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Abstract: This study explores the effects of powered versus passive prosthetic knees on gait 
biomechanics in transfemoral amputees with unilateral left leg amputation. Knee joint Kinetics 
during gait viz., Joint moment, Joint power and Ground reaction forces of the affected and 
unaffected legs were analyzed. Significant variations in hip joint activity were noted, highlighting 
compensatory adjustments in the intact limb. For the choice of prosthetics and optimal walking 
speeds (slow, medium and fast), machine learning techniques such as Long Short-Term Memory 
(LSTM) networks, Random Forests (RF), and Support Vector Machines (SVM) were employed 
and the results were compared. The LSTM model achieved an accuracy of 97% in predicting 
prosthetic type and walking speed, surpassing the 94% accuracy of SVM and the 95% accuracy of 
RF models. These results underscore the importance of personalized prosthetic solutions to 
improve gait efficiency and reduce compensatory movements, thereby enhancing long-term 
mobility and comfort.  
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1. Introduction 

A staggering statistic from the World Health Organization reveals that roughly 1.5 million people 
undergo amputation procedures every year, with a significant number involving the lower limbs. 
Among these, transfemoral amputation, the removal of the leg above the knee joint, presents a 
formidable challenge for individuals. Transfemoral amputation can lead to a multitude of physical 
limitations such as maintaining a steady posture and navigating uneven terrain becomes more 
challenging due to the loss of a limb and the altered biomechanics of walking. a significant decrease 
in walking speed and tiredness. The altered gait patterns and reduced balance can lead to a higher 
risk of falls and subsequent injuries. The body attempts to compensate for the missing limb, leading 
to changes in gait patterns that can put undue stress on other joints. Transfemoral amputation 
disrupts the body's natural biomechanics of walking. The missing limb and disrupted musculature 
significantly impact balance, stability, and overall gait efficiency. People with transfemoral 
amputations often experience a shorter stride length, decreased walking speed, and altered joint 
movements compared to unimpaired individuals. Additionally, the lack of sensory feedback from 
the missing limb can further complicate gait control and coordination. 
 
Prosthetic limbs play a vital role in helping individuals with transfemoral amputation regain 
mobility. There are two main categories of prostheses: passive and powered. Passive Prosthetic 
Limbs: These are the more traditional type of prosthesis. They rely on the user's remaining 
musculature and balance to function. Passive prosthetics are typically lighter and less expensive 
than powered alternatives. However, they lack the ability to actively replicate natural muscle 
function during walking. This limitation can lead to gait compensations, where individuals adjust 
their walking patterns to maintain balance and stability. These compensations, while necessary for 
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short-term walking, can put undue stress on the unaffected limb over time, potentially increasing 
the risk of secondary musculoskeletal problems. Powered Prosthetic Limbs: These technologically 
advanced prostheses are equipped with motors, sensors, and microprocessors. They aim to address 
the limitations of passive prostheses by mimicking natural joint movements and providing dynamic 
support during walking. Powered prosthetics can sense the user's gait and adjust their resistance or 
assistance, accordingly, potentially leading to a more natural and efficient gait pattern. However, 
powered prostheses are typically heavier, more expensive, and require more maintenance compared 
to passive options. 
 
Traditional passive prostheses lack the ability to actively replicate natural muscle function during 
walking. This can lead to gait compensations in the unaffected limb to maintain balance and 
stability. These compensations can put undue stress on the sound limb, potentially increasing the 
risk of secondary musculoskeletal problems. Powered prostheses, equipped with motors and 
sensors, aim to address these limitations by mimicking natural joint movements and providing 
dynamic support. However, choosing the most suitable prosthetic type and optimizing walking 
speed for each individual amputee requires a comprehensive understanding of their biomechanical 
gait patterns. 
 
