Trung-Hieu Le, PhD
Dai Nam University, Vietnam.
Nguyen Thi Hang, PhD
Thai Nguyen University, University of Information and Communication Technology, Vietnam.
Dinh Tran Ngoc Huy, MBA., (corresponding)
Banking University HCMC, Ho Chi Minh city Vietnam – International University of Japan, Japan.
Nguyen Thi Phuong Thanh, Master
Thai Nguyen University of Information and Communication Technology, Vietnam.
Nguyen Thuy Dung, Master
Thai Nguyen University of Information and Communication Technology, Vietnam.
Identifying Gender of Internet Users Based on Access History
Authors
Abstract
The use of activities and internet access differs between men and women. On average, men spend more time on the Internet a day. Men also have some of the same online activities as women. However, there are specific differences such as men’s tendency to access features such as breaking news, football, or games and men’s products. On the contrary, women are more interested in shopping, e-commerce, chatting and participating in social networking sites
and blogs. The study aims to identify and predict gender of internet users based on their access history. With SVM method, the correct classification rate is the highest compared to the other two models Accuracy = 87.67%, in addition, the Precision, Recall, and F-Score parameters also give outstanding rates. This result allows us to believe in the ability of the SVM machine learning model to effectively handle the classification and gender identification problem with
large-dimensional data.