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ABSTRACT 

The electrical grids are more dependable, secure, and efficient thanks to smart 
grid technology.For effective and dependable power distribution, new vulnerabilities are 
raised by its strong reliance on digital communication technology. The unsupervised 
anomaly in this paper.The idea of measurement correlation-based detection has been put 
forth. The objective is to create a scalable a large-scale anomaly detection engine for 
smart grids that can distinguish between an actual fault and a commotion and a clever 
cyber-attack. The suggested technique utilises feature extraction by Using symbolic dynamic 
filtering (SDF) to lighten the computational load and find causal relationships among the 
subsystems. The outcomes of the simulations on the  bus systems support the performance 
of the suggested method under various operating circumstances. The outcomes 
demonstrate accuracy of 99%, a 98% true positive rate, and a less than 2% false positive 
rate. 
INTRODUCTION 

In today's power systems, distributed energy resources (DERs) and advanced metering 
infrastructure is organised to provide reliable energy generation and a network of sensors and 
generators that enable two-way communication inside the system's infrastructure 
(AMI). Even though energy efficiency, dependability, and manageability of this 
advanced communication system are all improved, the system's sensitivity to cyber-attacks 
is raised by the large number of devices and access points that operate outside the normal 
administrative domain.It is critical to look at how cyber attacks affect power systems since 
malfunctions in the power grid could result in catastrophic events.According to [1], the 
primary cause of the blackouts in North America is a lack of system awareness.which 
emphasise the significance of cyber-attack analysis in order to keep the power supply 
running steady and reliably. Cyberattacks have the potential to destroy equipment 
through overload or generate a lot of energy through erroneous demand requests [2][4]. 
Additionally, a malicious attack could result in fake overload conditions, or false 
negatives, in a power system.It's also potential for the infrastructure supporting electric 
vehicles to experience more difficulties. As 
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demonstrated in [5], [6], malicious attacks that prevent communications with a device can 
halt substation computers' services. 

The reliable operation of essential infrastructure, including smart grids, depends on real-time 
cyberattack detection. It is necessary to monitor systems continuously and online in order to 
spot targeted cyberattacks.In a large-scale network, individual sensors are typically the focus 
of security breaches. Information stored in a corrupted system can simply be accessed by a 
compromised insider node. Applying an authentication method to sensor networks 
theoretically enables key revocation of any compromised node. However, due to the system's 
computational and storage limitations, authentication methods based on cryptography or 
security gateway architecture, such those described in [8], [9], are impractical. The existing 
research in the context of the smart power grid primarily focuses on sophisticated anomaly 
detection techniques [13], [14], and secure control theories based on various state estimate 
approaches [15], as well as the networking security of the cyber elements [10], [12], and [13], 
[14]. 

The presence of a cyberattack on a power system is thoroughly analysed and 
described.Despite the fact that the aforementioned technologies can protect power systems, 
the majority of them are too expensive mathematically, physically impracticable, and not 
scaleable for large-scale complex networks. Today, massive amounts of data are produced 
across the grids, making it easier to monitor systems in real time. The performance 
monitoring, diagnosis, and prognosis of anomaly in complex systems are all considerably 
improved by exploring these data.Anomalies and potential assaults can be found using 
historical data describing the system's operation. Due to the enormous amount of data created 
by the smart grid, standard Bad Data Detection (BDD) algorithms are not equipped to handle 
real-time computing and storage difficulties. Due to these difficulties, it is now possible to 
use data analysis methods like machine learning (ML) to handle data sets with complicated 
structures.AMI, states, and control actions can be used to examine different combinations of 
measures using ML algorithms.Through becoming familiar with their patterns [17, 18]. It has 
a false data detector.Attack using the non-linear, complex injection (FDI) a connection 
between measures. This is achievable in  a similar manner to how effective strategies are used 
in other issues with the power system as reported in the research literature [19]. There are 
only a few research on the use of ML on smart grids' cybersecurity. The following ML 
methods are evaluated and compared in [20] for FDI attack detection.General conclusions 
about the effectiveness of machines were drawn.learning how to categorise FDI attacks. [21] 
suggested an amalgam.Using common path mining to discover intrusions a technique to 
identify unusual power system incidentsPMU's ML algorithm logs from the energy 
management system (EMS), relays, and data.A cyber-attack detection method based on the 
Pearson correlation coefficient between two PMU characteristics was utilised in [22]. Using 
the Pearson correlation coefficient, this method examined how the correlation between two 
PMU parameters changed over time. The attack approach for anomaly detection was 
modelled by the authors of [20] using the Gaussian process in conjunction with ML. A 
supervised ML-based method is put out in [23] to identify a cyber-deception attack during the 
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state estimate phase. A deep learning approach that can instantly identify key FDI attack 
characteristics is also put out in [24]. 