In previous studies, the researchers examined the influence of prosthetic design on knee joint 
mechanics in transtibial and transfemoral amputees. Researchers explored whether prosthetic feet 
with increased push-off force could reduce stress on the knee joint, potentially mitigating the risk of 
osteoarthritis [1]. Few other research explores the link between prosthetic design and the 
development of knee osteoarthritis in young, unilateral transtibial amputees [2, 3, 4]. It compares 
passive and powered ankle-foot prostheses, investigating their influence on limb loading during 
walking. While powered prostheses offered push-off assistance and potentially mitigated some risk 
factors for knee osteoarthritis in the sound limb during early stages of prosthetic use, further studies 
are needed to understand their long-term effects and effectiveness across different amputee 
populations. 
 
Since machine learning is an advancement in research, many researchers used machine learning 
techniques for studying gait phases and different walking speeds [5, 6, 7]. In [8], machine learning 
technique is used to estimate gait phases in robotic transfemoral prostheses for different walking 
speeds. Two sensor setups are tested: one with just IMUs and another with added heel force 
sensors. Both setups achieved accurate gait phase estimation in healthy subjects at various speeds. 
However, including heel force data improved heel-strike detection accuracy. Future research should 
involve amputees and explore additional sensors for even more robust gait estimation in prosthetic 
control.  
Even though there is research on gait pattern prediction and classification, only few focus on foot 
pressure [9]. In [9], the findings show amputees put more pressure on their forefoot and midfoot 
compared to healthy individuals, suggesting compensatory gait mechanisms. Fall detection, shock 
absorption and balance controlling are also key aspects in designing prosthesis [10, 11, 12]. While 
walking, the influence of prosthetic foot compliance on joint kinetics and kinematics during 
walking in transtibial amputees. It enhances energy storage and release, leading to more natural gait 
patterns and reduced biomechanical stress on residual limb tissues [13]. 
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The present work aims in improving gait function in transfemoral amputees through a 
comprehensive investigation of biomechanics and the development of a personalized prosthetic 
solution.analyzing and comparing key biomechanical parameters, such as joint angle, power output, 
and moments, Ground reaction force (GRF) during gait using both powered and passive prostheses 
in transfemoral amputees. Then to investigate the presence and nature of gait compensations 
developed in the unaffected limb of transfemoral amputees. This may include analyzing differences 
in joint kinematics and kinetics compared to the unaffected limb in healthy individuals. Finally to 
develop machine learning models using Long Short-Term Memory (LSTM) networks, Random 
Forest and Support vector Machine networks and accurately predict the optimal prosthetic type and 
ideal walking speed based on an individual's biomechanical data. 

2. Materials and Methods 

In this study, a multidisciplinary approach is adopted to analyze and optimize prosthetic knee 
performance in transfemoral amputees using advanced machine learning techniques and 
biomechanical analysis. The research utilizes a combination of motion capture and force plate 
measurements from the Murphy dataset to gather comprehensive gait data. These data were 
processed and segmented into meaningful features, including joint angles, knee adduction moments 
and ground reaction forces (GRF). The study utilized Long Short-Term Memory (LSTM) networks, 
Random Forests (RF), and Support Vector Machines (SVM) to model the relationship between 
these features and the effectiveness of powered versus passive prosthetic knees. Statistical methods 
were applied to assess the significance of observed differences in gait mechanics, with a particular 
focus on identifying compensatory strategies in the intact limb. This integrated approach aimed to 
provide personalized prosthetic recommendations to improve gait efficiency and reduce the long-
term health risks associated with compensatory movements. 

 
2.1. Dataset and Experimental protocol 
Murphy dataset [25] that investigates the impact of prosthetic leg designs and walking speeds on 
individuals with transfemoral amputations. Three participants each walked on a treadmill at slow, 
normal, and fast speeds using two types of prosthetic legs: a passive everyday model and an 
advanced powered one. In this study, 18 recordings (3 individuals × 2 leg types × 3 speeds) have 
been utilized. Motion capture tracked their leg movements and force plates measure ground forces.. 
Recordings were segmented into individual strides based on heel contact and standardized for 
comparison. The dataset offers insights into how prosthetic design and walking speed influence gait 
in this population. 
  
