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Abstract: The development of microgrids is an advantageous option for integrating

rapidly growing renewable energies. However, the stochastic nature of renewable

energies and variable power demand has created many challenges like unstable

voltage/frequency and complicated power management and interaction with the utility

grid. In existing control techniques, the droop control is commonly adopted as a

decentralized power sharing method at the cost of voltage deviations. Besides,

conventional cascaded control featuring relatively slow dynamic response shows

difficulties in handling the fluctuation of renewable energy outputs, leading to further

voltage quality deterioration. Recently, predictive control with its fast transient response

and flexibility to accommodate different constraints has presented huge potentials in

microgrid applications with better performance. In this work, a parallel-inverter based ac

microgrid with solar Photovoltaics (PVs) and Battery Energy Storage Systems (BESSs) is

presented. Based on this configuration, a universal model predictive control method is

proposed. The BESS system is integrated through a Model Predictive Current Control

(MPPC) based bidirectional buck- boost converter, aiming to stabilize the dc-bus voltage

for PV output smoothing. Furthermore, the parallel inverters are controlled by

incorporating a Model Predictive Voltage Control (MPVC) scheme with Artificial Bee

Colony (ABC) algorithm to ensure stable ac voltage output and proper load sharing. The

proposed control strategy is validated by MATLAB/Simulink simulation.

Keywords: Solar photovoltaics, Battery Energy Storage Systems(BESS), Model Predictive

Control(MPC), ABC algorithm, MATLAB/Simulink
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1. Introduction

To meet the escalating energy demand sustainably, dynamic energy distribution networks

are needed. These networks should allow bidirectional power flows and the control of a

mix of distributed energy resources (DERs), including distributed generators (DGs) and

systems. A microgrid integrates interconnected loads and Distributed Energy Resources

(DERs), capable of operating either in parallel with the grid or intentionally in island

mode [1] [2]. Microgrids can be AC, DC or hybrid. Notably, AC microgrids are gaining

prominence due to their synergy with the main grid, simplicity and cost-effectiveness. 

Components within a typical microgrid include storage units, controllable Distributed

Generators (DGs), Renewable Energy Resources (RESs) as non-controllable devices and

controllable loads. Effective control of energy from the Distributed Generators (DGs) is

required to align with load requirements. So a control scheme is necessary to govern

power flow which helps in maintaining the reliability and quality of the power supply.

Various control schemes are employed to keep the voltage and frequency of the microgrid

constant, representing a primary objective in the implementation of microgrid control

techniques. The traditional microgrid control system operates on hierarchical control

which contains three distinct levels [3]. At the primary level, local control maintains

frequency, voltage and power levels within regulatory bounds. It swiftly addresses

transient disturbances, adjusting converter frequency and output voltage to facilitate inner

current and voltage control loops while ensuring proper power sharing among Distributed

Generators (DGs). The secondary level steps in to compensate for deviations in voltage

and frequency from nominal values, overseeing real and reactive power regulation,

optimal DG operation and synchronization with the grid during transitions. Monitoring

the global operation of the microgrid, the tertiary level regulates power flows between the

microgrid, main grid, and other microgrids at the Point of Common Coupling (PCC). It

addresses load-generation power balancing through an optimal power flow solver. 

Despite the widespread acceptance of this control structure, it has limitations such as slow

dynamic response in multi-loop cascaded structures, impacting accurate transient power

sharing. Additionally, practical concerns include vulnerability to communication network

uncertainties and cyber-attacks. It also requires complex tuning model for changes in the

system. Hence, a better control scheme is required with good dynamic response, easy

inclusion of constraints with nonlinearities, resiliency in case of system parameter

changes and stability.

Figure 1. PV-battery based AC microgrid
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Recently, the researchers focus on Model Predictive Control (MPC) schemes, where

optimal switching states of power converters are determined based on a specified cost

function which has shown improved performance[4]. While MPC has been applied for

individual converters, its usage in the coordinated control of multiple converters in

microgrids has not been considered. Existing system-level algorithms focus on overall

goals without considering microgrid structures and converter control.

In the context of renewable energy-based AC microgrids with multiple power converters,

this paper explores the possibility of replacing traditional cascade voltage or current

feedback loops with MPC approaches. The key question addressed is the extent to which

overall system performance can be enhanced. The developed control strategy utilizes

MPC for AC microgrids, as depicted in Figure 1. The microgrid includes renewable

energy sources like wind or solar, with a specific focus on a solar PV system in this

example. The system comprises PV-battery energy sources and parallel inverters

connected to AC loads. The proposed approach integrates Model Predictive Voltage

Control (MPVC) incorporating Artificial Bee Colony (ABC) algorithm for parallel

inverter load sharing. Additionally, Model Predictive Power Control (MPPC) is

introduced to maintain DC-bus voltages and smooth PV outputs.

