, it 
will be removed equally and all the profile will be smoothed. Meanwhile, if the noise is 
concentrated in a certain part of the production profile while the other parts are smooth, the 
ABOD algorithm will focus only on the noisy part.  

Acronyms 
ABOD = Angle-based outlier detection
BDF = Boundary Dominated Flow
BHP = Bottom Hole Pressure 
DCA = Decline Curve Analysis 
EUR = Estimated Ultimate Recovery 
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