2.2. Analysis on Knee Kinematics and Kinetics 
The data processing: legs were categorized (left/right), strides were segmented by heel contacts, 
and time normalization is applied to standardize stride durations to 100 data points per participant. 
Segregation into stance and swing phases enabled focused analysis of gait cycle components. 
??Visualizations of knee adduction moment, knee joint power and ground reaction forces (GRF)  
graphically explore the relationships and patterns, guiding further detailed investigation. 
 
 
2.2.1. Knee Adduction Moment 
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The knee external adduction moment across all three participants (Subject 1, 2, and 3) were plotted 
in Figure 1. It illustrates knee adduction moments for three subjects using both powered and 
passive prostheses, revealing a consistent trend across all participants: powered prostheses generate 
larger adduction moments compared to passive prostheses throughout the gait cycle, with an 
observed difference of approximately 300-400 Nm/kg during mid-stance, the phase corresponding 
to maximum weight-bearing. The peak knee adduction moments for powered prostheses range 
from 1100 to 1500 Nm/kg, while passive prostheses exhibit lower peaks, generally around 700 to 
1000 Nm/kg. The increased inward force associated with powered prostheses contrasts with the 
minimum adduction moments observed during terminal swing when the prosthetic is not weight-
bearing. Additionally, comparisons between prosthetic and contralateral limbs reveal gait 
asymmetry, with powered prostheses showing adduction moments 800-900 Nm/kg higher than 
those observed in the intact leg. 

 
 

                                           (a)                                                                               (b) 

 
  

                                         (c)                                                                                  (d) 
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Fig. 1. (a) Knee Adduction Moment for Powered Prosthetic Right Leg, (b) Knee Adduction 
Moment for Powered Prosthetic Left Leg, (c) Knee Adduction Moment for Passive Prosthetic Right 
Leg, (d) Knee Adduction Moment for Passive Prosthetic Left Leg 
Therefore, the powered prosthetic knee appeared to generate a consistently larger adduction 
moment compared to the passive prosthetic knee throughout the gait cycle (percent gait). This 
suggests that the powered prosthesis applies a stronger inward force at the knee joint during 
walking compared to the passive design. This highlights the effectiveness of powered assistance in 
reducing the burden on the unaffected leg. 
 

2.2.2. Knee Joint Power: 
Figure 2 illustrates knee power for three subjects using both powered and passive prostheses, 
highlighting a consistent trend where powered prostheses generally require less power than passive 
prostheses throughout the gait cycle, particularly during the stance phase. The peak power output 
for powered prostheses ranges from 30 to 35 W/kg, whereas passive prostheses demand peak 
power outputs between 40 and 45 W/kg. Individual variations in walking speed, stride length, and 
prosthetic fit can affect the timing of these peak and minimum power phases. Comparing knee 
power between prosthetics and contralateral limbs reveals that powered prostheses often exhibit a 
more symmetrical power profile compared to the intact leg. For instance, powered prostheses 
approach the power consumption of the normal leg more closely, with peak power outputs ranging 
from 25 to 35 W/kg, while passive prostheses typically show a greater disparity, with peak values 
ranging from 35 to 45 W/kg. 
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                                (a)                                                                          (b) 

 
                                 (c)                                                                               (d) 

Fig. 2. (a) Knee Joint Power for Powered Prosthetic Right Leg, (b) Knee Power for Powered 
Prosthetic Left Leg, (c) Knee Power for Passive Prosthetic Right Leg, (d) Knee Power for Passive 
Prosthetic Left Leg 
 
From the analysis, it is observed that the powered prosthetic knee requires less overall work 
compared to the passive prosthetic knee across the gait cycle for all three subjects. This is evident 
from the consistently lower knee joint power output observed with the powered prosthetic knee 
throughout the stance phase (in all subjects). Lower knee joint power during stance implies reduced 
metabolic demand on the muscles controlling the knee joint in the powered prosthesis compared to 
the passive design. 
 
