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Abstract 

Objectives: The "Secureye" project is designed to enhance military surveillance by quickly detecting 
potentially dangerous or unauthorized items, such as weapons and armored vehicles, thereby helping to 
prevent conflicts and casualties among military personnel. Methods: The system leverages the YOLO 
(You Only Look Once) model for real-time object detection, chosen for its combination of high speed and 
accuracy. A comparison between Faster R-CNN and YOLOv5 revealed that YOLOv5 had a tenfold 
higher inference rate, making it the preferred choice for real-time detection in military applications. 
Findings: The system leverages the YOLO (You Only Look Once) model for real-time object detection, 
chosen for its combination of high speed and accuracy. A comparison between Faster R-CNN and 
YOLOv5 revealed that YOLOv5 had a tenfold higher inference rate, making it the preferred choice for 
real-time detection in military applications. Novelty: These features, combined with an optimized alert 
system and detailed report generation, position "Secureye" as a significant advancement in military 
surveillance technology. 
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1. Introduction  
Military object detection technology is a backbone in modern defense strategies, fostering advanced 
surveillance and threat mitigation.  Recent research, exemplified by studies like "Real-time Object 
Detection for Military Applications using YOLO Algorithm,” has delved deeply into developing real-
time object detection systems tailored specifically for military use. Innovations such as YOLO (You 
Only Look Once) have revolutionized object recognition by significantly improving accuracy and speed, 
enabling swift identification of potential threats such as weapons and vehicles [2]. The integration of 
these cutting-edge systems into military surveillance frameworks ensures rapid responses to hostile 
activities. Concurrently, open-access platforms like MDPI serve as crucial hubs, fostering collaboration 
among researchers and facilitating the exchange of findings on military object detection innovations. 
This fusion of military focused object detection technologies with open-access scholarly platforms is 
shaping the future of defense strategies, contributing to a more secure global landscape.  
 
Neural networks have emerged as one of the most prominent algorithms today, showcasing superior 
accuracy and speed in processing large amounts of data over time. At their core, neurons and activation 
functions form the fundamental building blocks of any neural network, typically comprising input and 
output nodes along with hidden layers. While traditional neural networks consist of a single hidden layer, 
deep neural networks, characterized by multiple hidden layers, have gained traction. These deep 
architectures, such as Convolutional Neural Networks (CNNs), have found widespread application in 
tasks like object detection and image processing, demanding substantial processing power.  
 
Advanced techniques like Faster R-CNN and YOLO (You Only Look Once) have been developed to 
enhance object detection, including applications like identifying cars in aerial images. A detailed 
comparison between Faster R-CNN and YOLOv3 has revealed that YOLOv3 surpasses Faster RCNN in 
various performance metrics and suitability for different applications and environments. This 
understanding aids in selecting the most appropriate model for specific use cases.[1]  
 
Computer vision is a collaboration that has received great attention in recent years (since CNN), with 
self-driving cars at the forefront, and its importance is visual inspection. The difference between object 
search algorithms and classification algorithms is that in search algorithms, we try to draw bounding 
boxes around objects of interest to find them in the image. Also, in case of object detection you may not 
need to just draw the bounding box. There may be many boxes representing different objects in the 
image, and you cannot know their number in advance. The main reason why this problem cannot be 
solved by creating a network communication model and a fully connected process is that the length of 
the output process is different - not always, because it may not always be the number of times the item of 
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interest appears. A naive way to solve this problem is to obtain different regions of interest from the 
image and use CNN to classify objects in this region. The problem with this approach is that objects of 
interest may have different locations and different locations in the image. Therefore, you should select 
large areas that may cause the calculation to fail. For this reason, algorithms such as faster R-CNN and 
YOLO have been developed to quickly detect these situations.  
 
Recent years have seen remarkable advancements in deep learning, particularly in computer vision, with 
techniques like Convolutional Neural Networks (CNNs) playing a pivotal role in object detection tasks. 
CNNs, inspired by the visual processing mechanisms of living organisms, were initially proposed by 
Fukushima in 1980 and subsequently refined by LeCun. They excel in processing multi-dimensional 
arrays of data, such as the color channels of an image.  
CNNs leverage four key concepts to exploit the characteristics of natural signals:  

1. Local connections  
2. Shared weights  
3.   Pooling  
4.   Multiple layers  

 
The typical architecture of a CNN comprises several layers:  

1. Convolutional layers: These layers extract features from input data, with early layers detecting 
low level features like edges and corners, while deeper layers capture high-level features such as 
objects and structures. Each unit in a convolutional layer is connected to a local patch in the 
previous layer through a set of kernels, followed by a nonlinearity operation like ReLU (rectified 
linear unit).  

