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consideration. In order to enhance the demonstrations, we included examples.  
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1. Introduction 
 

Fractional calculus is an extension of classic calculus that allows the definition of derivatives and 
integrals for any real order. Fractional calculus has important applications in both pure mathematics 
and a number of practical applications. Fractional calculus has drawn a lot of attention due to its 
numerous applications in a wide range of sciences, including population dynamics, physics, 
chemistry, biophysics, control theory, capacitor theory, signal processing, and electromagnetics, 
among many others. Fractional differential equations are better at modelling phenomena than classical 
ones, and this is especially true for fractal theory, chaos, and bioengineering [13]. In the field of 
studying the existence and uniqueness of solutions to the boundary value problems of fractional 
derivatives, an extensive amount of research has been conducted and is available in [2,5,11,16,20]. 
Furthermore, recent studies have shown that fractional differential equations are a more useful tool for 
characterizing the dynamics of a wide range of systems. For more details, see [7,12,14,15,17-19]. 

This article aims to investigate the necessary conditions that lead to the presence of positive solutions 
for nonlinear fractional order derivative, together with the boundary conditions such as: 

 
𝐷𝛼  𝑦(𝑡) = 𝑓(𝑡,𝑦) = 0,    𝑡 ∈ (0,1),                                                                                                       
(1) 

𝑦(0) = 𝑦(1) = 0,
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where 𝑓: [0,1] × [0,∞) → [0,∞) is continuous, 1 < 𝛼 ≤ 2 and 𝐷𝛼 represents the  𝛼𝑡ℎ order R-L type 
differential operator. 

In a cone in a Banach space, we use Schauder's FPT [9] and Avery-Peterson's FPT [3] as the main 
tool for FBVP. 
 
Several researchers have used FPTs to show the existence of positive solutions for nonlinear 
fractional differential equations (FDEs) in the domains of ordinary differential equations, difference 
equations, and time-scale dynamics equations (see references [1,4] for more details). 

 

In [2], B. Ahmad and J. J. Nieto used Leray-Schauder's FPT of nonlinear alternative to condense the 
mapping principle for nonlinear FBVP and demonstrate the necessary condition for existence and 
uniqueness of nontrivial solutions, 

𝐷𝛼  𝑦(𝑡) =  𝑓(𝑡, 𝑦), 𝑡 ∈  (0, 1), 

with boundary conditions, 

 𝐷𝛼−2 𝑦(0) =  𝛾0 𝐷𝛼−2𝑦(𝑇), 

  𝐷𝛼−1𝑦(0)  =  𝜇0 𝐷𝛼−1 𝑦(𝑇),  

where  𝜇0, 𝛾0  ≠  1, 1 < 𝛼 ≤ 2. 

In [8], C. Goodrich has demonstrated the following BVP having at least three solutions,  
 

𝐷𝛼  𝑦(𝑡) = 𝑓(𝑡,𝑦) = 0,    𝑡 ∈ (0,1), 

and 

𝑦𝑖(0) = 0, 𝑖 = 0,1,2, … ,𝑛 −  2, 

𝐷𝛾  𝑦(1) = 0, 2 ≤ 𝛾 ≤ 𝑛 −  2, 

where 𝑛 −  1 < 𝛼 ≤ 𝑛, 𝑛 > 3, 𝑛 ∈ 𝑁, 𝑓: 𝑖 × [0,∞) → [0,∞) is a continuous function.  
 

In [10], E. R. Kaufmann and E. Mboumi used Krasnosel'skii FPT and Leggett-William's FPT to show 
that there are multiple positive solutions for the nonlinear FBVP,  
 

𝐷𝛼  𝑦(𝑡) + 𝑎(𝑡)𝑓(𝑦) = 0, 𝑡 ∈ (0,1), 𝛼 ∈ (1,2], 

with 

𝑦(0) = 0, 𝑦′(1) = 0. 

Our motivation comes from the work done in [2,6,8,10,21, 22]. 

There are four sections. The introduction is in Section 1. In Section 2, we cover several kinds of 
fundamental definitions, concepts, lemmas, and theorems related to FDEs and concluded two well-
known fixed-point theorems. We construct the main results in Section 3 that provide sufficient 
conditions to ensure the existence of multiple positive solutions to the FBVP (1) using Schauder's and 
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Avery-Peterson's FPT. We present some examples to support our results. The conclusion is presented 
in Section 4. 
 

