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Abstract: This paper aims to introduce a new model order reduction (MOR) method for simplifying the 
complexity of large-scale stable linear dynamical (LSSL) systems. The Balanced Truncation (BT) and Padé 
approximation methods are used to obtain the denominator and numerator polynomial coefficients of the 
reduced-order model (ROM). This method is used to address the shortcomings of the Padé approximation and 
BT methods. In this procedure, the stability and steady-state value of the LSSL system are guaranteed to be well 
preserved in the reduced-order model. The proposed technique has been applied successfully to the SISO system 
and has been extended to multi-dimensional systems. The proposed technique is confirmed by applying it to 
benchmark examples of 1006th and 120th orders. The results are compared to other well-known methods as 
well as recent work on performance indices and time domain specifications. 
 
Keywords: Model Order reduction, Balanced Truncation method, Padé approximation, stability, steady-state 
values. 

1 Introduction 
 
This is especially true in control system design, where the engineer must govern physical systems whose 
analytical model is expressed as an LSSLS system [1]–[3]. All physical systems, including aircraft, chemical 
plants, refineries, electrical power systems, urban traffic networks, digital communication networks, and control 
systems, begin with a mathematical model. Theoretical concerns often lead to a complex and high-order model 
in practice. As a result of interconnecting multiple interacting subsystems, the resulting system size can be too 
enormous to handle conveniently. Studies on the dynamic stability of modern linked power systems are a good 
example. The system equations are linear in dynamic settings, but the number of differential equations 
describing system performance grows fast with the number of connected machines. Calculating a high-order 
system requires unique numerical approaches. An examination of such a complex system is time-consuming and 
costly. The system's complexity makes it difficult to comprehend its behaviour [4]. An uncomfortably high 
order system may be difficult to analyze, synthesize, or identify. Preliminary design and optimization of such 
systems are frequently easier if a low-order linear model is developed that approximates the system well. It is 
therefore desired to replace a high order system with a low order system that retains the original system's time 
constant, damping ratio, natural frequency, and stability. Thus, model reduction aids system understanding. The 
model must also be mathematically simple to examine and study the findings. Less computing complexity, less 
hardware complexity, more practical designs, and simpler control rules are the key goals of reduced order 
models. 
The complexity of a system increases concurrently with the tendency of that system's features to increase. This 
also increases the structural and dimension complexity of the mathematical models. The model reduction has 
become an important tool in the design and analysis of LSSL systems [5], [6]. The MOR technique produces a 
ROM without sacrificing crucial higher-order system control characteristics including stability and steady-state 
value. The MOR of the LSSL system is one of the most important research subjects in engineering and science. 
For several decades, lower-order system computation has been a hot topic in control system synthesis and 
analysis. The study, identification, and synthesis of a mathematical model of an LSSL system can be complex. 
As a result, MOR can be applied to learn more about LSSL systems. The following are some more reasons for 
computing reduced order systems: 
•  It can be utilized to reduce computational efforts in simulation problems. 
• For the efficient design of controllers, the reduction of hardware complexity, and the creation of simpler 
control laws. 

1.1 Searching the Literature for Some Existing Methods 

Several authors have presented a wide range of model order reduction strategies during the past few decades. 
Papers [7]–[12]and textbooks [6], [13]–[17] have compiled a comprehensive bibliography on this subject. The 
model order reduction approaches can be divided into frequency and introduction time-domain methods. There 
are numerous approaches for obtaining low-order models, but the quality of a model is ultimately determined by 
how it is used. 
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Fig. 1 Evolution of model reduction strategy 

The MOR has become a key aspect for analysis and design in current control systems [18]. Currently, the MOR 
is a widely used technique in engineering design fields such as fluid dynamics, power systems, control theory 
[1], and so on. The majority of these applications utilize ROM for the development and analysis of large-scale 
models. 
There are numerous strategies available in the literature for both small- and large-scale settings, as well as for 
frequency and time domain categories. Frequency domain approaches are well suited to system reduction to a 
moderate order of magnitude, typically less than ten. Because representing the system as a transfer function for 
more than ten orders will be extremely difficult. Furthermore, the difficulty will be in comprehending, 
analyzing, and simulating it. The goal of frequency-domain research is to develop new methods rather than to 
reduce very high-order systems. While time-domain approaches, which characterize the system using a state-
space model, are best for reducing very LSSL systems. LSSL systems are frequently referred to as very high 
order systems. 
 