Probabilistic Graphical Models (PGM) can be used to simulate complicated system behaviour 
and enhance the performance of the current data-driven attack detection systems.PGMs 
include Dynamic Bayesian Networks (DBN), which are practical representations of large 
systems that change over time based on the causal connections between system parts [25]. To 
preserve the robustness, scalability, and accuracy of the attack detection algorithms, new 
techniques for handling complex and high-dimensional data should be created. Feature 
extraction can be used to change the original features into a more meaningful representation 
by recreating its inputs and it entails minimising the number of resources required, which 
eases the computational strain in huge data sets [26], [27]. As there are abnormalities that 
cannot be quantified or reproduced, detection methods that do not rely on pre-classified 
training data are crucial.In this article, we suggest a method for extracting the patterns of 
changes in FDI assaults using a smart grid anomaly detection system. The attacks are 
immediately detected using the revealed attributes.In order to construct a computationally 
efficient feature extraction strategy to find causal relationships between the smart grids sub-
systems through DBN, symbolic dynamic filtering (SDF) is used. Free energy is utilised as 
the anomaly index to detect unobservable cyber-attacks using Mutual Information (MI), 
DBN, and learning algorithms. By assigning a scalar energy to each variable, which acts as a 
gauge of compatibility, we want to capture the relationships between variables. The 
suggested technique's scalability is tested on a variety of IEEE test systems that were based 
on the PSS/E modelling programme.Under various operating situations, the results 
demonstrate good accuracy and little false alarm. It should be noted that the suggested 
method leverages the idea of free energy to distinguish between the energy level in the 
attacked and normal data sets in addition to relying on patterns in training data sets. As a 
result, even fresh and unexpected attacks can be found.These are the primary contributions of 
this work: a method for detecting anomalies in smart grids without labelling data sets has 
been developed.putting forth a strategy that is scalable by easing the strain of computation 
through SDF data reduction building a solid DBN-based learning model. putting forth a 
model-free strategy that can be used in hierarchical and topological networks for various 
attack scenarios.The remainder of the essay is structured as follows. Section II describes 
mathematical formulations. potentialcyberattackSection III presents a detecting technique.  

Mathematical modelling: 
A. MODEL OF THE GENERATOR 

This work models the smart grid as a multi-agent, cyberphysical system, where each agent 
has a generator, a measurement device, a distributed control agent, and an energy storage 
system that may add or take away actual power from the system [28]. The system's dynamic 
and static states are discussed.where x is the system state, which includes the static state of 
the network and the dynamic state of the generator (such as rotor speed and rotor angle) 
(voltage magnitude and phase angle). The measurements' non-linear function, h (. ), and the 
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generators' non-linear behaviour, f (. ), are both non-linear. The output and measurements 
vectors are denoted by u and z, respectively.It is possible to describe the generator i's 4-th 
order (two-axis) model.where the time derivative is denoted by (P). We discuss the 
generator's parameters. For synchronous generator I, the excitation system regulates the eld 
voltage, the related speed governor regulates the mechanical torque, and the electrical output 
can be derived where The conductance and susceptance between generators I and k are 
referred to as Gik D Gki and Bik D Bki, respectively.In order to detect anomalies and 
cyberattacks, this effort aims to learn and anticipate the dynamic behaviour of the smart 
power grid (where generators are modelled as mentioned in this section). A computationally 
efficient tool for identifying the interconnections between the subsystems is created using 
SDF, DBN, and RBM. 