 
2. Basic Definitions and Concepts 

 

2.1. Definition [12]: If 𝛼 is a real number satisfying 𝛼 ∈ �𝑛 –  1,𝑛� and 𝑛 is a positive integer, then 
the 𝛼𝑡ℎ  R-L fractional integral of 𝑦(𝑡): [0,∞] → 𝑅 may be expressed as 𝐼𝛼 ,   

𝐼𝛼 = 1
𝛤(𝛼) ∫ (𝑡 −  𝑠)𝛼−1  𝑦(𝑠)𝑑𝑠𝑡

0  , 

provided that the RHS converges. 

2.2. Definition [12]: Let 𝑛 be a positive integer and let 𝛼 be a real number such that 𝛼 ∈ (𝑛 − 1,𝑛],
𝛼𝑡ℎ  R − L fractional derivative of  𝑦(𝑡): [0,∞] → ℛ is represented by 𝐷𝛼𝑦(𝑡), 

𝐷𝛼𝑦(𝑡)  =
1

𝛤(𝑛 −  𝛼)
𝑑𝑛

𝑑𝑡𝑛
 �(𝑡 −  𝑠)𝑛−𝛼−1 𝑦(𝑠)𝑑𝑠,
1

0

  

provided that the RHS converges.  

2.3. Definition: Let 𝑩 represent a Banach space over ℛ. If  

(𝑖) 𝜇𝑢 +  𝜂𝑣 ∈ 𝒫,   𝜇, 𝜂 ≥  0  ∀  𝑢, 𝑣 ∈ 𝒫, and 

(𝑖𝑖) 𝑢 ∈ 𝒫,−𝑢 ∈ 𝒫 =⇒ 𝑢 = 0, then  𝒫 is a closed nonempty subset of 𝑩. 

 2.4. Definition: 𝛷 ∶  𝒫 →  ℛ+ which is nonnegative continuous function on a cone 𝒫 of a real 
Banach space 𝑩 is said to be nonnegative continuous concave functional if  

𝛷(𝑡𝑢 +  (1 −  𝑡)𝑣) ≥  𝑡𝛷(𝑢) +  (1 −  𝑡)𝛷(𝑣)   ∀ 𝑢, 𝑣 ∈   𝒫, 𝑡 ∈  [0, 1]. 

Similarly, 𝜙 ∶  𝒫 →  ℛ+ which is a nonnegative continuous function on a cone 𝒫 of a real Banach 
space 𝑩 is said to be nonnegative convex functional if 

𝜙(𝑡𝑢 +  (1 −  𝑡)𝑣) ≤  𝑡𝜙(𝑢) +  (1 −  𝑡)𝜙(𝑣)  ∀ 𝑢, 𝑣 ∈  𝒫, 𝑡 ∈  [0, 1]. 

2.5. Definition: An operator is known to as being completely continuous if it is continuous and 
translates bounded sets into precompact sets.  

2.6. Lemma [9]: For 𝐷𝛼  𝑦(𝑡)  =  0 along with 𝑛 −  1 < 𝛼 ≤ 𝑛 ,𝑛 > 1, then the general solution 
𝑦(𝑡) is given by 

𝑦(𝑡) =  𝑒1𝑡𝛼−1 + 𝑒2𝑡𝛼−2+ . . . + 𝑒𝑛𝑡𝛼−𝑛 , 𝑒𝑖  ∈  ℛ, 𝑖 =  1, 2, . . . ,𝑛. 

 2.7. Lemma [9]. Following equality holds for 𝑦(𝑡), for assumed 𝛼 >  0, 

  𝐼𝛼    𝐷𝛼   𝑦(𝑡)  =  𝑦(𝑡)  + 𝑒1𝑡𝛼−1   +  𝑒2𝑡𝛼−2 + . . . + 𝑒𝑛𝑡𝛼−𝑛  , 

 where 𝑒𝑖 ∈  ℛ, 𝑖 =  1, 2, . . . ,𝑛.  
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 2.8. Theorem: (Schauder’s FPT [9]) Suppose that 𝑩 is a Banach space, and let Ω be a non-empty, 
closed, bounded, convex subset of 𝑩. Let 𝑇 ∶  Ω →  Ω be an operator that is completely continuous. 
As a consequence, 𝑇 has at least one fixed point in.  