2. Pooling layers: Positioned between convolutional layers, pooling layers reduce dimensionality 
and enhance invariance to small shifts and distortions.  
Each unit computes the maximum value within a local patch of units in a feature map.  

3. Fully connected layers: Typically located towards the end of the network, these layers summarize 
information from lower-level layers for final decision-making. However, as they contain a 
significant number of parameters, overfitting is a  

concern, often addressed using dropout.  
 
Since the breakthrough success of AlexNet in the 2012 ImageNet Large-Scale Visual Recognition 
Challenge (ILSVRC), numerous CNN architectures have been developed, including VGGNet, 
GoogLeNet, and ResNet.  

1. AlexNet, pioneered by Krizhevsky et al., marked a significant milestone by employing 
nonsaturating neurons, GPU acceleration, and dropout to prevent overfitting.  

2. VGGNet, winner of the ILSVRC 2014 competition, is renowned for its simplicity, featuring 
architectures like VGGNet-16 with 13 convolutional layers, five pooling layers, and three fully 
connected layers.  

3. GoogLeNet distinguishes itself by using filter kernels of different sizes within the same layer, 
preserving spatial information, and reducing network parameters to combat overfitting.  

4. ResNet, awarded the Best Paper at the Conference on Computer Vision and Pattern Recognition 
in 2016, introduced the concept of residual learning, enabling the training of extremely deep 
networks efficiently, leading to superior generalization performance and victories in various 
prestigious competitions.[3]  

 
YOLO: YOLO or You Only Look Once is an object detection algorithm much different from the region-
based algorithm seen above. In YOLO a single convolutional network predicts the bounding boxes and 
the class probabilities for these boxes.  
YOLO works by taking an image and split it into a side x side grid, within each of the grid we take m 
bounding boxes. For each of the bounding box, the network outputs a class probability and offset values 
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for the bounding box. The bounding boxes having the class probability above a threshold value is 
selected and used to locate the object within the image.  
YOLO is orders of magnitude faster (45 frames per second) than other object detection algorithms. The 
limitation of YOLO algorithm is that it struggles with small objects within the image, for example it 
might have difficulties in detecting a flock of birds. This is due to the spatial constraints of the 
algorithm.[4]  
  

 
Figure 1: YOLO Bounding Box, Object detection and localization 

  
Faster R-CNN vs YOLO: The study [2] utilized a common dataset for both YOLOv5 and Faster R-
CNN, containing various spacecraft features such as solar panels and satellite bodies. These features 
were required to be identifiable by humans and relate to real-life satellite components. Each image in the 
dataset was unique. The objective was to evaluate and ascertain the superior algorithm for detecting 
anomalies in space. Results from the testing dataset favored Faster R-CNN over YOLOv5, although 
YOLOv5 exhibited a tenfold higher inference rate, rendering it the preferred choice for real-time object 
detection in this context. A similar investigation by [4] yielded comparable findings, with YOLO proving 
to be a cleaner and more efficient object detection solution, particularly due to its end-to-end training 
capability. While both algorithms demonstrated reasonably high accuracy, YOLO occasionally surpassed 
Faster R-CNN in accuracy, speed, and efficiency. Its single-shot approach and ability to directly train on 
full images make it suitable for real-time detection in both images and videos. YOLO's superior 
generalization of objects compared to Faster R-CNN positions it as a more dependable, swift, and robust 
algorithm. These prominent advantages strongly advocate for its adoption.  
 
With YOLO established as the preferred algorithm for the project, the remaining consideration is 
selecting the appropriate version. YOLO has evolved through various iterations, including YOLOv1, v2, 
v3, v4, v5, v6, v7, and v8. Notably, versions v3, v5, and the latest, v8, stand out. Benchmark tests 
conducted by Stereolabs concluded that all three versions (v5, v7, and v8) perform well on the Jetson 
Orin platform.[5]  
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Figure 2: Comparison between YOLO versions 

2. Methodology  
 
2.1 Data Collection and Preparation  
Considering the nature of the project finding large datasets seemed difficult thus the process chosen was 
to integrate several smaller datasets to form one large dataset to fit all our needs. To start, curated a 
massive variety of datasets from different domains. After having Skimmed through them to identify those 
that are exactly suitable for the task's needs and purposes. Download them in the compatible format and, 
for instance, YOLO, to fit the annotation and training pipeline. Using the data set acquired, classes and 
annotation had to be redone to fit our needs and help standardize the process.  