B. REPRESENTATION OF ATTACKS 

By estimating the L-norm of the measurement residual, the BDD approach has historically 
been used to verify the accuracy of the state estimation process [31]. Where z 2 RN is the 
measurement vector, Ox 2 RD is the predicted state vector, and H 2 RND is the Jacobian 
matrix, the presence of incorrect data is identified.To keep the state estimation's precision, a 
threshold Tr is pre-dened. In addition to being circumvented by cyberattacks, the 
measurement redundancy needed for BDDmethodologies renders them useless for smart grid 
technology. The objective of the adversary in clevercyber-attacks, particularly FDI attacks, is 
to control aportion of themeasurements and arbitrarily change the state variables. You can 
accomplish it by inserting fake data. vectorza 2 RN, which omits conventional BDD methods. 
Let's say the malicious assault purposefully alters the metre values provided by za. In light of 
this, the attack caused a measurement shift.where the measurement noise is, and Oxa the 
incorrectly calculated state. 

The injected fake data (za) can be divided into two pieces, a D Hca and qa, where qa is the 
only observable component that is located in the complementary space where H HTH 1 HT 
qa D 0. Ca 2 RD is an injected vector of data that bypasses BDD tests since it is located in the 
column space of H.To put it another way, the stealth attack vectors (za) always exist even if 
the adversary only has access to a portion of the network topology and line parameters in 
order to create malicious attacks that entirely lay in (H), i.e., qa D 0, and therefore avoid the 
BDD techniques currently in use. [32] 

the following assumptions are considered in the model of the attack: 

The attacker in this study is thought to have few resources and be able to modify a small 
number of measurement readings. For a time period Ta T, this could either be power injection 
or power owdata.This is a reasonable assumption because it is not practical to suppose that all 
sensors will simultaneously report inaccurate values in the context of power 
networks.Furthermore, it takes a lot of time and effort for attackers to compromise all 
measures in practise. 
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It is absolutely impossible for an outsider to have a complete understanding of the system. As 
a result, the attacker is only partially aware of the system's topology and security features. 
Such information can be gathered by physically recording the security information encoded 
in a node or by statistically analysing the data transferred from the remote terminal units 
(RTUs) to the control centre.This study takes into account the least absolute shrinkage and 
selection operator (LASSO) with a strategic sparse FDI attack. 

A row-wise method is used to decompose the Jacobian matrix (H). To represent the secure 
measurements, a submatrix of H called HS D is formed, where Hji;V is the ji-th row of H and 
HSca D 0: Submatrix HA is also built for measurements that have been attacked. The 
attacker's plan is then developed to find an optimal answer.where 0 is a predetermined 
constant. The LASSO and Regressor Selection methods are used to tackle the optimization 
challenges.The attack's construction is covered in more detail in [33].By breaking into the 
communication network, the attacker hopes to change the rotor's speed and angle via FDI 
attack. Since I is a constant coefficient and Ci is a constant bias in the attacked states, 8t 2 Ta 
indicates the impact of FDI attacks on the system state for generator i. In other words, the 
attacker wants to use I and Ci to change the system state. In light of this, the attacker will 
create za in such a manner that the attack vector is concealed from the operator and 
conventional BDD techniques. For the experimentation, we suppose measures, chosen at 
random to create a sparse attack vector, are available to the attacker. 

III. PROPOSED ENERGY-BASED CYBER-ATTACK 
DETECTION 

This section presents a methodology for cyber-attack detection that makes use of DBN 
modelling, feature extraction through MI, and RBM for data training. RBM is used to capture 
the patterns in system behaviour that are extracted by the unsupervised DBN model as it is 
applied to smart grid test systems with large measurements (data are not labeled).Suggested 
data-driven framework for anomaly identification. The system is initially divided into a 
number of sub-systems. Then, using SDF, causal dependence between nominal subsystem 
features is learned. The suggested approach is a computationally efficient tool that reduces 
the computing load by 1) choosing a subset of measurements by feature selection and SDF, 
and 2) through domain decomposition and data processing on Instead of addressing the entire 
system at once, several subsystems are addressed concurrently. 