We will employ the notations mentioned below in accordance with Avery and Peterson [3]. In this 
case, we will examine two nonnegative convex functionals, 𝜙 𝑎𝑛𝑑 𝛩, as well as a nonnegative. Let us 
consider two nonnegative convex functionals, 𝜙 and 𝛩 and a nonnegative continuous concave 
functional be 𝛷 on a cone 𝒫, and let a nonnegative continuous functional on cone 𝒫 be 𝜓. Thus, for 
the positive numbers 𝑎1,𝑎2, 𝑎3 and 𝑎4, we set the following: 
 
   𝒫(𝜙,𝑎4) = {𝑦 ∈ 𝒫:𝜙(𝑦) < 𝑎4}; 

   𝑃(𝜙,𝑎4)����������� = {𝑦 ∈ 𝒫:𝜙(𝑦) ≤ 𝑎4}; 

   𝒫(𝜙,𝛷,𝑎2,𝑎4) = {𝑦 ∈ 𝒫: 𝑎2 ≤ 𝛷(𝑦),𝜙(𝑦) ≤ 𝑎4}; 

  𝒫(𝜙,𝛩,𝛷,𝑎2,𝑎3, 𝑎4) = {𝑦 ∈  𝒫: 𝑎2 ≤ 𝛷(𝑦),𝛩(𝑦) ≤ 𝑎3,𝜙(𝑦) ≤ 𝑎4};  

ℛ(𝜙,𝜓,𝑎1,𝑎4) = {𝑦 ∈ 𝒫: 𝑎1 ≤ 𝜓(𝑦),𝜙(𝑦) ≤ 𝑎4}. 

2.9. Theorem: (Avery and Peterson’s FPT [3]) Consider B be a real Banach space and  𝒫 be a cone in 
B. Let on cone   𝒫, 𝜙 and 𝛩 be nonnegative continuous convex functionals, assume that 𝛷 be a 
nonnegative continuous concave functional on cone  𝒫, and let 𝜓 be a nonnegative continuous 
functional on  𝒫 in a real Banach space B satisfying 𝜓(𝑘𝑦)  ≤  𝑘𝜓(𝑦) for 0 ≤  𝑘 ≤  1, that is, for 
positive numbers  𝑁 ���and 𝑎4, 

𝛷(𝑦)  ≤  𝜓(𝑦) and ||𝑦||  ≤  𝑁�𝜙(𝑦)  ∀ 𝑦 ∈ 𝒫(𝜙,𝑎4).  

Let 𝑇: 𝒫(𝜙, 𝑎4) ������������ →  𝒫(𝜙,𝑎4)����������� is completely continuous. Let us assume that there exist some constants 
𝑎1,𝑎2,𝑎𝑛𝑑 𝑎3 with 𝑎1 <  𝑎2 such that 

(𝐵1): {𝑦 ∈ 𝒫(𝜙,𝛩,𝛷,𝑎2,𝑎3,𝑎4):𝛷(𝑦) > 𝑎2} ≠ 0 and 𝛷(𝑇 𝑦) > 𝑎2 for 𝑦 ∈ 𝒫(𝜙,𝛩,𝛷,𝑎2,𝑎3,𝑎4); 

(𝐵2): 𝛷(𝑇 𝑦) > 𝑎2 for 𝑦 ∈ 𝒫(𝜙,𝛷,𝑎2,𝑎4) with 𝛩(𝑇 𝑦) >  𝑎3; 

(𝐵3): 0 ∉  ℛ(𝜙,𝜓,𝑎1,𝑎4) and 𝜓(𝑇 𝑦) < 𝑎1 for 𝑦 ∈ ℛ(𝜙,𝜓,𝑎1 𝑎4) with 𝜓(𝑦) = 𝑎1. 

Then the operator 𝑇: 𝒫(𝜙,𝑎4) ������������ →  𝒫(𝜙,𝑎4)����������� has atleast three fixed points 𝑦1,𝑦2,𝑦3 ∈ 𝒫(𝜙,𝑎4), such 
that 𝜙(𝑦𝑖) ≤  𝑎4, where 𝑖 =  1, 2, 3,   𝑎2 < 𝛷(𝑦1),   𝑎1 < 𝜓(𝑦1),𝛷(𝑦2)  < 𝑎2,𝑎𝑛𝑑 𝜓(𝑦3) <  𝑎1.  

3. Main Result 

We define a cone   𝒫 ⊂ 𝑩 by   
 
𝒫 = {𝑦 ∈ 𝑩:𝑦(𝑡) ≥ 0, 0 ≤ 𝑡 ≤ 1},                                                                                                      (2) 

 
a Banach space 𝑩 = (𝐶[0,1], ||. ||), with the norm �|𝑦|� = max0≤𝑡≤1 |𝑦(𝑡)|.                            