 

 
Figure 3: Sample annotated image 

 
2.2 Model training:  
The training process involved configuring the YOLO model with specific parameters tailored to the 
characteristics of the dataset and the requirements of the use case.  

  
Training settings for YOLO models refer to the various hyperparameters and configurations used to train 
the model on a dataset. These settings can affect the model's performance, speed, and accuracy. Some 
common YOLO training settings include the batch size, learning rate, momentum, and weight decay.  
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2.2.1 Some useful parameters:  
  

• Epochs: Total number of training epochs. Each epoch represents a full pass over the entire dataset. 
Adjusting this value can affect training duration and model performance.  

  
• Device: Specifies the computational device(s) for training: a single GPU (device=0), multiple 

GPUs (device=0,1), CPU (device=cpu), or MPS for Apple silicon (device=mps).  
  
The model training was conducted using the YOLO architecture with the specified dataset and training 
parameters. The training process involved optimizing the model's weights and biases to minimize the loss 
function, thereby improving the model's ability to accurately detect objects of interest.  

  
2.2.2 Validation and prediction:  
  

• Inference Sources: YOLO can process different types of input sources for inference. The sources 
include static images, video streams, and various data formats. By using Streaming for processing 
videos or live streams it creates a generator of results instead of loading all frames into memory.  

 
• image path, video file, directory, URL, or device ID for live feeds. Supports a wide range of 

formats and sources, enabling flexible application across different types of input. conf float 0.25 
Sets the minimum confidence threshold for detections. Objects detected with confidence below 
this threshold will be disregarded. Adjusting this value can help reduce false positives.  

 
• Performance Evaluation: The trained model's performance was evaluated using various metrics 

such as precision, recall, and mean average precision (mAP) to assess its effectiveness in detecting 
objects in surveillance environments.  

 
 2.2.3 How to improve training. How v8 assists in training the dataset effectively:  
  
The output provided during the training of YOLO consists of several key metrics and parameters that are 
essential for evaluating the model's performance and progress throughout the training process. Let's break 
down each parameter and its significance in improving the training:  

  
• Epoch: Represents one complete pass through the dataset during training.  

 
• GPU_mem: Indicates GPU memory utilization to prevent memory overflow.  

 
• box_loss, cls_loss, dfl_loss: These parameters represent the loss values calculated during the 

training process. Loss functions quantify the difference between the predicted output of the model 
and the ground truth labels. Lower values of box_loss, cls_loss, and dfl_loss indicate better 
convergence of the model during training.  

  
• Instances: Total number of objects detected in the training dataset during the epoch.  

 
• Size: Input image size, impacting the model's ability to detect objects at different scales.  

 
• Performance Metrics: Precision (P), Recall (R),  

mAP50, mAP50-95:  
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These metrics evaluate the performance of the trained model in terms of object detection accuracy. 
Precision measures the ratio of correctly predicted objects to the total predicted objects, while recall 
measures the ratio of correctly predicted objects to the total ground truth objects. mAP (mean Average 
Precision) is a composite metric that considers precisionrecall curves across different confidence 
thresholds. mAP50 and mAP50-95 represent the mean Average Precision calculated at different IoU 
(Intersection over Union) thresholds.  
  
Improvements in these parameters, such as reducing loss values, increasing the number of instances 
detected, optimizing input image size, and enhancing precision, recall, and mAP scores, contribute to a 
more accurate and robust object detection model.  

 2.2.4 Model Visualization:  
  

• Confusion Matrix: A table summarizing the model's predicted versus actual classifications, 
helping visualize its performance in terms of true positives, true negatives, false positives, and 
false negatives.   

  
• F1 Curve: A graphical representation of the F1 score against different threshold values, aiding in 

determining an optimal threshold for classification by visualizing the trade-off between precision 
and recall.  