Many methods are available in the literature, some of which are also mentioned in the preceding 
paragraph. It has been noted that each method of reduction, whether in the frequency domain or the time 
domain, has advantages and disadvantages and can be used in a specific situation. In some of the reduction 
techniques reported in the literature, the instability and mismatch of DC gain are regarded as a major concern. 
This problem can be solved by using a mixed, composite, or modified algorithm concept in the theory of 
methods, in which the stability preservation technique calculates the denominator polynomial and the numerator 
polynomial is obtained using any other reduction technique. Based on the Padé approximation, a reduced-order 
model for SISO systems was proposed [19]. However, this method suffers from significant drawbacks, such as 
the reduced model being unstable even with an original stable system. Furthermore, in some situations, the 
reduced model results in a non-minimal phase system. There are two types of investigations carried out by the 
investigator in this paper. A new composite/mixed technique for the ROM in the frequency and time domain 
using the advantages of the balanced truncation method and Padé approximation has been noted and applied in 
MOR. The method uses the merits of the Balanced Truncation method and the Padé approximation.  

Numerous examples have demonstrated a significant improvement in system approximation using the 
proposed method over conventional methods. The advantage of the methodology is not only that it matches the 
steady-state value, but it also preserves stability, matches transient states, is efficient in approximation, and is 
computationally simple. The main characteristics of these algorithms in this paper are that they are faster to 
convergence, simple to understand, easy to implement and cover the majority of the problem space. This paper 
presents a new composite method based on Padé approximation in combination with the balanced truncation 
method. Different Test Systems up to 1006th order of benchmark problems are being considered and many more 
from the literature to show the improvement in system approximation by present techniques over conventional 
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approaches. Moreover, the reduced-order model so obtained preserves the stability. The results are compared 
with timely responses and their performance indices compared with the recently reported model order methods. 

This paper is organized into five sections. Section 1 includes the method of introduction and the literature 
study also discusses past work on model order reduction. The issue is described in section 2. Section 3 proposes 
a modified methodology for reducing the LSSL system, followed by some of the numerical examples and results 
are discussed and compared with the literature to the validations of the proposed technique. Finally, Section 5 
comprises the conclusions and future scope of the work presented. 

2 The Problem Formulation  
There are two common ways to model and analyze linear systems. The state-space representation of high 

order dynamic systems is called time-domain representation, whereas the transfer function representation is 
called frequency domain representation. Frequency domain reduction methods reduce a transfer function or a 
transfer function matrix, while time-domain reduction methods reduce a high order state-space model. The goal 
of model order reduction is to find a model that approximates the high order system in some way and responds 
to similar inputs. 

2.1 Time-domain representation in SISO System 

Time-domain representation: The state-space description of the system describes high order differential 
equations by first-order differential equations. 
 
Consider an order linear time-invariant (LTI) system detailed in the time domain and the corresponding ROM in 
the form of a transfer matrix given by and ( )rG s respectively as given Eq. (1)-Eq. (2) and Eq. (3) -Eq. (4) in this 
section. The problem is to find ROM in Eq. (3), which approximates the HOS in some sense and preserves the 
essential features of HOS such that its response matches the response with the HOS as accurately as possible for 
the same type of inputs. In this work, we have only considered the step input for comparison. 

( ) ( ) ( )
:

( ) ( ) ( )

dx t A BAx t Bu t
dt C D

y t Cx t Du t

  = + ∑ ⇔     
   = + 

                                                                                                                            (1) 

[ ] 1( ) nG s C sI A B D−= − +                                                                                                                                                                                                                          

(2)  
Where n nA ×∈ , n mB ×∈ and are constant matrices. Commonly, nx∈ ¡ denote the state of the system by 

p inputs and q outputs for a system, matrices of proper size r n<< . And  ( )G s is expressed as the transfer 
function of Eq.(1)[17], [20], [21].The ROM is described in the form of the time domain. 
So, the thr  order ROM by proposed methodology may be obtained from the HOS Eq. (1), which is given by: 