 
3.1.  Lemma [21]: For ,𝑦 ∈ 𝐶[0,1] and 𝛼 ∈ (0,2] then the unique solution for FBVP 

 

𝐷𝛼  𝑦(𝑡) + 𝑢(𝑡) = 0, 𝑡 ∈ (0,1)                                                                                                                   (3) 

𝑦(0) = 𝑦(1) = 0,                                                                                                                                                  (4) 
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is given by 

                              𝑦(𝑡) =  ∫ 𝐺(𝑡, 𝑠)𝑢(𝑠)𝑑𝑠,1
0  

where  

 

𝐺(𝑡, 𝑠) = 1
Γ(𝛼) �

[𝑡(1 − 𝑠)]𝛼−1 − (𝑡 − 𝑠)𝛼−1, 0 ≤ 𝑠 ≤ 𝑡 ≤ 1,
 

[𝑡(1 − 𝑠)]𝛼−1, 0 ≤ 𝑡 ≤ 𝑠 ≤ 1.
                                                             (5) 

 
3.2. Lemma [5]: 𝐺(𝑡, 𝑠) defined in (5), satisfying the conditions: 

(i) For (𝑡, 𝑠) ∈ (0,1), 0 < 𝐺(𝑡, 𝑠), 
(ii) min1

3≤𝑡≤
2
3
𝐺(𝑡, 𝑠) ≥ 𝛾(𝑠) max0≤𝑡≤1 𝐺(𝑡, 𝑠) =  𝛾(𝑠) 𝐺(𝑠, 𝑠),   for 𝑠 ∈ (0,1).          

Where 𝛾 ∈ 𝐶(0,1). 

The FBVP (1) has the solution by Lemma 3.1, 

𝑢(𝑡) =  ∫ 𝐺(𝑡, 𝑠)𝑓(𝑠,𝑦)𝑑𝑠,1
0                                                                                                                  (6) 

the operator 𝑇 ∶  𝒫 → 𝒫 is defined by  

𝑇 𝑦(𝑡)  =  ∫  10 𝐺(𝑡, 𝑠)𝑓(𝑠,𝑦(𝑠))𝑑𝑠.                                                                                                      (7) 

We employ the following notations for our convenience: 

𝑈 =  
1

∫  10 𝐺(𝑠, 𝑠)𝑑𝑠
 ,     𝑉 = �  

2/3

1/3

1
𝛾(𝑠)𝐺(𝑠, 𝑠)𝑑𝑠

                                                                                          (8) 

 
3.3. Lemma [5]: Suppose that 𝑓: [0, 1] × [0,∞) → [0,∞)  is a continuous function. Then, the 

operator 𝑇 that is provided in equation (7) is continuous. 
 

3.4. Theorem: For a continuous function 𝑓: [0, 1] × [0,∞) → [0,∞) that satisfies the Lipschitz 
condition in 𝑦, let's suppose that 𝑘 ∈  (0,𝑈) exists such that, for (𝑡,𝑦1), (𝑡,𝑦2) ∈  [0, 1]  ×  ℛ,  

|𝑓(𝑡,𝑦1)  −  𝑓(𝑡,𝑦2)|  ≤  𝑘|𝑦1 − 𝑦2|.                       

Therefore, the FBVP (1) has a unique solution. Moreover, there are no nontrivial solutions to FBVP 
(1) if 𝑓(𝑡, 0) ≡ 0.  

Proof: The function 𝑇:𝒫 → 𝒫, shown in equation (7),  

𝑇 𝑦(𝑡)  =  ∫  10 𝐺(𝑡, 𝑠)𝑓(𝑠,𝑦)𝑑𝑠,   𝑦 ∈  𝑩.  

The Green's function 𝐺(𝑡, 𝑠) is provided in equation (5). It is clear that if and only if 𝑦(𝑡) is a fixed 
point of  𝑇, then 𝑦(𝑡) provides the FBVP (1). 𝑇 is clearly completely continuous. 