2.2.3. Ground Reaction Force 
 

Ground reaction forces (GRF) for three subjects with powered and passive prostheses is graphically 
shown in Figure 3. The data shows that powered prostheses generally lead to higher peak GRF in 
the unaffected leg, indicating compensatory weight-bearing. The GRF curves exhibit an initial peak 
for weight acceptance and a terminal peak for push-off. For Subject 1, the powered prosthesis 
results in peak GRF values of 100-105 N during weight acceptance and 90-95 N during push-off, 
compared to slightly higher values for the passive prosthesis. Subject 2’s powered prosthesis has 
peaks of 110-115 N during weight acceptance and 85-90 N during push-off, while the passive 
prosthesis displays a double peak pattern. For Subject 3, the powered prosthesis shows peaks of 
120-130 N during weight acceptance and 95-100 N during push-off, compared to the passive 
prosthesis with similar double peak characteristics. 
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                                (a)                                                                            (b) 

 
                                (c)                                                                           (d) 

Fig.  3 (a) Ground Reaction Force for Powered Prosthetic Right Leg, (b) Ground Reaction force for 
Powered Prosthetic Left Leg, (c) Ground Reaction Force for Passive Prosthetic Right Leg, (d) 
Ground Reaction force for Passive Prosthetic Left Leg 

Overall analysis of ground reaction forces (GRF) highlights potential compensatory mechanisms in 
amputees. The higher GRF in the unaffected leg (powered condition) suggests it bears more weight 
to maintain stability. Additionally, overall GRF might be higher in the  powered condition due to 
the device's assistance, leading to stronger pushes and improved propulsion. Understanding these 
adaptations is crucial for optimizing rehabilitation and assistive device design. 

 
2.3 Machine Learning Classification 
  
The human gait cycle is a complex sequence of coordinated muscle activity and joint movements. 
Analyzing these gait patterns offers valuable insights into human locomotion and can be especially 
crucial for understanding gait abnormalities in individuals with lower-limb amputations. Machine 
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learning algorithms, particularly adept at handling sequential data, provide powerful tools for gait 
classification. This study employed three machine learning models—Long Short Term Memory 
(LSTM), Random Forest (RF), and Support Vector Machines (SVM)—to classify gait patterns in 
transfemoral amputees based on prosthetic knee type (powered vs. passive) and walking speed 
(slow, normal, fast). 
 
2.3.1 Long Short Term Memory (LSTM) Network 
 
The proposed work investigates the efficacy of three machine learning algorithms for gait 
classification based on the dataset. Since LSTMs are a type of recurrent neural network (RNN) that 
can capture temporal dependencies within data, it is well-suited to analyze sequential data. This 
makes them ideal for tasks involving gait cycle segmentation, gait pattern analysis and 
classification.  
 
                             

 
Fig. 4 LSTM Architecture 

 
 
The model that is developed utilizes an LSTM (Long Short-Term Memory) architecture (Figure 4) 
by constructing a sequential model. This design is ideal for how LSTMs handle data, processing it 
one time step (or stride point) at a time. Within the model, LSTM layers are set up with specific 
numbers of hidden units, which control the model's ability to learn complex patterns from the gait 
data sequence. An essential part of the model involves defining parameters that indicate the number 
of data points per gait cycle (stride points) and the number of features extracted from each data 
point, such as joint angles and power moments. These parameters shape the input structure for the 
LSTM layer. As the model processes the gait data sequence through the LSTM layers, it learns the 
temporal relationships between features across different stride points. For example, the model can 
distinguish between joint movements during the stance phase (when the foot is on the ground) and 
the swing phase (when the foot is in the air). This capacity to understand temporal dependencies is 
key to how LSTMs effectively analyze gait patterns. The LSTM architecture is selected for its 
strength in determining the sequential characteristics of gait data, with the aim of accurately 
classifying patterns based on variations in prosthetic design and walking speed. 
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��  → represents the input gate. 

��→ represents the forget gate. 

��→ represents output gate. 

σ → represents sigmoid function. 

��→ weight for the respective gate(x) neurons. 

t-1 → output of the previous LSTM block (at timestamp t-1). 

��→ input at current timestamp. 

b → biases for the respective gates(x). 