2. Model Predictive Control (MPC)

MPC is a sophisticated approach that iteratively predicts and optimizes a system's future

states based on a dynamic model, offering enhanced performance in diverse industrial

applications. MPC is like a smart planner. It keeps figuring out the best moves for the

system in the near future by using a dynamic model, which is like a blueprint for the

system's behavior. Even though this blueprint can get a bit complicated, MPC simplifies it

using tricks like linearization. Now, since things might not always go exactly as planned,

MPC doesn't stick to its first plan. It takes action based on the initial instructions, sees

how well it worked, and then adjusts its plan accordingly. So, in simple terms, MPC is a

smart, step-by-step decision-maker using predictions and feedback to make sure the

system behaves optimally. 

MPC relies on three fundamental requirements: a cost function (J), a predictive model and

an optimization algorithm solving the specified cost function. Importantly, MPC allows

for the incorporation of constraints in the optimization process, such as defining minimum

and maximum values for robot states and inputs. This flexibility enhances MPC's

applicability in diverse industrial scenarios.

Figure 2. Structure of Model Predictive Controller
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The cost function in Model Predictive Control (MPC) is like a guide for the system. The

cost function, often denoted as J, is a way of quantifying how well the system is

performing based on certain criteria or objectives. The cost function is a mathematical

expression which involves terms that measure the system's performance relative to desired

outcomes. These terms can include factors like minimizing the deviation from a reference

trajectory, reducing errors in the system's behavior, optimizing control inputs, avoiding

obstacles, or achieving specific objectives. MPC strives to find the control inputs that

minimize this cost function over a specified prediction horizon, ensuring the system

behaves optimally based on the defined criteria.

The predictive model refers to the dynamic model used to forecast the future behavior of

the system. This dynamic model is a mathematical representation of how the system

responds to different control inputs over time. The predictive model is essential for MPC

because it enables the controller to simulate the future states of the system based on

various possible inputs. This simulation is performed over a defined prediction horizon.

While these models can be nonlinear, MPC might use methods like linearization to

simplify them, especially for short-term predictions.

An optimization algorithm is employed to determine the optimal control inputs that

minimize a specified cost function over a predefined prediction horizon. This

optimization process involves searching for the control inputs that lead to the best

performance of the system while adhering to any specified constraints. Several

optimization algorithms can be utilized within the MPC framework, and the choice

depends on factors such as computational efficiency and the complexity of the

optimization problem. In this paper, MPC is applied for two parts of the system: Model

Predictive Voltage control(MPVC) for parallel inverters and Model predictive Power

Control(MPPC) for PV-battery energy sources.

2.1 Model Predictive Voltage Control (MPVC)

Model Predictive Voltage Control (MPVC) of parallel inverters is a control strategy used

in power systems to regulate the voltage output of multiple inverters operating in parallel.

MPVC focuses on capacitor voltage as control objective. The LC filter's mathematical

model comprises two components: the dynamic vector equation governing the filter

inductor current and the dynamic vector equation describing the filter capacitor voltage

which is obtained from Fig 1.

The filter voltage expression is expressed as:

ᵅ� ᵃ�ᵄ�

ᵅ�ᵆ�
=

1

ᵃ� ( ᵅ�ᵃ� − ᵅ�ᵃ� )                                                                           (1)

The filter current expression is expressed as:

ᵃ�
ᵅ� ᵅ�ᵃ�

ᵅ�ᵆ�
+ ᵅ�ᵃ� ᵄ�  = ᵅ�ᵄ� − ᵅ�ᵄ�               (2)

The two equations (1) and (2) can be re-written in state-space form as:
ᵅ� ᵆ�

ᵅ� ᵆ�
= ᵃ� ᵆ� + ᵃ� ᵆ�           (3)

(3)
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where
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For a sampling time ᵄ� s, Zero-Order Hold (ZOH) discretization was used to obtain the

prediction of the system’s behavior as follows:

ᵆ� ( ᵅ� + 1) = ᵆ�ᵄ� ᵃ�ᵅ� ᵆ� ( ᵅ�) + − 1ᵃ� ( ᵆ�ᵄ� ᵃ�
ᵅ� − 2 ᵄ�2ᵃ� ) ᵃ� ᵆ�( ᵅ�)           (4)

Equation (4) is used to predict the capacitor voltage at (k+1)th instant. The goal of cost

function is to minimize the deviation between the predicted output voltage and the

reference voltage at the next sampling period (k+1). Therefore, the cost function JV is

defined as:

ᵄ�ᵃ� = 2
( ᵅ� ᵅ� ᵅ�

ᵅ� ᵯ�ᵄ� − ᵅ� + 1
ᵅ� ᵯ�ᵄ� ) + 2

( ᵅ� ᵅ� ᵅ�
ᵅ� ᵯ�ᵄ� − ᵅ� + 1

ᵅ� ᵯ�ᵄ� )          (5)