We have for any 𝑦1 ,𝑦2 ∈ 𝑩 and 𝑡 ∈ [0, 1], 

|(𝑇 𝑦1  −  𝑇 𝑦2)(𝑡)|  =  �  
1

0
| 𝐺(𝑡, 𝑠)[𝑓(𝑠,𝑦1)  −  𝑓(𝑠, 𝑦2)]𝑑𝑠| 
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≤  �  
1

0

𝐺(𝑡, 𝑠)|𝑓(𝑠,𝑦1) −  𝑓(𝑠,𝑦2)|𝑑𝑠 

≤  �  
1

0

 𝐺(𝑠, 𝑠)𝑘 |𝑦1 −  𝑦2|𝑑𝑠 

≤  𝑘 ||𝑦1  −  𝑦2||  �  
1

0

 𝐺(𝑠, 𝑠)𝑑𝑠 

≤  𝑘
1
𝑈

||𝑦1  −  𝑦2|| 

≤  ||𝑦1  −  𝑦2||. 

Thus 𝑇 is a contraction mapping. Now, operator 𝑇 has a unique fixed point in B according to the 
Banach contraction mapping principle. As a result, the FBVP (1) has a unique solution. If 𝑓(𝑡, 0)  ≡
 0 on 0 ≤  𝑡 ≤  1, then 𝑦(𝑡)  ≡  0 is a solution to the FBVP (1). The uniqueness of solutions for 
FBVP (1) shows that there are no nontrivial solutions. The proof of the Theorem (3.4) is concluded. 

 
3.5. Theorem:  Assume that the function 𝑓 is continuous, 𝑓: [0, 1] × [0,∞) → [0,∞) and 𝑓(𝑡, 0) ≢ 0 

for 0 ≤ 𝑡 ≤ 1, for 

      lim
|𝑦|→∞ 

 |𝑓(𝑡,𝑦)| 
|𝑦|

 = 0,                                                                                                                                      (9) 

the FBVP (1), then has at least one nontrivial solution.  
 

Proof: Equation (12) of Theorem (3.5), for every 0 ≤ 𝑡 ≤ 1 and 𝑦 with |𝑦| ≥  𝑟1, there exists a 
𝑟1 >  0 such that |𝑓(𝑡,𝑦)| ≤  𝑈|𝑦|. It is certainly given  for 𝑓 that there is a constant 𝑛1  >  0 such 
that, on [0,1] × [−𝑟1, 𝑟1], |𝑓(𝑡,𝑦)| ≤  𝑛1. Assuming that 𝑟2  = max �𝑟1, 𝑛1

𝑈
 �, then, on [0, 1] ×

 [−𝑟2, 𝑟2],  

|𝑓(𝑡,𝑦)|  ≤  𝑈𝑟2, 

where 𝑈 is defined in (9). We choose  

Ω1 = {𝑦 ∈ 𝑩: ||𝑦|| ≤ 𝑟2} 

to be a closed, convex and bounded set in 𝑩. Next, for any 𝑦 ∈ Ω1, we obtain 

|(𝑇 𝑦)(𝑡)|  =  |  �  
1

0

𝐺(𝑡, 𝑠)𝑓(𝑠, 𝑦)𝑑𝑠| 

≤   �  
1

0

 𝐺(𝑡, 𝑠)|𝑓(𝑠,𝑦)|𝑑𝑠 

≤  𝑈𝑟2  �  
1

0

𝐺(𝑠, 𝑠)𝑑𝑠 

≤  𝑟2. 

Journal of University of Shanghai for Science and Technology ISSN: 1007-6735

Volume 26, Issue 5, May - 2024 207



7 
 

It follows that 𝑇(Ω1)  ⊂  Ω1. Then, 𝑇 has at least one fixed point in Ω1, according to the Theorem 
(2.8). Given that 𝑓(𝑡, 0) ≢ 0 on [0,1], it is obvious that 𝑦(𝑡)  ≡  0 is not a fixed point of operator 𝑇. 
Accordingly, FBVP (1) has at least one nontrivial solution. Thus, the Theorem (3.5) is proved.  

3.6. Example:  With 𝑓(𝑡, 𝑦)  =  µ(𝑐𝑜𝑠𝑦 +  𝑒2𝑡2), ∀ µ ∈  [0,𝑈], assume the FBVP (1). 

|𝑓(𝑡,𝑦1) − 𝑓(𝑡, 𝑦2)|  ≤  µ|𝑦1  −  𝑦2|  

for any (𝑡,𝑦1), (𝑡,𝑦2)  ∈  [0, 1) × ℛ. Theorem 3.5 states that there is only one solution to this 
problem. Since 𝑓(𝑡, 0)  ≢  0, the solution is also nontrivial. 