A. SYMBOLIC DYNAMIC FILTERING  

The time series data are first converted into symbol sequences in the suggested feature 
extraction method based on SDF and then these sequences are dened from DBN to compress 
transforming the data into simple statistical patterns. The system's phase space in equation (1) 
is segmented into a niteamount of cells. Introducing a compact region identifies a partition B 
fB0;::: ; B 1g with the following elements:(Bj) mutually exclusive T 8j 6D k) and exhaustive 
(Bk D(S �1 cells of type jD0 Bj D). Described by the dynamic system the time-series data as 
O f 0;::: ; I 2,which passes through the partition B's cells [34, 35].to comprehend the ideas 
behind mapping and partitioning take into account the symbol alphabet Think about the 
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system inThink of the cell a trajectory passes through as a random variable.S has the symbol 
value of 2A. The symbol alphabet a collection A of various symbols designating the 
components in the division. Each initial state (0, 2) results in a series of symbols that can be 
mapped from the phase to dene the symbol with some room It is known as symbolic 
dynamics. Through the symbolization process, three-dimensional space is reduced to a 
symbol sequence, followed by a DBN. 

B. DYNAMIC BAYESIAN NETWORKS  

DBNs are probabilistic graphical models that show the state of a system as a collection of 
variables and model the probabilistic dependencies of the variables over time. This study 
takes into account a high order DBN on variables xt D fx1;t ;::: ; x;t g at various time points t 
D 1;::: ; T. The expression of the state I at time t is represented by each xi;t. The variables 
that SDF sets are used to extract the symbol sequence. In order to determine the likelihood 
that a new symbol will appear, we assume that the DBN satisfies the L-th order Markov 
property. As a result, using the training data, a state transition matrix 5 that describes the L-th 
order Markov chain can be generated.Trial and error is used to determine the model's order. 
Let's use qk to represent the state at time instant k. One can define the ij-th element of five.In 
this work, we use a modified version of Markov chain (xL-th order Markov chain) [36] to 
predict the occurrence probability for a new symbol in a series A using the last L symbol for 
another series B because we are dealing with multiple time series. For L-th order Markov 
representing sub-systems A and B, 5A and 5B are denoted. In the same way, cross state 
transition matrices 5AB and 5BA, respectively, can be used to represent the causal 
dependencies of A on B and B on A.Atomic patterns (APs) are characteristics from L-th 
order Markov chains, and relational patterns are characteristics from xL-th order Markov 
chains (RPs). 

One can describe the state-transition matrices 5AB and 5BA.where the state vectors for 
sequences A and B, respectively, are denoted by j; kQA and I lQB. A multivariate time series 
is given, and partitioning is used to create the symbol sequences S. The next step is to 
determine the subsequent states and transition probabilities between the vertices using a high 
order DBN. We extract significant features from an AP or RP using MI criteria. A 
generalised linear correlation coefficient is created by MI to calculate the correlation between 
two random variables. When MI has a non-zero value, the two variables are said to be 
independent of one another. MI can be expressed as Importance metric IAB between state 
sequences qA and qB. The RBM learns patterns of system behaviour once the models are 
prepared. Test results are used to determine  the probability of the learned features. Restricted 
Boltzmann Machine (RBM) was utilised in this work to achieve this. 

C. RESTRICTED BOLTZMANN MACHINE    

A generative technique to model the unknowable distribution of data is the Boltzmann 
machine. Boltzmann Machine can create new data with a given joined distribution and 
complete patterns in the case of missing inputs, in contrast to most Machin Learning 
techniques that only discriminate some data vectors in favour of others. It is also thought to 

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 24, Issue 9, September - 2022 76



be more flexible and feature-rich. The Energy-based Models (EM) subclass of stochastic 
models includes RBM [38]. Each system state in electromagnetics (EM) is connected to a 
particular energy level. A network of stochastic binary neurons (a set of visible variables v D 
fv1;::: ;vN g) connected to a set of hidden variables h D fh1;::: ;hK g can be used to model 
such a system. Based on joint configurations of the visible and hidden variables, the state of 
the system can be described. It has been demonstrated that estimating models in RBMasses 
maximises the likelihood of training data with low energy state. As a result, an anomaly will 
manifest as a high-energy or low-probability conjunction [39]. Given binary variables v and 
hidden variables h, a Boltzmann distribution function can be used to describe the joint 
probability of a state (Pr.v; h/) based on the energy of that state (En.v; h/). As a result, the 
anomaly index that ranks data instances in linear time can be free energy. In order to identify 
cyberattacks based on the likelihood and intensity of the event, trained RBM is used. An 
event with high energy or low probability serves as the analogy for an anomaly. It is 
presumable that cyberattacks alter how the subsystems interact, changing how DBN patterns 
look. IAB can be normalised into binary states for APs and RPs (0 and 1 for low and high 
values, respectively) to make training easier. 