Where ᵅ� ᵅ� ᵅ�
ᵅ� ᵯ�ᵄ� and ᵅ� ᵅ� ᵅ�

ᵅ� ᵯ�ᵄ�  are reference voltages at α-axis and β-axis in the stationary

rotating coordinate system respectively and ᵅ� + 1
ᵅ� ᵯ�ᵄ� and ᵅ� + 1

ᵅ� ᵯ�ᵄ� are the predicted voltage for

the α and β axes respectively. The voltage vector yielding the minimum cost in the cost

function will be employed in the upcoming sampling period. By precisely controlling the

α and β components, the Vc can effectively track its reference, ensuring the establishment

of stable and sinusoidal voltage.

Figure 3. Block Diagram of MPVC

Building upon the successful voltage control of MPVC and the load-sharing capabilities

of the droop method, a novel parallel inverter control strategy has been formulated,

outlined in Figure 3. The conventional voltage and current feedback loops have been

substituted with the MPVC scheme.

2.2 Model Predictive Power Control (MPPC)

The primary objective of the Battery Energy Storage System (BESS) is to address the

power fluctuations resulting from the disparity between Photovoltaic (PV) output and the

electrical load demand. This is achieved by consistently regulating the direct current (dc)

bus voltage. In order to uphold a stable power equilibrium within the microgrid, it is

imperative for the BESS to efficiently discharge and charge as necessary. 

Given that the power supplied or absorbed by the Battery Energy Storage System (BESS)

is effectively regulated by manipulating the buck-boost converter, it becomes crucial to
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analyze the impact of switching states on the absorbed or supplied power. Illustrated in

Figure 4 is the BESS circuit, comprising the battery and the converter. When switch S2 is

in a switching state (either 1 or 0) and S1 is kept OFF, the system operates in boost mode.

This configuration allows the battery to discharge and supply power. Conversely, if

switch S1 is in a switching state (either 1 or 0) while S2 is maintained OFF, the system

operates in buck mode. In this mode, the battery is charged, thereby absorbing power.

In boost operation, the discrete-time model for sampling time Ts is expressed as

{ 2ᵄ� = 1 ,  1ᵄ� = 0: ᵃ�ᵃ� (ᵅ�  + 1) = ᵄ�ᵄ�

ᵃ�ᵃ� ᵃ�ᵄ� (ᵅ� ) + ᵃ�ᵃ� (ᵅ� )

2ᵄ� = 0 ,  1ᵄ� = 0: ᵃ�ᵃ� (ᵅ�  + 1) =  ᵄ�ᵄ�

ᵃ�ᵃ�
( − ᵃ�ᵃ�ᵄ� (ᵅ� ) + ᵃ�ᵄ� (ᵅ� ) ) + ᵃ�ᵃ� (ᵅ� )

                

(6)

Similarly the discrete-time model for sampling time Ts in buck operation is expressed as

{ 2ᵄ� = 0 ,  1ᵄ� = 0: ᵃ�ᵃ� (ᵅ�  + 1) =− ᵄ�ᵄ�

ᵃ�ᵃ� ᵃ�ᵄ� (ᵅ� ) + ᵃ�ᵃ� (ᵅ� )

2ᵄ� = 0 ,  1ᵄ� = 1: ᵃ�ᵃ� (ᵅ�  + 1) =  ᵄ�ᵄ�

ᵃ�ᵃ�
( ᵃ�ᵃ�ᵄ� (ᵅ� ) − ᵃ�ᵄ� (ᵅ� ) ) + ᵃ�ᵃ� (ᵅ� )

            (7)

The battery output power can be estimated as

ᵄ�ᵄ�ᵆ�ᵄ� (ᵅ�  + 1) = | ᵃ�ᵃ� (ᵅ�  + 1) .  ᵃ�ᵄ� (ᵅ� )|
(8)

Similarly the required power by BESS at next control instant can be written as

*
ᵃ�ᵃ�ᵄ�ᵄ�ᵄ� (ᵅ�  + 1) = | ᵃ�ᵃ�ᵃ� (ᵅ�  + 1) .  *

ᵃ�ᵃ�ᵄ� (ᵅ� )|                         (9)

To maintain power balance within the microgrid, BESS needs to supply the necessary

power through the buck-boost converter. The objective is to minimize the following cost

function:

ᵄ�ᵃ� = | *
ᵃ�ᵃ�ᵄ�ᵄ�ᵄ� (ᵅ�  + 1) − ᵄ�ᵄ�ᵆ�ᵄ� (ᵅ�  + 1)|        (10)

The MPPC strategy involves several key parameters: the Photovoltaic (PV) system output

current (IPV), inverter input current (IAC), actual DC-bus voltage (VDC), and reference

voltage (VDC*). These parameters are initially utilized to compute the required power for

the Battery Energy Storage System (BESS). Simultaneously, the battery voltage and

current, along with the actual DC-bus voltage, are employed to predict the battery current ᵃ�ᵃ� (ᵅ�  + 1)
. This prediction results in four potential values of ᵄ�ᵄ�ᵆ�ᵄ� (ᵅ�  + 1) as determined by (6) and

(7). Subsequently, the switching behaviour minimizing (10) is selected to control the

buck-boost converter.