 
2.3.2 Random Forest Network 

Random Forest algorithm, a type of ensemble learning method, excels at tackling 
classification tasks with diverse features. They operate by combining the predictions of 
multiple decision trees, creating a robust and accurate classifier. Each decision tree is 
constructed using a random subset of features and data points from the training data, 
fostering diversity within the ensemble. This study leverages the capabilities of Random 
Forests by utilizing functions or libraries specifically designed for this algorithm. These 
functions handle the creation and training of the ensemble of decision trees. Within the 
analysis, the number of trees to be included in the Random Forest are defined, that 
influences the overall accuracy and robustness of the classification. Additionally, the 
maximum depth of each decision tree, controlling the complexity of the individual trees and 
preventing overfitting, are set. 
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                      Fig. 5 Random forest Architecture 
 
 

Figure 5 shows the block diagram of the RF architecture. During the training phase, each 
decision tree in the Random Forest analyzes a subset of the gait data features. The tree 
creates a series of branching conditions based on these features, ultimately leading to a 
classification outcome (e.g., powered knee, passive knee, fast walking). This process is 
repeated for all trees in the ensemble, using different random subsets of features and data 
points. Once all decision trees have made their individual predictions, the Random Forest 
employs a voting mechanism to determine the final classification for a new data point. The 
class that receives the most votes from the individual trees becomes the predicted class for 
the new data point. This voting approach reduces the potential biases of any single decision 
tree and leverages the collective insights of the ensemble to achieve a more accurate 
classification. This study presents a reliable method for classifying gait patterns in 
transfemoral amputees.  

In the context of a Random Forest classifier, the final prediction for a new data point is determined 
by aggregating the predictions from each decision tree in the forest.  A simplified equation to 
represent the voting mechanism is given in equation 4: 

 Each decision tree in the Random Forest classifies the gait data into one of the predefined gait 
patterns, and the final classification is determined by taking the most common classification result 
across all trees. 

 
    � � = ����({�1(�),�2(�), . . .��(�)})                                                                        (4) 
 where: 
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● y^ is the predicted gait pattern (e.g., powered knee, passive knee, fast walking) for the new 
gait data point xxx. 
● Ti(x) is the gait pattern classification given by the i-th decision tree based on the gait 
features in xxx. 
● T1(x),T2(x),…,Tn(x)} is the set of gait pattern predictions from all n decision trees in the 
Random Forest. 
● mode is the statistical mode function that selects the most frequently predicted gait pattern 
among all the decision trees. 

2.3.3 Support Vector Machine 

Support Vector Machines (SVMs) give an alternative approach to classifying gait patterns. Unlike 
Random Forests, which control an ensemble of decision trees, SVMs aim to identify a hyperplane 
in the feature space that best separates data points belonging to different classes. During the 
training phase, the SVM algorithm identifies a specific set of data points, called support vectors. 
These support vectors lie closest to the hyperplane and essentially define the margins between 
classes in the feature space.  

 

   

 
  Fig. 6 Support Vector Machine Architecture 
 

The SVM aims to maximize the margin between these hyperplanes, ensuring clear separation of the 
classes (e.g., powered knee vs. passive knee). Once the SVM is trained and the optimal hyperplane 
is established, a new stride can be presented for classification. The SVM extracts features from the 
new stride and maps them onto the same feature space used for training (Figure 6). The SVM then 
analyzes the position of the new data point relative to the hyperplane, determining its class based 
on which side of the hyperplane it falls on. 
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For classifying gait patterns using a Support Vector Machine (SVM), a basic linear SVM equation 
is used. The equation 5, assumes that the gait data is linearly separable in the feature space. In a 
linear SVM, the decision boundary (hyperplane) that separates two classes can be represented by: 

                                             

                                              �.�+  � = 0                                                              (5) 

where: 

● w is the weight vector perpendicular to the hyperplane. 
● x is the feature vector representing the gait pattern. 
● b is the bias term. 