∑𝑟 : �
𝑑𝑥𝑟(𝑡)
𝑑𝑡

= 𝐴𝑟𝑥𝑟(𝑡) + 𝐵𝑟𝑢(𝑡)
𝑦𝑟(𝑡) = 𝐶𝑟𝑥𝑟(𝑡) + 𝐷𝑟𝑢(𝑡)

� ⇔ �𝐴𝑟 𝐵𝑟
𝐶𝑟 𝐷𝑟

�                                                                                                    (3) 

 
𝐺𝑟(𝑠) = 𝐶𝑟(𝑠𝐼𝑟 − 𝐴𝑟)−1𝐵𝑟 + 𝐷𝑟(1)     

3 Methodology for Order Reduction

3.1 The BT Method and Padé Approximation Method 

The novel composite strategy, which employs the BT method and Padé Approximation to derive a ROM, has 
been illustrated in below section. 1. It consists of the two phases listed below. 
Step 1: Calculate the denominator polynomial coefficient of the ROM using the BT method[21], [22]. Here, we 
are discussing the MOR method via BT for HOS. In the BT process, the BT method algorithm, as shown in 
Table 1 below, is referred to as the BT method. [21], [23]. 
Moore introduced this method of diagonalizing controllability CQ  and observability OQ matrices via similarity 
transformations. CQ  and OQ  are symmetric positive definite or semi-definite matrices produced by solving the 
Lyapunov equations. This method eliminates "weak" subsystems (least controllable and least observable states) 
that contribute little to the system's impulse response. After then, the model's low-order approximation is 
applied [24], [25]. The basic idea is that controllability gramians' singular values relate to the amount of energy 
required to shift the system's proper states. This is done by removing the least controllable and observable states 
of the system. The HOS has been balanced using a similarity transformation.  
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Table 1 Balanced Realization Method of Algorithm 
 

Input System: The LSSL system ( , , , )A B C D  
Output: ROM ( , , , )r r r rA B C D  

1. Solve ;T T
C C CAQ Q A BB for Q+ = −  

2. Solve ;T T
O O OA Q Q A CC for Q+ = −  

3. Compute Cholesky factors T
C C CQ L L=   and ;T

O O OQ L L=  

4. Compute SVD: 1
1 2 1 2

2

[ , ] [ , ]T T T
OU V L L U U V V

∑ 
∑ = =  ∑ 

 

where ∑ is diagonal positive and U, V has orthonormal columns matrix; with 
1 1( , , ),idiag ξ ξ∑ = ⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅

2 1( , , ).i ndiag ξ ξ+∑ = ⋅⋅ ⋅ ⋅ ⋅  
5. Compute the balancing transformation matrices  

1
1 2 T T

OX U L
−− = ∑  , 

1
2

CX L V
−

= ∑  ; 
6. From the balancing realization as: 1 1( , , , ) ( , , , )A B C D D XAX XB CX D− −= =    
7. Select number of dominant Hankel singular values (HSV) will be the order of reduction r and the 

eigenvalues of the original system and partition ( , , , )A B C D    conformally; 
8. Truncate to form the reduced realization.  

Properties 
● ( , , , )r r r rA B C D  is asymptotically stable 
● Error bound:

1( ) ( ) 2( ... )r r nG s G s ξ ξ
∞

+Η
− ≤ + +  

 
 
Now the system is balanced using the concept balancing transformation, which is partitioned as [20], [26]–[28] 

1

1
ˆ ( )

XAX XB
G s

CX D

−

−

 
=  
  

                                                                                                                                                                                                          (9) 

ˆ ˆ
ˆ ( ) ˆ ˆ

A B
G s

C D

 
 =
  

                                                                                                                                                                                                                                    (10) 

Eq. (11), a ˆ ( )G s has been achieved, the minimal realization of the model partition into a strong and weak 
subsystem. SPA can therefore be easily applied to subsystems. 
 

11 1 22 2 1

1 2 2

0
:

0 0r

Strong Weak

A B A B
C D C

∑     
= + ⇔ ∑     ∑      

                                                                                                                      

(11) 
where 11A  and 1∑ are lower-order matrix, it is part of a strong subsystem which is also ( r<n ). The 

subsystem 11 1 1( , , )A B C  must be a good approximation of the balanced system if 1r rσ σ + proposed by B C. Moore, 
1981 [21][29]. 