Finally, modifications to parameters associated with recognised patterns are used to spot 
cyberattacks. Based on a distance metric, a distribution of free energy is used to identify low 
probability events or cyberattacks. To maintain normal operations condition, the distribution 
of free energy will resemble that of the training data. The training data are primarily believed 
to have been gathered under standard operating conditions. As a result, the learned RBM can 
accurately capture the system's normal operation.Relative Entropy (RE) metric is used to 
express how different the energy distributions in training and test data are. 

A measurement of the separation between two probability distributions is the relative entropy 
between them. RE can be defined as [35], [36], and [37] for two probability distributions P 
and Q on a finite set X. serves as the starting point. The supposition is that the data are within 
two standard deviations for 95% of the samples the median. 8 gDT is sufficient the 
REiVgDTREiD .In that case, where REi, DT D mingfDTg, and 0:95jfREigj; I is the training 
data's i-th RE. Then an anomaly is found.whenever RE.t/ DT. The following is a summary of 
the steps:data from a time series are transformed into a symbolic order. DBN is used to model 
the interactions between the subsystems. Utilizing MI, assess the information-based metric 
values (I ij).Utilizing I ij, create a binary vector of length L and give each I ij a state of 0 or 
1.To learn the behaviour pattern, use RBM with visible nodes corresponding to APs and 
RPs.Using trained RBM, determine the likelihood that the current observation will result in 
an anomaly.The algorithm for the anomaly detection process is described  

CASE STUDIES AND SIMULATION RESULTS 

A distributed control agent, a measurement device, a generator as described in Section II, and 
an energy storage system are all included in each agent in Case 1's multi-agent cyber-physical 
system model, which is based on the IEEE-39 bus model. The energy that can be introduced 
into the system through various micro grids or renewable sources is represented by energy 
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storage. All case studies undergo the same analysis, but for reasons of space, only Case 1's 
findings are presented in this section. 

A)TESTING SYSTEM 

Table 2 includes a list of case study specifics that were taken from Matpower [42]. It is 
assumed that every case study is completely observable. A level of security is added to the 
measurement model to ensure the accuracy of the historical data.Since large power grids have 
thousands of metres, protecting measurements is very expensive.Based on the best PMU 
placement, we identify the critical metres to protect in order to lower the cost [31].We also 
assume that over the course of a typical day, the system topologies will not change. Case 
studies are carried out in Matlab R2017a on a computer with a Core(TM) i7-7700 CPU 
running at 3.6 GHz and 32.00 GB of RAM.It should be noted that the data are classified as 
either normal or anomalous. The baseline for the normal condition, which will be used to 
choose the threshold for the anomaly, is obtained using training data. The distribution Q 
representing the dynamic behaviour of the system is computed using a moving window in a 
subset of the training data (with distribution P). In each subset, the RE metric is used to 
calculate the separation between Q and P. The testing data is set up similarly. Finally, a 
comparison of the two RE is done to look for anomalous conditions (cyber-attack in our 
case).It is clear that all of the measurements residuals caused by cyberattacks are almost the 
same size as the measurement residuals under normal operating conditions, indicating that the 
stealthy cyberattacks cannot be detected by conventional residual tests. The measurement 
residual will exhibit significant residual due to faults, as shown in Fig. 5. If there is a problem 
with the system, the operator will be alerted and can fix it. As a result, the fault won't have an 
impact on the system's states.The lower plot's variation is within acceptable bounds. 
However, the variation between the attack's 35 and 65 samples significantly increases in the 
top plot. This suggests that there may be a cyberattack scenario that has evaded bad data 
detection. As a result, the rest of the system might be fed estimated states with high error, 
which could cause permanent harm. 

B. ACCURACY, FALSE POSITIVE AND TRUE POSITIVE  

In the analysis of the smart grid, the ability to identify cyberattacks and prevent false alarms 
are of utmost importance. Accordingly, the True Positives (TP), True Negatives (TN), False 
Positives (FP), and False Negatives (FN) listed in Table 3 are used to analyse the 
performance of the proposed method. The False Positive Rate (FPR), True Positive Rate 
(TPR), and Accuracy (Acc) values, which measure the algorithms' memorization and learning 
capabilities, A low FPR of 0% indicates that no secure measurements were mistakenly 
identified as being under attack. 100 percentclaries TPR that none of the measurements under 
attack are incorrectly categorised as secure. When a measurement is 100% accurate, it means 
that a measurement that is classified as attacked, and Secure measurements are those that 
have received that designation. 