The decision function for classifying a new gait pattern x is: 

                                           �(�) = ���( �.�+�)                                              (6) 

wher e sgn(⋅)i s t he si gn funct i on t hat  out put s +1 or  - 1. 

  

3. Results and Discussion 
 
3.1. Predictions using Machine Learning  

The developed Long Short-Term Memory (LSTM) models in this study demonstrate robust 
capabilities in predicting both the type of prosthetic limb and walking speed based on sensor data. 
As a type of recurrent neural network (RNN), LSTM excels in capturing long-term dependencies in 
sequential data, making it ideal for analyzing time-series data such as gait sensor readings.This 
success is attributed to the model's ability to leverage temporal dynamics from sensor data, allowing 
it to identify characteristic patterns associated with each prosthetic type. 

The confusion matrices presented illustrate the LSTM model's performance in classifying prosthetic 
type and walking speed. The model exhibits high precision, with 91% accuracy in identifying 
powered prosthetic limbs. Despite its high precision, the model shows moderate recall rates: 27% 
for fast walking, 32% for normal walking, and 41% for slow walking. The F1-scores, which balance 
precision and recall, are 0.42 for fast, 0.47 for normal, and 0.56 for slow walking speeds. These 
metrics suggest that while the model is highly precise, it faces challenges in consistently recalling 
the correct walking speeds. 

In a comparative analysis of classifier performance, the LSTM model outperforms Support Vector 
Machine (SVM) and Random Forest (RF) classifiers. Specifically, the LSTM model achieved 97% 
accuracy in prosthetic limb prediction and 98% accuracy in walking speed prediction, underscoring 
its superior performance in both aspects. The relatively high accuracy of RF (95% for prosthetic 
limb prediction and 91% for speed prediction) reflects its robustness in handling noisy and high-
dimensional data, a common characteristic in gait analysis. SVM offered the least classification 
accuracy with (94% for prosthetic limb prediction and 88% for speed prediction). However, the 
slight drop in performance compared to LSTM indicates that the temporal modeling capabilities of 
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LSTM are particularly beneficial for accurately predicting prosthetic function in real time. 
Confusion matrix for prosthetic type classification Demonstrated high precision for LSTM models, 
achieving 91% in identifying "fast" walking and effectively distinguishing between "powered" 
(91%) and "passive" (86%) prosthetic types. However, the model shows moderate recall rates, with 
27% for fast walking, 32% for normal, and 41% for slow instances. The overall F1-scores are 0.42 
for fast, 0.47 for normal, and 0.56 for slow categories, indicating a balanced performance between 
precision and recall across different walking speeds. 

 TABLE 2: Paired t-test results for powered and passive prosthesis 
  

Parameter Powered 
Prosthesis 

Passive Prosthesis Effect size 
Cohen's d 

t-value 
(df=2) 

P Value 

Mean SD Mean SD   

Knee 
moment* 

(N*mm/Kg) 

212.03 93.29 141.82 23.61 1.03 2.824 .024* 

Hip 
moment 

(N*mm/Kg) 

298.56 173.49 271.4 178.6 0.15 0.154 0.44 

Knee angle 
(deg) 

17.31 6.53 19.54 6.49 0.34 -0.34 0.37 

Hip angle 
(deg) 

23.89 7.32 22.76 7.31 0.15 0.153 0.44 

Knee power 
(W/Kg) 

0.35 0.19 0.22 0.21 0.64 0.608 0.287 

Hip power 
(W/Kg) 

0.27 0.03 0.23 0.02 0.39 -0.03 0.487 

  

Knee and hip kinetics and kinematics involving moments, power and angle were observed while 
using powered and passive prosthesis. A significant increase in knee and hip moment is seen while 
using powered prosthesis compared to passive prosthesis (refer Table. 2). However, very limited 
power is observed for both hip and knee joints. The average hip and knee angle during the entire 
gait cycle is limited to less than 25° for both powered and passive prosthesis.  