1 11 1
1( ) ( )r r rG s C sI A B D−= − +                                                                                                                                                                                                          (12) 

It is demonstrated in [21], [30], [31],[37] that the reduced model ( )rG s  obtained is always stable. It is also 
noted that the steady-state value of the ROM can be changed from the steady-state value of the LSSL system. 
 
Steps 2: Calculation of numerator polynomial coefficient of the ROM, using Padé approximation method [27], 
[32]–[35]. 
Consider an order Eq. (1) system represented by the following transfer function: 
 

2 1
0 1 2 1

2
0 1 2

( )( )
( )

n
n

n
n

n n s n s n sN sG s
D s d d s d s d s

−
−+ + + ⋅⋅ ⋅

= =
+ + + ⋅⋅ ⋅ +

                                                                                                                       (13)  

or

1

0

0

( )

n
i

i
i
n

i
i

i

n s
G s

d s

−

=

=

=
∑

∑
                                                                                                                                                      (14) 
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where ,i in d  are scalar constants of the LSSL system. 

The key aim of this involvement is to calculate the coefficients constraints of thr -order ( )r n<  reduced system 
represented as in Eq. (15). 
 

2 1
0 1 2 1

2 1
0 1 2 1

ˆ ˆ ˆ ˆ( )( ) ˆ ˆ ˆ ˆ ˆ( )

r
rr

r r r
r r r

n n s n s n sN sG s
D s d d s d s d s d s

−
−

−
−

+ + + ⋅⋅ ⋅ +
= =

+ + + ⋅⋅ ⋅ +
                                                                                                             (15) 

Where are unknown constants of the ROM. These parameters are to be achieved using the proposed method 
while preserving the significant characteristics of the LSSL system. 
Consider Eq. (16) in terms of numerator polynomial and denominator polynomial, which use for the series 
expansion as follows: 

1

0
( ) i

i
i

G s p s
∞

− −

=

=∑                                                                                                                                                        (16) 

(Expanding about )  : Markov parameters 
1 2 3

1 2 3
n

np s p s p s p s− − − −= + + + ⋅⋅ ⋅ + + ⋅ ⋅ ⋅                                                                                                                           (17) 

0
( ) i

i
i

G s t s
∞

=

= −∑                                                                                                                                                          (18) 

(Expanding about )   : Time Moments 
2 1

1 2 3
n

nt t s t s t s −= + + + ⋅⋅ ⋅ + + ⋅ ⋅ ⋅                                                                                                                                     (19) 
where ip  and are the thi -Markov and Time moment parameter of the HOS, respectively. 

1

0

0

ˆ
( )( )
( ) ˆ

r
j

j
jr

r r
jr

j
j

n s
N sG s
D s d s

−

=

=

= =
∑

∑
                                                                                                                                           (20) 

1 2 3
1 2 3ˆ ˆ ˆ ˆ n

np s p s p s p s− − − −= + + + ⋅⋅ ⋅ + + ⋅ ⋅ ⋅                                                                                                                          (21) 
2 1

1 2 3
ˆ ˆ ˆ ˆ n

nt t s t s t s −= + + + ⋅⋅ ⋅ + + ⋅ ⋅ ⋅                                                                                                                                     (22) 
The numerator polynomial coefficients are computed by matching the time moment parameters of the Taylor 
series expansion coefficients about  LSSL system with those of the ROM. 
Where  are the Taylor series expansion ( ). 
 

0 0 0

1 0 1 1 0

2 0 2 1 1 2 0

1 0 1 1 2 2 1 1 0

1 1 2 2 1 1 0

1 2 1 3 3 1 2 0

2 1 1 0

1 0

r r r r r

r r r r r

r r r

r r

Pade Sense

n d t
n d t d t
n d t d t d t

n d t d t d t d t
n d p d p d p d p
n d p d p d p d p

n d p d p
n d p

α α α α α

β β β β β

β β β β β

− − − − −

− − − − − + − +

− + − − − − + − +

− −

−

′

=
= +
= + +

= + + ⋅⋅ ⋅ + +
= + + ⋅⋅ ⋅ + +

= + + ⋅⋅ ⋅ + +

= +
=







  

                                                                                                            (23) 

 
The numerator can be calculated by solving the above procedure. Finally, the numerator polynomial coefficient  

( )rN s  is obtained as 
 

2 1
0 1 2 1ˆ ˆ ˆ ˆ( ) r

r rN s n n n s n s −
−= + + + ⋅⋅ ⋅                                                                                                                              (24) 