1) illustrates the variation of FPR as a function of detection threshold for single attack (SA) 
and multiple attack (MA) on state variables 2 and 4. Each case's DT, which stands for 
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the threshold defined in Section III, was changed from 0.25 DT to 1.5 DT. As can be 
seen from the graph, FPR sharply drops as detection threshold rises. This shows that 
when the threshold is set too low, the algorithm becomes overly aggressive in detecting 
attacks, which results in a high rate of false alarms. 

2) The impact of attack magnitude on TPR and ACC is illustrated in Fig. 8 for two attack 
scenarios on state variables 2 and 4. 1 (1% of the original measurement) and 10 (10% of 
the original measurement), respectively, denote low and high attack magnitudes. The 
typical type of assault on the literature is of medium magnitude (here indicated by 5). 
The results are plotted for two different detection thresholds to confirm the impact of 
detection threshold on TPR and ACC. 

3) Effect of Attack Sparsity on TPR and ACC: Attacks with varying attack sparsity/N 2 [0, 
1] are generated in order to examine this effect. The system's overall measurement 
count, N, is represented. As can be seen in Fig. 9, TPR and ACC both rise as more 
measurements are contaminated. Here, sparsity 1 denotes that the attacker has altered all 
measurements. The gauge indicates that the the measurements are attacked, which is a 
reasonable assumption for the attacker's attack to be successful.from a 99% TPR 
perspective, the algorithm is very efficient.98% ACC, too. 

 C) PERFORMANCE ANALYSIS UNDER DIFFERENTOPERATION CONDITION 
 
Four distinct scenarios are taken into account to validate the efficacy of the proposed 
method: Normal circumstances without an attack, random attack, single FDI attack on 
line 631, multiple, simultaneous FDI attacks on lines 6-31, and normal conditions with 
no attack. LNR test and Chi-Square test, the two most widely used BDD approaches, are 
contrasted with the proposed method. To reduce false positives caused by noise, the 
threshold is set to 3 while is the standard deviation [44]. As a result, the FPR caused by 
noise is less than 1%. The threshold is normalised for all detectors in order to allow for 
accurate and thorough comparison. The LNR test threshold is determined using the 
same criterion. Refer to [20] for more details on LNR and the Chi-Square test. When 
everything is operating normally, none of the detectors' outputs cross the line that 
indicates that there was a cyberattack or bad data in the system. 
Figure 10(b) demonstrates that all techniques can identify the random attack. The 
operator will be alerted to the presence of an attack because the attack is not intelligent 
and will leave its mark in the data sets. The measurement residual vector significantly 
changes as a result of the random bad data that was injected into the measurement set, 
increasing the cost function. We assess the cost function using the measurement residual 
in an optimal state estimation. 
Without corrupt data in the system, the cost function operates normally. adheres to a 
normal distribution with a mean of 0. The cost function will surpass the cutoff for 
accurate state estimation under a random attack. 
Any FDI attack on a line or system topology typically causes similar changes in the 
network with minor variations. As a result, the suggested method can effectively 
identify a variety of FDI attacks from various sources. Furthermore, the proposed 
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scheme's success rate is independent of attack scenarios because it examines patterns 
between compromised and uncompromised data. 
 CONCLUSION 
The solutions suggested in the literature are primarily online approaches with limitations 
to deal with dynamically evolving online threats in the context of smart grid anomaly 
detection. 
In order to find causal interactions between the subsystems, this paper proposes a real-
time and computationally efficient tool for anomaly detection. It uses a feature 
extraction scheme and time series partitioning. Free energy is used as the anomaly index 
in the DBN concept and learning algorithms based on the Boltzmann machine to detect 
unobservable attacks. Performance of the proposed algorithm was assessed for a number 
of measures using various IEEE test systems and operating conditions (TPR, FPR, and 
ACC). The outcomes showed that the system achieves 99% accuracy, 98% TPR, and 
less than 2% FPR. 
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