  
• P Curve (Precision-Recall Curve): A curve plotting precision against recall for varying threshold 

values, providing insights into the model's performance in identifying true positives while 
minimizing false positives.  

  
• PR Curve (Precision-Recall Curve): Similar to the P Curve, but emphasizing the precisionrecall 

trade-off for different threshold values, helping visualize the model's performance in terms of 
precision and recall.  

  
• R Curve (Recall Curve): A curve plotting recall against different threshold values, illustrating the 

model's ability to correctly identify positive instances while minimizing false negatives.  
 
2.2.5 Export Formats:  
  
Among the export formats for the YOLO model, the most popular ones are generally those that cater to 
widely used frameworks and deployment scenarios. Based on the popularity and widespread adoption in 
the deep learning community, the following export formats are considered among the most popular:  
  

• PyTorch: Preferred for PyTorch-based applications due to its widespread adoption  
  

• ONNX: Offers interoperability across frameworks and hardware platforms.  
  

• TensorRT: Optimized for NVIDIA GPUs, ideal for real-time applications.  
  

• TF Lite: Efficient for mobile and embedded devices.  
  

• TF.js: Enables client-side object detection in web applications.  
  
 2.2.6 Working with the results:  
  

• Image Processing Pipeline Overview:  
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1. Input Image: Initially provided in JPG/JPEG format.  

 
2. Annotated Frame: After processing, the results are plotted onto the input image, producing an 

annotated_frame, typically represented as a NumPy array with annotations.  
 

3. Encoded Image: The annotated_frame is then encoded into a bytes object called buffer, utilizing 
the JPEG format for compression, commonly used for image storage.  

 
4. Base64 Encoding: Finally, the encoded image data in buffer is base64 encoded to generate 

base64_data, a string representation of the image suitable for transmission over text-based 
protocols like JSON.  

  
• Useful parameters of results which affect the prediction: Optimize object detection with 

customizable parameters like confidence and IoU thresholds to filter detections and reduce false 
positives. Fine-tune detection by filtering specific class IDs and enabling features like class-
agnostic NMS for multi-class scenarios. Add test-time augmentation while visualizing model 
features for debugging and interpretation. Streamline video processing with options like stream 
buffering and frame stride adjustments to balance speed and temporal resolution.  

  
• Customized Output Formats: Tailor output formats to meet specific application requirements, 

allowing flexibility in how detection results are presented or utilized downstream. This 
customization could include options for different file formats, structured data formats, or 
customizable metadata.  
  

• Dynamic Model Adaptation: Implement mechanisms for dynamic adjustment of model parameters 
or architectures based on evolving requirements or environmental conditions. This adaptability 
enables the model to effectively handle changes in data distribution, varying levels of complexity 
in input scenes, or specific operational contexts, ensuring performance across different scenarios 
without the need for manual intervention.  
 

Figure 4: Workflow of the entire process 
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2.3 Integration 

The project employs modern technology for frontend integration with the model, facilitating interaction 
with the system which involves state management. With the integration of strong user authentication and 
authorization processes are streamlined, ensuring security and user management functionalities. 
Furthermore, RESTful API frameworks is utilized on the backend, making the system with API 
capabilities and secure and scalable communication between the frontend and backend components. It 
makes use of the power of the YOLO object detection model to accurately detect and classify objects 
within uploaded images, enhancing the overall functionality and user experience of the application. 

2.3.1 Instantiating the YOLO Model 
Before any process is to be done the YOLO model is instantiated with the pre-trained weights loaded 
from the specified file path. This model is responsible for predicting objects in images with a confidence 
threshold of 0.5.   
  
2.3.2 Image Detection 
Users have the capability to provide an image input, which is subsequently rendered by the frontend and 
forwarded to the model via an API call for processing. Initially, both the image container and result states 
are set to null. Upon rendering of an image, the container state is updated, indicating readiness for 
processing. Upon completion of the detection process, the resulting image is transmitted back to the 
frontend in JSON format, containing values and labels of the detected objects presented in a tabular 
format. 