 
Now we will then determine whether FBVP (1) has at least three positive solutions. 
A sub-cone 𝒫∗ is defined for the cone 𝒫 in (3),  
where  
 
𝒫∗   =  {𝑦 ∈  𝑩: min𝑡∈�13,23�

 𝑦(𝑡) ≥  𝛾||𝑦|| }.                                                                                       

(10) 
 

3.7. Theorem: Let 𝑓: [0, 1] × [0,∞) → [0,∞) be continuous, and let 0 < 𝑎 < 𝑏 < 𝑐 = 𝑏
𝛾
≤ 𝑑 be 

positive constants. Then,  

(D1): 𝑓(𝑡,𝑦)  <  𝑈 𝑎, ∀ (𝑡,𝑦)  ∈  [0, 1] ×  [0, 𝑎],   

(D2): 𝑓(𝑡,𝑦) ≥  𝑉 𝑏, ∀ (𝑡,𝑦)  ∈  [1
3

, 2
3
] ×  [𝑏,𝑑],  

 
(D3): 𝑓(𝑡,𝑦) ≤  𝑈 𝑑,∀ (𝑡, 𝑦)  ∈  [0, 1]  ×  [0,𝑑], 

Thus, there are at least three positive solutions to the FBVP (1), 𝑦1, 𝑦2, and 𝑦3 ∈ 𝒫∗  and ||𝑦𝑖||  ≤  𝑑, 
for 𝑖 = 1,2,3, such that  𝜓(𝑦3) < 𝑎 < 𝜓(𝑦2) and 𝛷(𝑦2) < 𝑏 < 𝛷(𝑦1). 

Proof: A continuous concave functional 𝛷 on 𝒫∗  that is nonnnegative is defined as follows: 

𝛷(𝑦) =  min𝑡∈�13,23�
|𝑦(𝑡)|.  

Then we get  

𝛷(𝑦)  ≤  ||𝑦||. 

A nonnegative continuous function 𝜓 on cone 𝒫∗  is defined by  

𝜓(𝑦)  =  ||𝑦||. 

Let two nonnegative continuous convex functionals on a cone 𝒫∗ are 𝜙 and 𝛩, 

𝛩(𝑦)  =  𝜙(𝑦)  =  ||𝑦||. 

Consequently, 𝜓(𝑟𝑦) = ||𝑟𝑦|| ≤ |𝑟| ||𝑦|| = |𝑟| 𝜓(𝑦) = 𝑟 𝜓(𝑦), since 𝑟 ∈ [0, 1], 
 

  𝛷(𝑦) = min
𝑡∈�13,23�

|𝑦(𝑡)| ≤ �|𝑦|� = 𝜓(𝑦) 

Additionally, 𝑁� ≥ 1 may be found such that ||𝑦|| = 𝜙(𝑦) ≤ 𝑁�𝜙 (𝑦) ∀ 𝑦 ∈ 𝒫∗(𝜙,𝑑).������������ 
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 Next, we demonstrate that Theorem (2.9)'s criteria (B1)–(B3) are satisfied. Assume that 𝑇: 𝑩 → 𝑩 
given in (10). 𝑦(𝑡) is a solution of the FBVP (1), if and only if, 𝑦(𝑡) is a fixed point of 𝑇 in 𝑩. Lemma 
(3.2) states that 𝐺(𝑡, 𝑠) ≥ 0 for 𝑡, 𝑠 ∈ [0, 1], and 𝑓: [0, 1] × [0,∞) → [0,∞) implies that 𝑇�𝑦(𝑡)� ≥
 0 for all 0 < 𝑡 ≤ 1.  

We can demonstrate 𝑇:  𝒫∗ (𝜙,𝑑) �������������  →  𝒫∗ (𝜙,𝑑) �������������  based on the Lemma (3.3). Let for 𝑦 ∈  𝒫∗ (𝜙,𝑑)������������,
𝜙(𝑦)  =  ||𝑦||  ≤  𝑑 for all 𝑡 ≤ 0 and 0 ≤ 𝑦 ≤ 𝑑. Then, by (D3), 
 
                    ||𝑇 𝑦||  =  max𝑡∈[0,1] |(𝑇 𝑦)(𝑡)| =  max𝑡∈[0,1] |∫ 𝐺(𝑡, 𝑠) 𝑓(𝑠,𝑦)𝑑𝑠 |1

0  
                                                                 ≤  𝑓(𝑠, 𝑦) ∫  𝐺(𝑠, 𝑠)𝑑𝑠1

0  
                                                                          ≤  𝑑. 
 