4 Numerical Examples and Results  
The efficacy and powerfulness of the suggested method have been illustrated by considering the various 
SISO/MIMO systems, namely the 1006th order stable example 1, and it has been further extended to the 120th 
order MIMO system also. 
Example 1: Consider the 1006th order FOM model, taken from [36],  this model is represented in the form of 
state-space matrices in Eq. (25). 
In of order N=1006, and the system components are given by: 

1 2

1 100 1 200
, ,

100 1 200 1
A A

− −   
= =   − − − −     

s = ∞

0=s

0s =
it ( 1, 2,3...)i = 0s =
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3

1 400
400 1

A
− 

=  − − 

,
4

1
2

.
1000

A

− 
 − =
 
 

− 

, 

1

2

3

4

,

A
A

A
A

A

 
 
 =
 
 
 

1 2( ) ,C C C= ( ) 6
1 10....10 ,C = ∈ ( ) 1000

2 1....1 ,C = ∈                                         (25) 

 

Fig. 2 Bar chart of Hankel Singular Value of 1006th Order Original (LSSL) System 

In Fig. 2, the HSV has been calculated and plotted. This bar graph depicts the best reduction order. The original 
system's order is assumed to be the number of singular values that dominate non-zero. The first eight singular 
values are critical here, and the third singular values rapidly decay. As a result, the order of reduction has been 
chosen as an eight order. 

 

Fig.3 Comparison of Step Responses for Example 1 
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Fig.4 depicts the unit step response of the original and reduced-order models, as well as a comparison of the 
proposed method with another existing method for the 8th order reduced model. It can be seen that the proposed 
method provides a good approximation when compared to other methods. 

4.1 Reduction of MIMO Systems 

In this example, to demonstrate the efficacy of the proposed method, a multidimensional benchmark real-world 
large scale dynamic system is used. The procedure to obtain a reduced order model for a 120th order CD Player 
large scale MIMO system is the same as for the SISO type system discussed earlier.  

Example 2: Consider the 120th order  CD Player model, taken from [36],  this model is represented in the form 
of state-space matrices. 

 

Fig.5 Bar chart of Hankel Singular Value of 120th Order Original System 

Fig. 5 shows the HSV calculated and plotted. The optimal reduction order is shown here. The number of non-
zero singular values is considered to be an order of the original system. Third singular values gradually fade 
away. As a result, a six-order reduction is preferred. 
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Fig. 4 Comparison of Step Responses for Example 1 
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Fig. 6 Original system of Step Responses for example 2 

 

Fig. 7 Comparison of Step Responses for Example 2 

Fig. 7 compares the proposed method to alternative methods for 6th order reduced models. As shown in the 
figure, the reduced model closely approximates the original. The lower order model obtained from the proposed 
method approximates the original system more closely than the others, as seen in the figures. 

5 Conclusion 
In this paper, a mixed-method is proposed to overcome the disadvantage of steady-state value mismatch in some 
systems. This disadvantage was eliminated by combining two methods, such as the balanced truncation method 
and the pade approximation method. The proposed method has been applied to a large-scale continuous stable 
SISO system and has also been extended to reduce the benchmark example MIMO system. The Padé 
approximation is used in combination with the balanced truncation method in these methods. The main premise 
leads to a better approximation. The method ensures the reduced-order model's stability. Various examples, 
including benchmark instances, have been used to validate the finding. It should be noted that the ROM 
obtained using these methods was a close match to the actual system. The findings are compared to previous 
research on performance indices and step response, as well as other well-known methodologies. Furthermore, 
when applied to a large-scale system, this method becomes more powerful. As a result of the MOR and 
controller design research, the following aspects have been identified for future research. 
• The method may be investigated to find out the ROM for fractional-order systems. 
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• It may be possible to examine the simplification of linear interval plants and their controller architecture.  
• Preserved the stability and steady-state value of the higher dimensional system in the lower dimensional 

system. 
• It does not require the computation of the initial time moments; it also guarantees to preserve the first "r" 

time moments of the HOS in its reduced system. 
• It is also helpful for the design and processing of controllers and digital signals. The technique proposed 

here can also simplify the transfer function of LSD discrete-time and interval systems.
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