  

 
Figure 5: Report Section 

  
2.3.3 Video Processing and Detection 
The backend mechanism established to facilitate the processing of uploaded videos, enables real-time 
object detection. Upon receiving a video file, the system initiates processing by temporarily storing the 
video and extracting frames for further analysis. Each extracted frame undergoes object tracking utilizing 
the pre-trained model, with a specified confidence threshold applied. Tracked objects are annotated on 
the frames, which are subsequently transmitted to the frontend in real-time, facilitated by a server-to-
client push notifications’ endpoint. After the complete processing of the video, a report is being provided 
containing the tracked objects and a timestamp of when the object was detected. Due to this function, the 
scripts should be done is a well-structured format to prevent mixing of any data, which is to be sent to the 
frontend. The fact that the backend takes a bit of time to send the required data, the output video streams 
are down-framed to provide smooth experience.  
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2.3.4 Webcam Processing 
In alignment with the offline video detection system, a real-time object detection capability has been 
integrated to handle webcam streams. Frames captured from the webcam undergo processing utilizing the 
same sophisticated object tracking model employed for offline videos. The annotated frames, indicating 
tracked objects, are then continuously streamed to the frontend in real-time to ensure seamless and 
uninterrupted delivery of annotated frames to the frontend, a server-to-client push notification endpoint 
has been established. This endpoint serves as a conduit for the dynamic streaming of annotated frames, 
allowing users to observe tracked objects as they appear in the webcam feed in real-time. Furthermore, a 
real-time report generation has also been provided, which include the tracked object, and its real-world 
timestamp. To further supervise the system, all the frames which include the involvement of the tracked 
object are being saved as a video clip in the system.  

3. Results and Discussion  
3.1 Comparison 
A comparison was conducted between different YOLO weights underwent training for 300 epochs and 
for 200 epochs. This difference in training duration was attributed to the observations made during early 
training process. 

 
Figure 6: training/box loss 1 

  
However, upon evaluation, it was found that the later used version gave better results. 
 

 

 
Figure 7: Confusion matrix of different weights 
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3.2 Optimization   

3.2.1 Heavy Training 

Due to the complex nature of the project, it necessitates extensive training to achieve satisfactory results. 
The analysis from Fig X underscores this requirement, revealing that even with a model of acceptable 
quality was challenging to obtain within 200 epochs. This highlights the need for prolonged training 
durations to ensure the model's accuracy and effectiveness in real-world applications.  

3.2.2 Model Preprocessing 

To enhance the efficiency of the model, specific preprocessing steps were executed during the initial 
stages of dataset creation. These steps included resizing and segmentation, aimed at optimizing the 
dataset for training. By performing preprocessing tasks beforehand, the model can focus more effectively 
on learning relevant features during training, thereby streamlining the overall optimization process.  

3.2.3 Dataset Composition 
The dataset composition is designed to encompass a comprehensive range of scenarios. Each class within 
the dataset comprises approximately 1000 images, divided into 500 close-up shots, 250 long-distance 
shots, and 250 shots capturing the object from various angles. This diverse representation enables the 
model to generalize better and perform effectively across different contexts. Moreover, the emphasis is 
on incorporating images from real-life environments rather than relying solely on stock imagery with 
plain backgrounds ensures that the model is trained on data that closely mirrors real-world conditions, 
thereby enhancing its robustness and adaptability.  

4. Conclusion 

The "Secureye" project represents a significant step forward in enhancing security against military 
intrusions. By leveraging the YOLO model, the system ensures precise object detection across various 
input streams and provides real-time alerts for potential threats. Testing has demonstrated substantial 
efficiency gains, with a 30% reduction in streaming response time and a mean Average Precision (mAP) 
score of 0.85, confirming its high accuracy. 

Despite these achievements, the project faces certain limitations. The lack of large datasets and extensive 
training requirements are notable challenges, as is the reliance on stock imagery. Future work should 
focus on gathering comprehensive datasets from real-life military environments to improve the model's 
performance. Optimizing training processes could also enhance efficiency. 

Additionally, the YOLO model has specific gaps to address. It struggles with underrepresented classes 
like handguns and tanks, potentially due to limited dataset diversity. Complicated backgrounds can cause 
misidentifications or missed detections, and objects that are only partially visible in the scene may be 
incorrectly detected or not detected at all. Addressing these issues requires improved data diversity and 
enhanced detection algorithms to increase the system's reliability in various scenarios. Overall, YOLO's 
ability to balance speed with accuracy has advanced object detection technology, providing novel 
solutions for military surveillance. By addressing its limitations, the "Secureye" project can continue to 
improve security in sensitive defense environments. 
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