This means that 𝑇: 𝒫∗ (𝜙,𝑑)������������ → 𝒫∗ (𝜙,𝑑)������������. The operator 𝑇: 𝒫∗ (𝜙,𝑑)������������ → 𝒫∗ (𝜙,𝑑)������������ must now be 
shown to be completely continuous. Given that 𝐺(𝑡, 𝑠) and 𝑓(𝑡,𝑦) for (𝑡, 𝑠) ∈  [0, 1] × [0,1] are 
continuous, 𝑇 must be continuous on cone a 𝒫∗.   

Assume that 

𝒫∗����𝑑  =  {𝑦 ∈ 𝒫∗: ||𝑦||  ≤  𝑑}, 

for 𝑑 > 0. 

Following that, we construct 𝐻1  = max 0≤𝑡≤1,
0≤𝑦≤𝑑 

𝑓(𝑠, 𝑦) . As we have  

 

                                           |(𝑇 𝑦)(𝑡)| =  � �  𝐺(𝑡, 𝑠)𝑓(𝑠,𝑦)𝑑𝑠 
1

0

� = 𝐻1 �𝐺(𝑠, 𝑠)𝑑𝑠
1

0

  

                                                               ≤ 𝐻1
𝑈

, 

demonstrates that the function 𝑇 has a uniform boundary on 𝒫∗
𝑑�����.  𝐺(𝑡, 𝑠) is uniformly continuous on 

[0,1] × [0, 1]since it is continuous on that interval. Consequently, for each 𝜖 >  0, there is a 𝛿 >  0 
such that, for any 𝑦 ∈ 𝒫∗

𝑑����� 𝑎𝑛𝑑 𝑡1, 𝑡2  ∈  [0, 1], with |𝑡1  − 𝑡2 |  <  𝛿,  |𝐺(𝑡1, 𝑠)  −  𝐺(𝑡2, 𝑠)|  <  𝜖. 
Then, 

                            |(𝑇 𝑦)(𝑡1)  −  (𝑇 𝑦)(𝑡2)|  ≤  ∫ |𝐺(𝑡1, 𝑠)  −  𝐺(𝑡2, 𝑠)| 𝑓(𝑠,𝑦(𝑠))𝑑𝑠 1
0   

                                                                       ≤  𝜖 𝐻1,  

𝑇(𝒫∗
𝑑�����) is equicontinuous, as this implies. As a consequence, the operator 𝑇(𝒫∗

𝑑�����) is relatively 
compact. 𝑇 is completely continuous by an application of the Arzela ̀-Ascoli Theorem. 
The function y(𝑡) = 𝑏+𝑑

2
= 𝑐 ∈ 𝒫∗(𝜙,𝛷,𝛩, 𝑏, 𝑐,𝑑)and 𝛷( 𝑏+𝑑)

2
>  𝑏, implies that 

{𝑦 ∈ 𝒫∗ (𝜙,𝛷,𝛩, 𝑏, 𝑐,𝑑): 𝛷(𝑦) >  𝑏} ≠ 0, for 𝑦 ∈  𝒫∗ (𝜙,𝛷,𝛩, 𝑏, 𝑐,𝑑) ∶  𝛷(𝑦)  >  𝑏}, we have 
𝑏 ≤  𝑦(𝑡) ≤ 𝑏

𝛾
  for 𝑡 ∈  [1

3
, 2
3
]. From assumption (D2),  

            𝛷(𝑇 𝑦) =  min𝑡∈�13,23�
�|𝑇(𝑦)|� 

                         ≥ min
𝑡∈�13,23�

�𝐺(𝑡, 𝑠) 𝑓(𝑠,𝑦)𝑑𝑠
1

0
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          ≥  �𝛾(𝑠)𝐿(𝑠)𝑓(𝑠,𝑦(𝑠))𝑑𝑠 
1

0

 

         >  𝑉 𝑏 ∫ 𝛾(𝑠)𝐺(𝑠, 𝑠)𝑑𝑠
2
3
1
3

  

          >  𝑏, 

shows that (B1) of Theorem (2.9) has been satisfied, which implies 𝛷(𝑇 𝑦) > 𝑏 ∀ 𝑦 ∈  {𝑦 ∈
 𝑃∗(𝜙,𝛷,𝛩, 𝑏, 𝑏

𝛾
,𝑑)}.  Additionally suppose that 𝑦 ∈ 𝒫∗(𝜙,𝛷, 𝑏,𝑑) and that 𝛩(𝑦) > 𝑐 = 𝑏

𝛾
.  