Independent samples t-test is performed to compare the mean values of the kinetic / kinematic 
parameters obtained while using powered and passive prosthesis. There is a significant difference in 
scores of Knee moments for Powered and passive prosthesis t(2)=2.84, p=.024. No significance is 
seen for all other parameters considered. This observation concludes that the powered prosthesis 
has a notable impact on the knee moment of the intact leg. Studies suggest that improper alignment 
of the prosthetics can have a quantitative effect on the biomechanical loading of the intact leg. 
Significantly higher knee and hip moments can be associated with higher incidence of 
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osteoarthritis. No significant difference in joint angles and power were observed for the two 
prosthetics. 

The effect size is calculated using Cohen's d as a measure of comparison between two means. It 
calculates the standardized difference between two means in terms of standard deviation units. The 
larger the effect size the better is the practical significance of the results compared.  A small effect 
size (0-0.3) is observed for hip joint moment and angle, while a nearly moderate effect size (0.3-
0.6) is reported for hip power and knee angle. A considerably large effect size(>0.6) is observed for 
knee joint kinetics namely, Knee power and knee moment, concluding that knee kinetics plays a 
vital role in understanding the biomechanical loading effects of prosthetics in the intact leg[14]. For 
more quantitative interpretation of the hip kinetics, more data is required for any conclusive 
remarks. 

 

TABLE 3: Stance and Swing Phases (in %Gait cycle) for powered and passive prosthesis 
Phase 

   Prosthetic 
Type 

% Gait 

Left   Right 

Stance Powered 60.5±3.2 62.1±2.9 

Passive 58.2±4.1 59.7±3.5 

Swing Powered 39.5±3.2 37.9±2.9 

Passive 41.8±4.1 40.3±3.5 

 

Table 3 shows that powered prosthetics result in a stance phase that is approximately 2-3% longer 
compared to passive prosthetics. This increase in the stance phase indicates enhanced stability, 
allowing for more secure weight-bearing during walking. The reduction in the swing phase duration 
reflects greater efficiency in limb movement, contributing to a smoother and quicker gait cycle. 
Additionally, the lower variability observed with powered prosthetics enhances overall gait stability 
and reduces the likelihood of compensatory movements that could lead to joint strain or discomfort. 

The Long Short-Term Memory (LSTM) models developed in this research demonstrated an overall 
accuracy of 87.5% in predicting prosthetic type and walking speed based on gait sensor data. This 
high accuracy underscores the model's ability to capture the temporal dynamics of gait patterns, 
effectively distinguishing between powered and passive prosthetics and predicting the 
corresponding walking speeds. Despite the model's strong performance in prosthetic type 
classification, as indicated by high precision rates (91% for "powered" and 86% for "passive"), it 
exhibited moderate recall rates for different walking speeds, with F1-scores of 0.42 for fast, 0.47 for 
normal, and 0.56 for slow categories. These findings suggest that while the LSTM model is 
proficient in identifying prosthetic types, further refinement is needed to improve recall in speed 
prediction. 
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Moreover, the study’s analysis of stance and swing phases revealed that powered prosthetics 
provide more balanced gait mechanics. The mean stance phase duration is slightly longer for 
powered prosthetics (60.5% on the left and 62.1% on the right) compared to passive prosthetics 
(58.2% on the left and 59.7% on the right). Conversely, the swing phase is shorter for powered 
prosthetics (39.5% on the left and 37.9% on the right) compared to passive prosthetics (41.8% on 
the left and 40.3% on the right). These findings suggest that powered prosthetics offer a more 
natural and balanced distribution of stance and swing phases, contributing to improved gait 
symmetry and reduced compensatory movements. 

4. Conclusion 

A comprehensive analysis of the biomechanical parameters of powered versus passive prosthetics 
for transfemoral amputees, leveraging advanced machine learning techniques for prediction of 
optimal walking speed provides enhanced gait stability for long-term usage. Integration of advanced 
machine learning techniques with biomechanical analysis yields significant insights into the 
performance and benefits of powered prosthetics. The superior knee stability, reduced hip effort, 
and improved energy efficiency associated with powered prosthetics highlight their potential to 
enhance gait efficiency and user comfort. 
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