3. Proposed Method

Here MPVC is incorporated with Artificial Bee Colony (ABC) algorithm. Combining the 

Artificial Bee Colony (ABC) algorithm with Model Predictive Voltage Control (MPVC) 

is like using a smart, adaptive approach to efficiently manage and optimize the voltage 

levels in an electrical power system. In essence, it's like having a group of bees (ABC) 

explore and suggest ways to adjust voltage, while a smart brain (MPC) predicts and 
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evaluates the impact of these adjustments, leading to an optimized and efficient voltage 

control strategy for the electrical power system.

Figure 4. Flowchart of ABC Algorithm.

The ABC algorithm is a swarm intelligence optimization algorithm inspired by the

foraging behaviour of honeybee colonies. It is characterized by its simplicity and ability

to efficiently explore and exploit the search space. It has been successfully applied to

various optimization problems, including function optimization, parameter tuning and

machine learning. The key components of the ABC algorithm include the employed bee

phase for exploration, the onlooker bee phase for exploitation and the scout bee phase for

diversification. The algorithm's performance depends on parameter settings such as

colony size, the number of cycles, and the abandonment limit for solutions. Researchers

often fine-tune these parameters based on the characteristics of the optimization problem

at hand.

4. Simulation And Results

To examine the performance of ABC algorithm along with MPVC and MPPC, the AC 

microgrid shown in Figure 1 is simulated using MATLAB/Simulink software. The 

parameters of PV system, BESS systems and paralleled inverters are tabulated in Table I. 

The ABC algorithm is written in command window of MATLAB. To verify the proposed 

method, PV system is subjected to varying irradiance at a constant temperature of 27oC as

shown in Figure 5.
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Table 1 . System Parameters

Parameters Values

PV System

Module maximum power(W) 549

Array parallel module strings 66

Array series-connected modules 10

BESS

Nominal Voltage(V) 500

Rated capacity(Ah) 1600

DC-Bus voltage(V) 1k

Paralleled Inverters

Rated frequency(Hz) 50

Nominal phase-to-phase voltage Vrms (V) 380

Filter Inductance(mH) 2

Filter Capacitance(µF) 250

Line Resistance RDG1 and RDG2 (Ohms) 0.05,0.04

Line Reactance LDG1 and LDG2 (Ohms) 0.6,0.48

ABC Algorithm

Number of decision variables 5

Maximum number of iterations 200

Population size 100

Number of onlooker bees 100

Figure 6 represents the output voltage at the load due to both DG1 and DG2. It represents

a voltage waveform for the load which is stable and sinusoidal due to MPC approach.

Figure 6. Output Voltage for the load
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Figure 7(a). Power generated by DG1 And DG2 without ABC algorithm

Figure 7(b). Power generated by DG1 and DG2 with ABC algorithm

Figures 7(a) and 7(b) shows the comparison of power generated by DG1 and DG2 for

systems without ABC algorithm and with ABC algorithm. The comparison reveals that, in

both methods, the parallel inverters possess the capability to automatically adjust their

output to accommodate the fluctuating power demand, facilitated by the droop method.

However, employing the proposed method results in a better performance. Specifically,

the active power generated using the proposed method exhibits smoother transitions and

faster responses compared to the traditional method. This improved performance is

attributed to the exploring capabilities of ABC algorithm embedded in the proposed

method.

5.  Conclusion

The integration of Model Predictive Control (MPC) with the Artificial Bee Colony (ABC)

algorithm for Photovoltaic (PV)-based AC microgrids offers a promising and effective

approach for optimizing the system's performance. Through the use of MPC, the control

system can predict and adapt to dynamic changes in the microgrid, ensuring efficient

operation and adherence to specified objectives. The ABC algorithm enhances this

optimization process by intelligently exploring and selecting control parameters,

contributing to the overall effectiveness of the system. The MPVC, coupled with the ABC

algorithm, provides superior voltage control capabilities, ensuring stable and reliable

operation of the AC microgrid. The proposed method demonstrates smoother and faster

transient performance in terms of active power compared to traditional methods. The

adaptive and intelligent features of this integrated approach contribute to enhanced

stability, efficiency, and responsiveness in managing the complexities of modern power

systems. Further research and real-world implementations will likely unveil additional

benefits and opportunities for refinement.
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