𝛷(𝑇 𝑦)  = min
𝑡∈�13,23�

(𝑇 𝑦)(𝑡)    ≥  𝛾 ||𝑇 𝑦||  =  𝛾𝛩(𝑇 𝑦)  >  𝛾𝑐 =  𝑏. 

Furthermore, (D2) and (B2) of Theorem (2.9) are significantly related. Hence, (B2) of Theorem (2.9) 
satisfied. 
The fact that 𝜙(0)  =  0 <  𝑏 clearly shows that 𝜙 ∈  ℛ(𝜙,𝜓, 𝑎,𝑑). Let 𝑦 be a point in ℛ(𝜙,𝜓, 𝑎,𝑑) 
and suppose that 𝜓(𝑦)  =  ||𝑦||  ≤  𝑎. Then by (D1), 

𝜓(𝑇 𝑦) = max
𝑡∈[0,1]

|�𝐺(𝑡, 𝑠) 𝑓(𝑠,𝑦)𝑑𝑠 |
1

0

   

            <  ∫ 𝐺(𝑠, 𝑠)𝑓(𝑠,𝑦)𝑑𝑠 1
0   

             <  𝑈 𝑎 �𝐺(𝑠, 𝑠)𝑑𝑠 
1

0

  

            <  𝑎. 

Accordingly, condition (B3) of Theorem (2.9) is satisfied. Consequently, according to Theorem (2.9), 
the problem (1) has at least of three positive solutions, 𝑦1,𝑦2, and 𝑦3, together with ||𝑦𝑖  ||  ≤  𝑑, 
where 𝑖 =  1, 2, 3, and 𝜓(𝑦3) < 𝑎 < 𝜓(𝑦2), 𝛷(𝑦2) < 𝑏 < 𝛷(𝑦1). This demonstrates the proof of the 
Theorem (3.7).  

 

3.8. Example:  Let  𝐷
3
2 𝑦(𝑡) + 𝑓(𝑡,𝑦) = 0, 𝑦(0) = 𝑦(1) = 0,      𝑡 ∈ (0,1),                            (11)                                           

Where, 

𝑓(𝑡,𝑦)  =  

⎩
⎪
⎨

⎪
⎧√𝑡

10
+ 10𝑦2 ,         ∀ 𝑦 ≤ 1,

9 +
√𝑡
10

+
𝑦
2

, ∀ 𝑦 > 1.
  

 
By simplification, we get 𝑈 ≈ 2.25676, 𝑁 ≈ 13.6649.  
By choosing 𝑎 = 1

12
, 𝑏 = 1

10
, 𝑐 = 10,𝑑 = 23

2
, 

𝑓(𝑡,𝑦) =
√𝑡
10

+ 10𝑦2 ≤ 0.15929 ≤   𝑈 𝑎 ≈  0.187311,       ∀ (𝑡, 𝑦)  ∈  [0, 1]  ×  �0,
1

12
� , 

𝑓(𝑡,𝑦) = 9 +
√𝑡
10

+
𝑦
2
≥ 9.120711 ≥  𝑉 𝑏 ≈  1.36649, ∀ (𝑡,𝑦) ∈ �

1
3

,
2
3
�  ×  �

1
10

,
23
2
� , 

𝑓(𝑡,𝑦) = 9 +
√𝑡
10

+
𝑦
2
≤ 14.85 ≤  𝑈𝑑 ≈  25.9624,                 ∀ (𝑡, 𝑦)  ∈  [0, 1] × �0,

23
2
� . 
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The FBVP (11) thus has at least three positive solutions, 𝑦1,𝑦2 𝑎𝑛𝑑 𝑦3, with 𝜓(𝑦3) < 1
2

< 𝜓(𝑦2) and 

𝛷(𝑦2) < 1
10

< 𝛷(𝑦2), according to Lemma (2.9). 
 
 
 

4. Conclusion 

We came to the conclusion that there are multiple positive solutions of fractional differential equation 
(FDE) for the time frame chosen in this study using fixed point theorems (FPTs) due to Schauder's 
FPT and Avery-Peterson's FPT. We intend to demonstrate that employing these FPTs and determining 
the appropriate interval provides positive results. We also demonstrated the theoretical conclusions 
using examples. We conclude, in brief, that fixed point theories are ideal tools to deal with classical 
differential equations as well as fractional differential equations (FDEs). 
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